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Abstract
In recent years there has been an increasing in-
terest in extending Dung’s framework to facilitate
the knowledge representation and reasoning pro-
cess. In this paper, we present an extension of
Abstract Argumentation Framework (AF) that al-
lows for the representation of preferences over ar-
guments’ truth values (3-valued preferences). For
instance, we can express a preference stating that
extensions where argument a is false (i.e. defeated)
are preferred to extensions where argument b is
false. Interestingly, such a framework generalizes
the well-known Preference-based AF with no ad-
ditional cost in terms of computational complexity
for most of the classical argumentation semantics.
Then, we further extend AF by considering both (3-
valued) preferences and 3-valued constraints, that
is constraints of the form ϕ ⇒ v or v ⇒ ϕ,
where ϕ is a logical formula and v is a 3-valued
truth value. After investigating the complexity of
the resulting framework, as both constraints and
preferences may represent subjective knowledge of
agents, we extend our framework by considering
multiple agents and study the complexity of decid-
ing acceptance of arguments in this context.

1 Introduction
Reasoning about preferences over a set of alternatives is cen-
tral to rational decision-making. Preferences have been in-
vestigated in many contexts including e.g. decision theory,
social choice, knowledge bases, and AI [Rossi et al., 2011;
Manlove, 2013; Santhanam et al., 2016; Domshlak et al.,
2011; Pigozzi et al., 2016; Conitzer, 2019; Brewka et al.,
2003; Staworko et al., 2012]. Preferences are often modeled
by means of an irreflexive, asymmetric, and transitive binary
relation (expressing the preference of one element w.r.t. an-
other one) and can be represented by an acyclic graph.

Recent years have witnessed intensive formal study, devel-
opment, and application of Dung’s abstract Argumentation
Framework (AF) in various directions [Gabbay et al., 2021].
An AF consists of a setA of arguments and an attack relation
R ⊆ A×A that specifies conflicts between arguments (if ar-
gument a attacks argument b, then b is acceptable only if a is

e

c

bd

ameat

white red

fish meat

white red

beer

cake

icec

fish meat

white red

fish

Figure 1: (From left to right) AFs Λ1,Λ2, Λ5, and Λ9 of Examples 1,
2, 5, and 9, respectively.

not). We can think of an AF as a directed graph whose nodes
represent arguments and edges represent attacks. The mean-
ing of an AF is given in terms of argumentation semantics,
e.g. the well-known grounded (gr), complete (co), preferred
(pr), stable (st), and semi-stable (ss) semantics, which intu-
itively tells us the sets of arguments (called σ-extensions, with
σ ∈ {gr, co, pr, st, ss}) that can collectively be accepted to
support a point of view in a dispute. For instance, for AF
〈A,R〉 = 〈{a, b}, {(a, b), (b, a)}〉 having two arguments, a
and b, attacking each other, there are two preferred/stable ex-
tensions, {a} and {b}; neither a nor b is certainly accepted.

Several proposals have been made to extend the Dung’s
framework with the aim of better modeling the knowl-
edge to be represented. These extensions include Bipolar
AF [Nouioua and Risch, 2011], AF with recursive attacks and
supports [Cohen et al., 2015; Cayrol et al., 2018], Dialectical
framework [Brewka et al., 2013], AF with preferences [Am-
goud and Cayrol, 1998; Modgil and Prakken, 2013; Alfano et
al., 2022b; 2023a] and AF with constraints [Coste-Marquis et
al., 2006; Arieli, 2015; Alfano et al., 2021b], as well as ex-
tensions for representing uncertain information [Fazzinga et
al., 2020; 2015; Li et al., 2011]. In this paper, we focus on
AF with constraints and preferences.

Example 1 Consider AF Λ1 = 〈{fish, meat, red, white},
{(fish, meat), (meat, fish), (meat, white), (white, red),
(red, white)}〉, shown in Figure 1(left). Intuitively, Λ1 de-
scribes what a person is going to have for lunch. (S)he
will have either fish or meat, and will drink either white
wine or red wine. However, if (s)he will have meat, then
(s)he will not drink white wine. Λ1 has three preferred
(stable and semi-stable) extensions E1 = {fish, white},
E2 = {fish, red}, and E3 = {meat, red}, which represent
alternative menus.

Assume that there is a pescetarian customer and, as a con-
sequence, (s)he wants to discard all menus with meat by
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putting the constraint meat ⇒ false, stating that argument
meat must be rejected. Thus, feasible preferred extensions
are only those where meat is defeated, that is E1 and E2.

Assume now that there is another customer which would
express the preference on menus having meat instead of fish
as main dish; the preference meat > fish can be used to
encode such a desideratum. In this case no extension is dis-
carded. Among the three above-mentioned extensions repre-
senting the alternative menus, the best one for the considered
customer is selected, that is, extension E3. 2

Considering the previous example, one could observe that
the (pescetarian) user constraint could be modeled by mod-
ifying the AF through the addition of an (unattacked meta-)
argument attacking meat. However, such kind of rewriting is
not always easy to carry out, e.g. when constraints are defined
by complex propositional formulae. In some cases, it is even
not possible (e.g. under the complete semantics). In fact, the
introduction of constraints and/or preferences is useful not
only to separate the objective knowledge represented by the
AF from the subjective restrictions and preferences added by
users but also because, as it will be clear from our complexity
analysis, the rewriting is not always possible.

The extension of AF with constraints, called Constrained
AF (CAF), has been studied in [Coste-Marquis et al., 2006;
Arieli, 2015; Alfano et al., 2021b], while for AF with pref-
erences different semantics have been proposed in [Amgoud
and Cayrol, 1998; 2002; Amgoud and Vesic, 2011; 2014;
Cyras, 2016; Silva et al., 2020].

Regarding Preference-based AF (PAF), two main ap-
proaches have been proposed in the literature. A first ap-
proach defines the PAF semantics in terms of an underlying
AF [Amgoud and Cayrol, 2002; Amgoud and Vesic, 2014;
Kaci et al., 2018], whereas a second approach uses prefer-
ences to select a subset of extensions of the AF, called best
extensions [Amgoud and Cayrol, 1998; 2002; Amgoud and
Vesic, 2011; 2014; Cyras, 2016; Silva et al., 2020]. Consid-
ering the first approach, there are cases where the semantics
may give counterintuitive results (e.g. the extensions of the
rewritten AF are not conflict-free w.r.t. the initial AF). Thus,
in the rest of the paper, we focus on the second approach.

A limitation of the forms of preferences proposed in the lit-
erature is that, as AF semantics may be 3-valued (arguments
can be either accepted, defeated, or undecided) they do not
allow expressing preferences referring to the status of argu-
ments. For instance, continuing with our example, classical
preferences do not allow us to express a preference for menus
(i.e. extensions) containing fish w.r.t. menus not containing
fish (i.e. extensions where fish is defeated or undecided)
or to express a preference for menus surely not containing
fish (i.e. with fish being defeated) w.r.t. menus surely not
containing meat (i.e. with meat being defeated).

As most of the AF semantics are 3-valued, in this paper
we study AF with extended preferences, that is preferences
of the form av � bw, where a and b are arguments and v
and w are truth values (true, false, and undefined) denoting
the status of associated arguments (accepted, defeated, and
undecided, respectively). We also study the combination of
extended preferences with 3-valued constraints and propose

a framework with multiple agents sharing the same AF while
expressing different constraints and preferences.
Contributions. Our main contributions are as follows.
• We introduce the extended Preference-based AF (ePAF),

an extension of AF where preferences are 3-valued, in the
sense that they also refer to the status of arguments (Sec-
tion 3). We show that ePAF is in general more expressive
than PAF (under the so-called KTV interpretation) and that
AF semantics can be emulated by ePAF under complete-
semantics (cf. Proposition 2). We study the complexity of
the verification (Verσ) as well as credulous (CAσ) and skep-
tical (SAσ) acceptance problems, and show that in most of
the cases (i) it increases by one level in the polynomial hi-
erarchy w.r.t. that of AF, and (ii) is the same as that of PAF
under KTV criterion (see Table 1).

• We combine the features of CAF and ePAF to define the
extended Preference-based Constrained AF (ePCAF), and
investigate the complexity of the verification and credulous
and skeptical acceptance problems for ePCAF for multi-
status semantics σ ∈ {co, st, pr, ss}. As shown in Ta-
ble 1, it turns out that ePCAF is more expressive than both
CAF and PAF, though the complexity bounds do not in-
crease w.r.t. that of ePAF (Section 4).

• To establish the above-mentioned complexity relationships,
i) we study the complexity of the verification problem for
CAF, showing that it does not increase w.r.t. that of AF; ii)
we show that CAF is more expressive than AF under pre-
ferred semantics by closing the complexity gap (NP-hard, in
Σp2) for the credulous acceptance problem (cf. Table 1).

• We further extend our framework by considering a multiple
agents scenario. Here the objective knowledge is modeled
through an AF, whereas, the agents’ subjective knowledge
is modeled by means of constraints and (extended) pref-
erences. Also in this context, we study the computational
complexity and show that there is no increase w.r.t. ePCAF.

2 Preliminaries
We next review the Dung’s framework and its generalizations
with constraints (CAF) and preferences (PAF).

2.1 Abstract Argumentation Framework
An abstract Argumentation Framework (AF) is a pair 〈A,R〉,
whereA is a (finite) set of arguments andR ⊆ A×A is a set
of attacks (also called defeats). Different semantics have been
defined for AF, leading to the characterization of collectively
acceptable sets of arguments, called extensions [Dung, 1995].

Given an AF Λ = 〈A,R〉 and a set E ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. E iff ∃b ∈ E
such that (b, a) ∈ R; ii) acceptable w.r.t. E iff ∀b ∈ A with
(b, a) ∈ R, ∃c ∈ E such that (c, b) ∈ R. Given an exten-
sion E, the sets of defeated (f(E)), acceptable (t(E)), and
undecided (u(E)) arguments w.r.t. E are defined as follows
(where Λ is understood):
• f(E) = {a ∈ A | ∃b ∈ E . (b, a) ∈ R};
• t(E)={a ∈ A | ∀b∈A . (b, a) ∈ R ⇒ b ∈ f(E)};
• u(E)=A \ (t(E) ∪ f(E)).
Given an AF 〈A,R〉, a set E ⊆ A of arguments is said to be:
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• conflict-free iff E ∩ f(E) = ∅;
• admissible iff it is conflict-free and E ⊆ t(E).

Given an AF 〈A,R〉, a set E ⊆ A is an extension called:

• complete (co) iff it is conflict free and E = t(E);
• preferred (pr) iff it is a ⊆-maximal complete extension;
• stable (st) iff it is a total complete extension, i.e. a com-

plete extension s.t. E∪f(E)=A or, equivalently, u(E)=∅;
• semi-stable (ss) iff it is a complete extension with a mini-

mal set of undecided arguments, i.e. f(E) is ⊆-minimal;
• grounded (gr) iff it is the ⊆-smallest complete extension.

The set of complete (resp. preferred, stable, semi-stable,
grounded) extensions of an AF Λ will be denoted by co(Λ)
(resp. pr(Λ), st(Λ), ss(Λ), gr(Λ)). It is well-known that the
set of complete extensions forms a complete semilattice w.r.t.
⊆, where gr(Λ) is the meet element, whereas the greatest el-
ements are the preferred extensions. All the above-mentioned
semantics except the stable admit at least one extension. The
grounded semantics, that admits exactly one extension, is said
to be a unique status semantics, while the others are multi-
ple status semantics. With a little abuse of notation, we also
use gr(Λ) to denote the grounded extension. For any AF Λ,
st(Λ) ⊆ ss(Λ) ⊆ pr(Λ) ⊆ co(Λ), gr(Λ) ∈ co(Λ) and
st(Λ) 6= ∅ ⇒ st(Λ) = ss(Λ).

Example 2 Consider the AF Λ2 shown in Figure 1 (center-
left). Λ2 has three complete extensions: E0 = ∅, E1 =
{fish} (where f(E1) = {meat}), and E2 = {meat, red}
(where f(E2) = {fish, white, beer}. E0 is the grounded
extension, whereas E1 and E2 are preferred (semi-stable and
stable) extensions. 2

Given an AF Λ = 〈A,R〉 and a semantics σ ∈ {co,
pr, st, ss, gr}, the verification problem, denoted as Verσ ,
is deciding whether a set S ⊆ A is a σ-extension of Λ. More-
over, for g ∈ A, the credulous (resp. skeptical) acceptance
problem, denoted as CAσ (resp. SAσ), is deciding whether g
belongs to any (resp. every) σ-extension of Λ. Clearly, CAgr
and SAgr are identical problems.

2.2 Constrained AF
We briefly recall the Constrained Argumentation Framework
(CAF) extending AF with constraints expressed by means of
propositional formulae [Arieli, 2015; Alfano et al., 2021b].

We use LA to denote the propositional language defined
from a set of arguments A and the connectives ∧, ∨,⇒, ¬.

Definition 1 A constraint is a formula of one of the following
forms: (i) ϕ⇒ v, or (ii) v ⇒ ϕ, where ϕ is a propositional
formula in LA and v ∈ {f ,u, t}.

The 3-valued semantics of a formula γ, denoted by tv(γ)
(truth value of γ), assuming ¬u = u and the truth value or-
dering f < u < t, is defined as follows: (i) tv(v) = v,
for v ∈ {f ,u, t}, (ii) tv(ϕ ∧ ψ) = min(tv(ϕ), tv(ψ)),
(iii) tv(ϕ ∨ ψ) = max(tv(ϕ), tv(ψ)), (iv) tv(¬ϕ) =
¬tv(ϕ). Regarding the implication operator⇒, different se-
mantics have been defined. For instance, under Kleene’s logic
tv(ϕ⇒ ψ) = ¬tv(ϕ)∨ tv(ψ), whereas under Lukasiewicz’s
logic tv(ϕ ⇒ ψ) = (¬tv(ϕ) ∨ tv(ψ)) ∨ (tv(ϕ) = tv(ψ))).
For boolean constraints (that is, with v ∈ {f , t}) Kleene

and Lukasiewicz’s logics coincide. A nice property of both
Kleene and Lukasiewicz’s logics is that literals can be moved
from the head to the body (after negating them), and vice
versa, analogously to the case of 2-valued semantics. For
formulae defining constraints, Lukasiewicz’s logic seems to
be more appropriate as, for instance, it allows to distinguish
ϕ⇒ f from ϕ⇒ u.

In the following, we refer to the Lukasiewicz’s logic and
assume that the set of constraints is satisfiable, that is there is
an assignment of truth values to arguments which makes all
constraints true.

Example 3 The constraint a ∧ b ∧ c ⇒ f states that at least
one of the arguments a, b and c must be false, whereas
a ∧ b ∧ c⇒ u states that a, b and c cannot be all true. 2

Clearly, constraints of the forms f ⇒ ϕ and ϕ ⇒ t are
useless because always satisfied. Regarding the stable se-
mantics, which is 2-valued, only the symbols f and t can be
used and all interpretations of the implication operator coin-
cide with the classical 2-valued interpretation. Thus, a con-
straint ϕ ⇒ u is interpreted as ϕ ⇒ f , whereas a constraint
u⇒ ψ is interpreted as t⇒ ψ.

Definition 2 A Constrained Argumentation Framework
(CAF) is a triple 〈A,R, C〉 where 〈A,R〉 is an AF and C is a
set of constraints built from LA.

Definition 3 Given a CAF 〈A,R, C〉 and a semantics σ ∈
{co, gr, pr, st, ss}, a set S ⊆ A is a σ-extension for
〈A,R, C〉 if S is a σ-extension for 〈A,R〉 and S |= C.

Note that, given a CAF 〈A,R, C〉, if we consider the corre-
sponding AF Λ = 〈A,R〉, then the set of complete extensions
of Λ that satisfy C does not always form a complete meet-
semilattice. Roughly speaking, the constraints may break
the lattice by making unfeasible some extensions. Therefore,
even the grounded extension is not guaranteed to exist.

Example 4 Consider the CAF 〈A4 = {a}, R4 = {(a, a),
C4 = {t ⇒ a}〉. AF 〈A4,R4〉 has only one complete exten-
sion, E1 = ∅, but it does not satisfy the constraint stating that
“a must be accepted”. Thus, the CAF 〈A4,R4, C4〉 has no
complete extensions, and thus no grounded extension. 2

2.3 Preference-based AF
Several extensions of Dung’s framework for handling pref-
erences over arguments have been proposed [Amgoud and
Cayrol, 1998; 2002; Amgoud and Vesic, 2011; 2014; Cyras,
2016; Silva et al., 2020].

Definition 4 A Preference-based Argumentation Framework
(PAF) is a triple 〈A,R, >〉 such that 〈A,R〉 is an AF and >
is a strict partial order (i.e. an irreflexive, asymmetric and
transitive relation) over A, called preference relation.

For arguments a and b, a > b means that a is better than
b. To handle preferences, a “best extensions” semantics ap-
proach for PAF has been proposed in [Amgoud and Vesic,
2014; Kaci et al., 2018]. Given a PAF 〈A,R, >〉, classical
argumentation semantics are used to obtain extensions of the
underlying AF 〈A,R〉, and then the preference relation > is
used to obtain a preference relation w over such extensions,
so that the best extensions w.r.t. w are eventually selected.
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Clearly,w is not trivial for multiple-status semantics only (for
the grounded semantics, its extension is trivially the best one).

There have been different proposals to define the best ex-
tensions, corresponding to different criteria to define w.

Definition 5 Given a PAF 〈A,R, >〉, for E,F ⊆ A with
E 6= F , we have that under

• democratic (d) criterion [Amgoud and Vesic, 2014]:
E w F if ∀b ∈ F \ E ∃a ∈ E \ F such that a > b;

• elitist (e) criterion [Amgoud and Vesic, 2014]:
E w F if ∀a ∈ E \ F ∃b ∈ F \ E such that a > b;

• KTV (k) criterion [Kaci et al., 2018]:
E w F if ∀a, b ∈ A the relation a > b with a ∈ F \ E
and b ∈ E \ F does not hold.

Moreover, E A F , if E w F and F 6w E.

Definition 6 Given a PAF ∆ = 〈A,R, >〉, a semantics σ ∈
{co, pr, st, ss}, and a criterion ∗ ∈ {d, e, k} for w, the best
σ-extensions of ∆ under criterion ∗ (denoted as σ∗(∆)) are
the extensions E ∈ σ(〈A,R〉) such that there is no F ∈
σ(〈A,R〉) with F A E.

Example 5 Consider the AF Λ5 = 〈A5,R5〉 shown
in Figure 1 (center-right) whose preferred extensions are
{a, b}, {c, d}, and {e}. For PAF ∆5 = 〈A5,R5, {a > c,
b>c, d>e}〉, the best preferred extensions are: prd(∆5) =
{{a, b}, {c, d}}, pre(∆5) = {{a, b}, {e}}, and prk(∆5) =
{{a, b}}. 2

It is worth noting that, in some situations, the demo-
cratic and elitist criteria may lead to counterintuitive solu-
tions. Consider, for instance, the AF of Example 1 with
the preference meat > fish. As discussed in the Intro-
duction, it is expected that the best preferred extension is
E3 = {meat, red}. However, under both democratic and eli-
tist criteria also E1 = {fish, white} is a best extension, be-
cause white and red are not compared with other arguments.
In our opinion, democratic and elitist criteria are too restric-
tive and, for large AFs, may require a huge number of prefer-
ences to be effective. Moreover, for any PAF ∆= 〈A,R, >〉,
(i) cod(∆) = prd(∆), and (ii) coe(∆) = gr(〈A,R〉) [Al-
fano et al., 2022b]. This means that under democratic and
elitist interpretation, PAF semantics does not extend AF se-
mantics, as for any PAF 〈A,R, ∅〉, co∗(∆) may be different
from co(〈A,R〉), for ∗ ∈ {d, e}.

Thus, in this paper we will introduce and study a
preference-based AF which extends PAF with KTV criterion.
Complexity of PAF. The verification, credulous and skep-
tical acceptance problems for PAF under KTV criterion (de-
noted as Verσk

, CAσk
and SAσk

, respectively) naturally ex-
tend those for AF by considering the best σ-extensions (in-
stead of all extensions of the underlying AF). As shown in
Table 1, the complexity of Verσk

increases by one level in
the polynomial hierarchy, and also the complexity of CAσk

and SAσk
may increase by one level w.r.t. the corresponding

problems for AF [Alfano et al., 2022b].

3 Extended Preference-based AF
In this section we introduce a new form of preference for AF
and extend the PAF under the KTV criterion.

Definition 7 Let A be a set of arguments, an (extended)
preference relation, denoted as �, is a strict partial order
(i.e. an irreflexive, asymmetric, and transitive relation) over
AV = {av | a ∈ A ∧ v ∈ {f ,u, t}} of the form av1 � bv2 .
Intuitively, we allow defining preference between pairs,
where each pair consists of an argument and a truth value
in {f ,u, t}, denoting false, undefined, and true truth values,
and corresponding to the following statuses of arguments: de-
feated, undecided, and accepted respectively. 1

For instance, considering the AF of Example 2, a prefer-
ence redt � redu means that we prefer menus containing
red wine w.r.t. menus where red wine is undecided, whereas
a preference fisht � redf states that we prefer menus con-
taining fish w.r.t. menus where red is false (i.e. defeated).
Definition 8 An extended PAF (ePAF) is a triple 〈A,R,�〉
where 〈A,R〉 is an AF and � is an extended preference rela-
tion.

The following definition introduces the semantics of ePAF.
Definition 9 Given an ePAF ∆ = 〈A,R,�〉 and two distinct
sets of arguments E,F ⊆ A, we have that E w F under
KTV (k) criterion if @ av1 � bv2 such that a ∈ v1(F ) \
v1(E), b ∈ v2(E) \ v2(F ) holds (where v1, v2 ∈ {f ,u, t}).
Moreover, E A F , if E w F and F 6w E.

Thus best extensions (under KTV (k) criterion) are defined
as for PAF but using the criterion of Definition 9 to com-
pare extensions. That is, given an ePAF ∆ = 〈A,R,�〉 and
σ ∈ {co, pr, st, ss}, an extension E ∈ σ(〈A,R〉) is a best
extension for ∆ if there is no extension F ∈ σ(〈A,R〉) such
that F A E. The set of best σ-extensions for an ePAF ∆
under KTV criterion is denoted by σk(∆).
Example 6 Consider the AF of Example 1 under the com-
plete semantics. There are six complete extensions: E0 =
∅, E1 = {fish, white}, E2 = {fish, red}, E3 =
{meat, red}, E4 = {fish} (with white and red unde-
cided), and E5 = {red} (with fish and meat undecided).

Assume that there are the following preferences: xt � xu

and xt � xf , for every argument x. Then, the best complete
extensions are E1, E2 and E3 (which are the preferred ones).

If we also have the preference fisht � meatt, then the
best complete extensions are E1 and E2. 2

As stated next, ePAF generalizes PAF with KTV criterion.
Proposition 1 Let ∆ = 〈A,R,�〉 be an ePAF and ∆′ =
〈A,R, >〉 be a PAF such that � = {at � bt | a > b in ∆′}
and >= {a > b | at � bt in ∆}. Then, σk(∆) = σk(∆′) for
σ ∈ {co, pr, st, ss}.

Moreover, AF semantics can be easily expressed in ePAF
in terms of best complete extensions.
Proposition 2 Let 〈A,R〉 be an AF, σ ∈ {gr, co, pr, ss} a
semantics, and the ePAF

∆σ =


〈A,R, {au � at | a ∈ A}〉 if σ = gr

〈A,R, ∅〉 if σ = co

〈A,R, {at � au, at � af | a ∈ A}〉 if σ = pr

〈A,R, {at � au, af � au | a ∈ A}〉 if σ = ss.

1Instead of notation at (resp. af, au), we could have used the la-
belling notation in(a) (resp. out(a), undec(a)) [Caminada, 2006].
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AF CAF PAF ePAF / ePCAF / mPCAF
σ Verσ CAσ SAσ Verσ CAσ SAσ Verσk CAσk SAσk Verσk CAσk SAσk

co P NP-c P P NP-c coNP-c coNP-c Σp2-c P coNP-c Σp2-c Πp
2-c

st P NP-c coNP-c P NP-c coNP-c coNP-c Σp2-c Πp
2-c coNP-c Σp2-c Πp

2-c
pr coNP-c NP-c Πp

2-c coNP-c Σp2-c Πp
2-c Πp

2-c Σp2-h, Σp3 Πp
2-h, Πp

3 Πp
2-c Σp2-h, Σp3 Πp

2-h, Πp
3

ss coNP-c Σp2-c Πp
2-c coNP-c Σp2-c Πp

2-c Πp
2-c Σp2-h, Σp3 Πp

2-h, Πp
3 Πp

2-c Σp2-h, Σp3 Πp
2-h, Πp

3

Table 1: Complexity of the verification (Ver) and credulous (CA) and skeptical (SA) acceptance problems under complete (co), stable (st),
preferred (pr), and semi-stable (ss) semantics. For any complexity class C, C-c (resp., C-h) means C-complete (resp., C-hard). An interval
C-h, C′ means C-hard and in C′. For mPCAF, as the complexities of Ver∃σk and Ver∀σk (resp. CA∃

σk and CA∀
σk , SA∃

σk and SA∀
σk ) coincide,

we use the notation Verσk (resp. CAσk , SAσk ) for both problems. New results are highlighted in grey.

Then, it holds that σ(〈A,R〉) = cok(∆σ).

An encoding for the stable semantics, that may admit no
extensions, is given in Section 4 where we characterize the
stable semantics in a simple way by using constraints.

3.1 Complexity of ePAF
The verification, credulous and skeptical acceptance prob-
lems for ePAF under KTV criterion (denoted as Verσk

, CAσk

and SAσk
, respectively) are defined as for PAF but consider-

ing the best extensions for ePAF (i.e. according Definition 9).
The next theorem states the complexity of these problems.

Theorem 1 For ePAF, the problem:

• Verσk
is i) coNP-complete for σ ∈ {co, st};

ii) Πp
2-complete for σ ∈ {pr, ss};

• CAσk
is i) Σp2-complete for σ ∈ {co, st};

ii) Σp2-hard and in Σp3 for σ ∈ {pr, ss};
• SAσk

is i) Πp
2-complete for σ ∈ {co, st};

ii) Πp
2-hard and in Πp

3 for σ ∈ {pr, ss}.
Thus, the complexity bounds of verification, credulous ac-

ceptance and skeptical acceptance for ePAF do not increase
w.r.t. those of PAF under KTV semantics, except for skep-
tical acceptance under complete semantics that becomes Πp

2-
complete (cf. Table 1). Although the form of preference in-
troduced is more flexible than that of PAF, the complexity in
most of the cases does not increase.

The following example shows a case where ePAF is used
to express preferences not allowed in PAF.

Example 7 Consider the AF Λ2 of Example 2 shown in Fig-
ure 1 (center-left). The PAF preference red > white does
not allow to restrict the set of extensions and all complete
(resp. preferred) extensions are also the best ones. However,
the ePAF preference redt � redu allow us to select as best
complete (resp. preferred) extension E2 only. 2

Next, we combine extended preferences and constraints
and show that the resulting framework, other than offering
a compact and easier representation of both preferences and
constraints, is also more expressive than both CAF and PAF.

4 Combining Preferences with Constraints
We now extend CAF with (extended) preferences to express
several kinds of desiderata among extensions, and propose

a novel framework called extended Preference-based Con-
strained Argumentation Framework.

Definition 10 An extended Preference-based Constrained
Argumentation Framework (ePCAF) is a tuple ∆ =
〈A,R, C,�〉, where 〈A,R, C〉 is a CAF and � is an (ex-
tended) preference relation (cf. Definition 7).

The semantics of an ePCAF is given by the best extensions
selected among those that satisfy the constraints.

Definition 11 Given an ePCAF ∆ = 〈A,R, C,�〉 and a se-
mantics σ ∈ {co, pr, st, ss}, a σ-extension E for 〈A,R, C〉
is a best σ-extension for ∆ under KTV criterion if there is no
σ-extension F for 〈A,R, C〉 such that F A E.

Example 8 Continuing with Example 1, consider the ePCAF
∆8 = 〈A8,R8, {white ⇒ f}, {meatt � fisht}〉, where
〈A8,R8〉 is the AF in Figure 1 (left). The preferred exten-
sions for AF Λ8 are E1 = {fish, white}, E2 = {fish,
red} and E3 = {meat, red}. As white must be false, there
are only two preferred extensions satisfying the constraint:
E2 and E3. Then, the only best preferred extension is E3. 2

It is worth noting that, the best extensions would have been
different if we had defined the ePCAF ∆ = 〈A,R, C,�〉 as
an ePAF 〈A,R,�〉 with a set of constraints C. Indeed, in
such a case, the σ-extensions for ∆ would have been as the
best σ-extensions of 〈A,R,�〉 satisfying constraints C, that
is constraints would have been applied after preferences.

We now extend the set of relationships provided in Propo-
sition 2 by showing that the stable semantics of an ePAF can
be expressed as the best complete extensions of an ePCAF.

Proposition 3 For any ePAF 〈A,R,�〉, it holds that
stk(〈A,R,�〉) = cok(〈A,R, {a ∧ ¬a⇒ f | a ∈ A},�〉).

Observe that if in the proposition the set of preferences �
is empty, then the ePAF is an AF and the ePCAF is a CAF.

4.1 Complexity of ePCAF
Before characterizing the complexity of ePCAF, we provide
new results concerning the complexity of CAF. Although
these results are of independent interest, they are also useful
to provide lower bounds on the complexity of ePCAF and to
compare the two frameworks from a complexity standpoint.

As observed after Definition 3, the presence of constraints
in CAF breaks the meet-semilattice of complete extensions.
This entails that the credulous and skeptical acceptance of an
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argument w.r.t a CAF 〈A,R, C〉 may differ from that of the
associated AF 〈A,R〉. For instance, the fact that complete
extensions may not exist for CAF (cf. Example 4) impacts
on the complexity of the skeptical acceptance problem under
complete semantics, which cannot be longer decided by sim-
ply looking at the grounded extension as for the case of AF
(where an argument is skeptically accepted under complete
semantics if and only if it is in the grounded extension).

A summary of known results for the complexity of CAF
is reported in Table 1 (see cells with white background). The
complexity of the verification problem has not been addressed
so far. Moreover, an open question is whether credulous ac-
ceptance under preferred semantics for CAFs is harder than
for AF (where it can be decided by checking credulous ac-
ceptance under complete semantics). Indeed, it is known that
the complexity of CApr is NP-hard and in Σp2 [Alfano et al.,
2021b]. In all the other cases the complexity of credulous and
skeptical reasoning for CAFs and AFs coincides.

As stated next, the complexity of the verification problem
for CAF remains the same as that for AF.

Proposition 4 For CAF, the problem Verσ is in P for any se-
mantics σ ∈ {co, st} and coNP-complete for σ ∈ {pr, ss}.

We now provide a tight characterization of the complexity
of CApr for CAF, showing that it is harder than for AF. The
result follows from the fact we can write some constraints
enabling a reduction to our problem from the complement of
deciding coherence [Dunne and Bench-Capon, 2002].

Theorem 2 For CAF, the problem CApr is Σp2-complete.

We are now ready to address the complexity of ePCAF.
Given an ePCAF ∆ and a set S of arguments, the verifi-

cation problem under KTV criterion (denoted as Verσk
) is

deciding whether S ∈ σk(∆). Moreover, given an argument
g, the credulous and skeptical acceptance problems (denoted
as CAσk

and SAσk
) are the problems of deciding whether g

belongs to any/every σk-extension of ∆, respectively.

Theorem 3 For ePCAF, the problem:
• Verσk

is i) coNP-complete for σ ∈ {co, st};
ii) Πp

2-complete for σ ∈ {pr, ss};
• CAσk

is i) Σp2-complete for σ ∈ {co, st};
ii) Σp2-hard and in Σp3 for σ ∈ {pr, ss};

• SAσk
is i) Πp

2-complete for σ ∈ {co, st};
ii) Πp

2-hard and in Πp
3 for σ ∈ {pr, ss}.

Thus ePCAF is generally more expressive than CAF, par-
ticularly if we consider the verification problem whose com-
plexities increase of one level in the polynomial hierarchy for
all considered semantics. Also, it turns out that ePCAF has
the same complexity bounds as PAF, except for the SAcok

problem, similarly to what we have observed for ePAF.

5 Dealing with Multiple Agents
Often in knowledge representation and reasoning using
argumentation-based frameworks it is assumed that the AF
represents the objective knowledge, while constraints and
preferences are subjective knowledge of users/agents that are
used for collective decision-making. We now extend our

framework by considering the case of multiple agents sharing
the same AF and having different constraints and preferences
(represented by different ePCAFs) that are taken into account
to decide for instance the acceptance of a given argument.
Definition 12 A multi-agent ePCAF (mPCAF) is a set of eP-
CAFs {〈A,R, C1,�1〉, 〈A,R, C2,�2〉, ..., 〈A,R, Cn,�n〉},
one for each agent i ∈ [1, n].

Thus, we assume to have n (distinct) agents and that each
agent i has a set of constraints Ci and a preference relation
�i. For each agent i we have ePCAF ∆i = 〈A,R, Ci,�i〉,
and the best σ-extensions for agent i are those in σ(∆i).
Definition 13 Let ∆ = {∆1 = 〈A,R, C1,�1〉, ...,∆n =
〈A,R, Cn,�n〉} be an mPCAF and σ ∈ {co, st, pr, ss} a
semantics. Then, a set of arguments S ⊆ A is said to be a
possible (resp. necessary) best σ-extension of ∆ (under KTV
criterion) iff S ∈ σk(∆i) for some (resp. every) i ∈ [1, n].
Example 9 Consider the AF Λ9 =〈A9,R9〉 shown in Fig-
ure 1 (right) that extends that of Example 1. It has four
preferred extensions: E1 = {fish, white, icec}, E2 =
{fish, white, cake}, E3 = {fish, red, cake}, and E4 =
{meat, red, cake}, where icec denotes ice cream. Assume
to have 2 agents α and β whose constraints and preferences
are as follows: (Cα = {t⇒ fish},�α= {white � red});
(Cβ = {t⇒ cake},�β= {fish � meat}). Thus, for
agent α the best preferred extensions are E1 and E2, whereas
for agent β the best preferred extensions are E2 and E3.
Hence, E1, E2 and E3 are possibly best preferred exten-
sions of the mPCAF ∆9 = {∆α = 〈A9,R9, Cα,�α〉,∆β =
〈A9,R9, Cβ ,�β〉} while only E2 is a necessary best pre-
ferred extension of mPCAF ∆. 2

We have two variants of the verification problem for mP-
CAF. Given an mPCAF ∆ = {∆1 = 〈A,R, C1,�1〉, . . . ,
∆n = 〈A,R, Cn,�n〉} and a set S ⊆ A of arguments, the
possible (resp. necessary) verification problem, denoted as
Ver∃σk

(resp. Ver∀σk
), is the problem of deciding whether S is

possible (resp. necessary) best σ-extension of ∆.
Analogously, two variants of the credulous and skeptical

acceptance problems are defined in what follows.
Definition 14 Let ∆ = {∆1 = 〈A,R, C1,�1〉, . . . ,∆n =
〈A,R, Cn,�n〉} be an mPCAF, k the KTV criterion, and σ ∈
{co, st, pr, ss} a semantics. Then, g ∈ A is said to be:
• possibly credulously accepted under σk, denoted as
CA∃σk

(∆, g), iff ∃i ∈ [1, n], ∃E ∈ σk(∆i) such that g ∈ E;
• possibly skeptically accepted under σk, denoted as
SA∃σk

(∆, g), iff ∃i ∈ [1, n] s.t. g ∈ E for all E ∈ σk(∆i);
• necessarily credulously accepted under σk, denoted as
CA∀σk

(∆, g), iff ∀i ∈ [1, n], ∃E ∈ σk(∆i) such that g ∈ E;
• necessarily skeptically accepted under σk, denoted as
SA∀σk

(∆, g), iff ∀i∈ [1, n], g ∈ E for all E ∈ σk(∆i).
We now investigate the complexity of the verification and

credulous and skeptical acceptance problems in mPCAF. It is
worth noting that we are assuming that the number of agents
is an arbitrary but fixed number n.

Interestingly, the verification problem in mPCAF is not
harder than in PAF, ePAF, and ePCAF. Moreover, an anal-
ogous result also holds for the credulous and skeptical accep-
tance problems, that is, the complexity bounds for mPCAF
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acceptance problems do not increase w.r.t. those of ePCAF
(which coincide with those for ePAF, cf. Table 1).

Theorem 4 For mPCAF, the problems

• Ver∃σk
and Ver∀σk

are i) coNP-complete for σ ∈ {co, st};
ii) Πp

2-complete for σ ∈ {pr, ss};
• CA∃σk

and CA∀σk
are i) Σp2-complete for σ ∈ {co, st};
ii) Σp2-hard and in Σp3 for σ ∈ {pr, ss};

• SA∃σk
and SA∀σk

are i) Πp
2-complete for σ ∈ {co, st};

ii) Πp
2-hard and in Πp

3 for σ ∈ {pr, ss}.
We conclude this section by observing that reasoning

in a context of distributed and conflicting pieces of in-
formation underlies many questions related to the field of
collective/multi-criteria decisions that are not in the scope
of this paper. We have shown that the complexity in the
multiple-agent scenarios considered does not increase w.r.t.
that of the single-agent one. Our results may be useful for
more refined approaches to be explored in future work.

6 Related Work
Different approaches have been proposed to handle pref-
erences in argumentation. A first approach considers AF-
based semantics and consists in first defining a defeat re-
lation Ri that combines original attacks in R and prefer-
ence relations, and then apply the usual semantics to the
resulting AF 〈A,Ri〉. Here Ri (with i ∈ [1, 4]) denotes
one of the four mappings proposed in the literature [Am-
goud and Cayrol, 2002; Amgoud and Vesic, 2014; Kaci et
al., 2018]. As mentioned in the Introduction, in some cases
these semantics may give counterintuitive results, as for in-
stance the extensions of the rewritten AF are not conflict-
free w.r.t. the initial AF. We point out that, in this set-
ting, the complexity of the verification and acceptance prob-
lems does not increase as the mapping to AF (i.e. build-
ing Ri) is polynomial time. As discussed in Section 2.3,
a second approach to handle preferences considers a “best
extensions” semantics for PAF [Amgoud and Vesic, 2014;
Kaci et al., 2018],

An alternative definition for PAF, based on that defined in
[Sakama and Inoue, 2000] for logic programs with prefer-
ences, has been proposed in [Wakaki, 2015]. In this context
a PAF is a triple 〈A,R,≥〉, where ≥ is a reflexive and tran-
sitive relation and a > b if a ≥ b and b 6≥ a. Moreover, the
preference relation w over extensions is reflexive (E w E),
transitive (E w F and F w G implies E w G) and satisfies
the condition E w F if ∃a ∈ E \ F, ∃b ∈ F \ E such that
a ≥ b and @c ∈ F \ E such that c > a. In this paper we
have only dealt with preferences relation w that is not transi-
tive as our proposal is intended to extend PAF, wherew is not
transitive for all the criteria of Definition 5 (e.g. KTV).

Constrained AF has been firstly proposed in [Coste-
Marquis et al., 2006] and then further investigated in [Arieli,
2015; Alfano et al., 2021b]. A drawback of the semantics
proposed in [Coste-Marquis et al., 2006] is that, in checking
whether an extension satisfies a set of constraints, it does not
distinguish between false and undecided arguments. Thus, a
constraint of the form a ∧ ¬a ⇒ f is always satisfied, even

when a is undecided. The main difference between the ap-
proaches in [Arieli, 2015] and [Alfano et al., 2021b] is in
the underlying logic. Indeed, while the approach in [Arieli,
2015] is based on Slupecki’s logic, interpreting the implica-
tion as tv(ϕ⇒ ψ) = (tv(ϕ) 6= t)∨ tv(ϕ∧ ψ), the approach
in [Alfano et al., 2021b] is based on Lucasiewitcz’s logic. A
drawback of Arieli’s semantics is that it does not distinguish
between constraints of the form ϕ⇒ f and ϕ⇒ u, though it
distinguishes between constraints t⇒ ϕ and u⇒ ϕ.

It is worth mentioning that 3-valued logics [Lukasiewicz,
1920; Kleene, 2009; Berry, 1952] has found application in
various research areas, such as in 3-state logical circuits,
databases (e.g. well-founded semantics for Datalog [Gelder
et al., 1991] and the so-called contension inconsistency mea-
sure for databases [Parisi and Grant, 2023]), logic program-
ming (e.g. partial stable models and defeasible logic pro-
gramming [Alfano et al., 2018; 2021a]), as well as in inter-
preting null values in SQL [Libkin, 2016].

In value-based argumentation framework (VAF) an argu-
ment a defeats b only if the value promoted for b is not pre-
ferred to that promoted for a (according to a total order-
ing on values given by an audience) [Bench-Capon et al.,
2005]. Moreover, VAF has been extended by incorporat-
ing constraints expressed by propositional formulas on ar-
guments’ values or arguments, resulting in the constrained
VAF [Sedki and Yahi, 2016]. Finally, with the aim of generat-
ing more skeptically accepted arguments, the idea of compar-
ing extensions and choosing the best ones has been explored
in [Konieczny et al., 2015; Bonzon et al., 2018]. Recently,
comparing sets of arguments is studied in [Skiba et al., 2021]
to identify sets “closed” to become an extension.

To the best of our knowledge, this is the first paper combin-
ing both 3-valued constraints and 3-valued preferences (i.e.
extended preferences) in AF and providing a thorough inves-
tigation of the complexity of the resulting framework.

7 Conclusions and Future Work
Extended preferences and (3-valued) constraints as well as
the complexity results for the novel frameworks (ePAF, eP-
CAF and mPCAF) can carry over to other AF-based frame-
works such as (Bipolar) Argumentation Frameworks with
necessities (AFN) [Nouioua and Risch, 2011], Argumenta-
tion Framework with recursive attacks (AFRA) [Baroni et
al., 2011], Recursive Attacks and Supports in Argumentation
Framework (ASAF) [Gottifredi et al., 2018], and Recursive
Argumentation Framework with Necessity Supports (RAFN)
[Cayrol et al., 2018] without collective attacks and supports.
Indeed, as these frameworks can be rewritten into AF [Alfano
et al., 2020], their extended Preference-based Constrained
forms could be rewritten in ePCAF, obtaining upper bounds
on their complexity from our results. Lower bounds also fol-
low if those frameworks generalize ePCAF.

As future work, we plan to investigate preferences and con-
straints in other frameworks extending AF [Baumeister et al.,
2021; Alfano et al., 2022a; Fazzinga et al., 2015; 2022; 2023;
Alfano et al., 2023c], as well as other forms of constraints
such as weak and epistemic constraints [Alfano et al., 2021b;
2023b; Sakama and Son, 2020].
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