
Augmenting Automated Spectrum Based Fault Localization for Multiple Faults

Prantik Chatterjee1 , José Campos2,3 , Rui Abreu2,4 and Subhajit Roy1

1Indian Institute of Technology Kanpur, India
2Faculty of Engineering of University of Porto, Porto, Portugal

3LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal
4INESC-ID, Porto, Portugal

{prantik, subhajit}@cse.iitk.ac.in, jcmc@fe.up.pt, rui@computer.org

Abstract
Spectrum-based Fault Localization (SBFL) uses
the coverage of test cases and their outcome
(pass/fail) to predict the “suspiciousness” of pro-
gram components, e.g., lines of code. SBFL is,
perhaps, the most successful fault localization tech-
nique due to its simplicity and scalability. However,
SBFL heuristics do not perform well in scenarios
where a program may have multiple faulty compo-
nents. In this work, we propose a new algorithm
that “augments” previously proposed SBFL heuris-
tics to produce a ranked list where faulty compo-
nents ranked low by base SBFL metrics are ranked
significantly higher. We implement our ideas in a
tool, ARTEMIS, that attempts to “bubble up” faulty
components which are ranked lower by base SBFL
metrics. We compare our technique to the most
popular SBFL metrics and demonstrate statistically
significant improvement in the developer effort for
fault localization with respect to the basic strate-
gies.

1 Introduction
As softwares continue to become larger and more complex,
testing and debugging have become considerably expensive.
Naturally, the domain of automated testing and debugging
of softwares has attracted quite a lot of attention in the past
decade. Spectrum-based Fault Localization (SBFL) tech-
niques have proven to be very popular due to their simplic-
ity and scalability. SBFL techniques attempt to identify the
faulty components in a program based on a statistical analy-
sis of the test spectra, that captures information on the activ-
ity pattern of each test in the test-suite (which test executes
which components) and the resulting outcomes (which tests
fail).

The tests can be either manually written by develop-
ers or generated automatically by evolutionary search based
software testing tools such as EVOSUITE [Fraser and Ar-
curi, 2011] which employ fitness functions targeted towards
fault diagnosis (such as ULYSIS [Chatterjee et al., 2020],
DDU [Perez et al., 2017]) to search for optimal test suites.
Automated testing has been found to be very effective in pro-
viding more coverage and exposing unexpected faults in pro-

grams [Serra et al., 2019]. This work is directed towards im-
proving the automated fault localization pipeline, which em-
ploys intelligent search strategies to find optimal test suites
and localize suspicious program components which are most
likely to be buggy.

While the SBFL metrics are potent when the culprit of ob-
served failures lies in a single location in the program, they
tend to be less effective when the program contains multiple
faulty components [Wong et al., 2016]. We identified that a
primary reason for this is the presence of dominating faulty
components: the number of failures due a few faulty compo-
nents overwhelm the others.

In this paper, we use an approach to counter this challenge
via a multiverse approach: we consider multiple universes,
each universe assuming that one of the top-ranked compo-
nents is faulty. We compute a re-ranking of the components
in each of the universes by simulating the case that the faulty
component is fixed. Simulating a repair of failures caused
by the dominating fault “bubbles up” the ranks for the other
faulty components. This continues recursively till all failing
tests are assumed to be fixed. Each list collected across the
universes correspond to different faults. We provide an al-
gorithm to merge the lists over the multiverse into one list
where the dormant faults are ”bubbled” up and can therefore
be identified with lesser effort.

We build our ideas into a tool, ARTEMIS that generates an
augmented ranked list of components based on the program
spectrums. ARTEMIS is parametric on SBFL metrics; any
SBFL metric can be “plugged-in”. We perform experiments
on six most popular SBFL metrics, viz. Ochiai [Abreu et al.,
2009a], Tarantula [Jones and Harrold, 2005], Barinel [Abreu
et al., 2009c], Op2 [Naish et al., 2011], Dstar [Wong et al.,
2013] and Kulczynski [Choi et al., 2010]. We select these
metrics due to recent studies that cite their effectiveness over
others [Pearson et al., 2017].

Our experiments show that ARTEMIS provides a statisti-
cally significant improvement of approximately 17% mean
and 14% median over the base SBFL metrics in terms of de-
veloper effort (EXAM score) on average. The primary con-
tributions of this work are as follows:

• We design a novel multiverse analysis approach to iden-
tify “dormant” faults which are ranked low in a multi-
fault scenario.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3140



• We build our ideas in a tool called ARTEMIS.

• We show that ARTEMIS generalizes over unknown data.

• We compare ARTEMIS against the most popular SBFL
metrics and show that ARTEMIS outperforms all of
them.

We provide an appendix with additional experimen-
tal results and the source code of ARTEMIS in
https://github.com/prantikchatterjee/ArtemisIJCAI23.git

2 Background
We provide a more in-depth overview on SBFL in this sec-
tion. Readers familiar with SBFL may want to skip this sec-
tion.

Spectrum-based Fault Localization (SBFL) works by exe-
cuting a program on a diverse set of inputs (a test-suite) and
collecting the behavior of the program in a program spec-
trum. A spectrum consists of two elements: an activity matrix
and an error vector. An activity matrix A is a binary matrix
where each row corresponds to a test-case and records which
components were executed in this test-case. If the test-suite
consists of n test-cases and the program under consideration
has m components, then the dimension of A is n ×m. Each
cell A[i][j] specifies whether test i executed component j. If
component j is executed in test i (referred to as component j
is active in test i), then A[i][j] is 1; otherwise A[i][j] takes
the value 0. The error vector E is a n dimensional binary
vector. Each cell E[i] corresponds to test-case i and signifies
whether the outcome of the test was “pass” or “fail”. Usually,
but not necessarily, executing a faulty component in a test-
case, causes the test to fail. If some test i “fails”, then E[i] is
set to 1, otherwise E[i] is 0.

Figure 1a shows an example of running SBFL on a pro-
gram with four components and five tests: the activity matrix
A captures when each of the four components is executed in
each of the test-cases; e.g., test t1 executes components C1,
C2, C4 and the test outcome was failure (as E[1] is 1).

Once a spectrum is generated, we make use of statistical
SBFL metrics (such as Ochiai, Tarantula etc.) to localize the
faulty components. The SBFL metrics attempt to analyze the
similarity between the activity pattern of a component and the
error vector, and assign a suspiciousness score to each of the
components; a higher score signifies a higher likelihood for
a component to be faulty. The components are then ranked
based on their suspiciousness scores and the ranked list is
used by developers for debugging. Figure 1a ranks compo-
nents by a popular SBFL metric called Ochiai.

Many such SBFL metrics have been proposed and stud-
ied [Wong et al., 2016]. For this work, we select six of the
most popular and best studied metrics [Pearson et al., 2017].
Table 1 lists the definitions of these metrics for a compo-
nent c in the spectrum, where Pass(c) denotes the number of
passing test-cases that execute c, Fail(c) signifies the num-
ber of failing test-cases that execute c. P and F denote the
total number of passing and failing test-cases respectively.
In Table 1, note that the DStar metric is built upon the
Kulczynski metric by raising the power of the numerator

Ochiai S(c) = Fail(c)√
F ·(Fail(c)+Pass(c))

Tarantula S(c) = Fail(c)/F
(Fail(c)/F )+(Pass(c)/P )

Op2 S(c) = Fail(c)− Pass(c)
P+1

Barinel S(c) = 1− Pass(c)
Pass(c)+Fail(c)

Kulczynski S(c) = Fail(c)
Pass(c)+F−Fail(c)

DStar S(c) = Fail(c)∗

Pass(c)+F−Fail(c)

Table 1: Popular SBFL metrics.

A c1 c2 c3 c4

t1 1 1 0 1

t2 0 1 0 1

t3 1 1 0 0

t4 0 1 1 1

t5 0 1 0 0

Ochiai

c1 0.82

c2 0.77

c4 0.67

c3 0.58

E

1

0

1

1

0

Ranked List

(a) Localizing c1 is easy but c3 is difficult, as fail-
ing test cases of c1 dominate that of c3.

A c1 c2 c3 c4

t1 1 1 0 1

t2 0 1 0 1

t3 1 1 0 0

t4 0 1 1 1

t5 0 1 0 0

Ochiai

c3 1

c4 0.58

c2 0.45

c1 0

E

0

0

0

1

0

Ranked List

(b) After fixing c1, localizing c3 becomes easy.

Figure 1: Localizing multiple faulty components in a spectrum.

to “*”. The authors suggest a value of ∗ = 2 which we use in
this work.

For the purpose of debugging, a developer examines the
ranked list of components in descending order of their sus-
piciousness scores. Hence, the developer effort to localize a
faulty component can be quantified as the fraction of the to-
tal program components that one has to examine to reach the
faulty component in the ranked list. The objective of fault lo-
calization is to minimize the developer effort to catch a fault.

3 Overview
Consider the spectrum shown in Figure 1a: we assume that
the components C1 and C3 are faulty. Consequently, we as-
sume that the tests {t1, t3, t4} fail (indicated by the respective
error bits in E as 1).

Now, let us analyze this spectrum using Ochiai, one of the
most popular SBFL metrics. C1 emerges as topmost in the
ranked list with the highest Ochiai score. Hence, a developer
need to check only a single component to localize C1 as the
faulty component with a developer effort of 0.25 (fraction of
total components examined to catch C1). However, identify-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3141



Ci

Cj

⋮

Ck

Cl

⋮

Imagine Ci is 
faulty

Cm

Cn

⋮

Imagine Cj
 is faulty

Cp

Cq

⋮

Imagine {Ci,Ck} 
is faulty

Cr

Cs

⋮

Imagine {Ci,Cl}
 is faulty

Merge the ranked lists from all universes into a single list

Figure 2: Our Multiverse Analysis for SBFL.

ing C3 is more difficult as it has the lowest score, requiring a
developer effort of 1.0 (all components need to be examined
to arrive at C3).
C3 has a low Ochiai score as C1 dominates C3 on the num-

ber of failing tests where they were executed. As Ochiai (and
other SBFL metrics) tend to assign higher scores to compo-
nents that are active in a larger number of failing tests, C3

ends up lower in the relative ranking.
One way to expose the dormant component C3 is to adopt

a build-test-rank-fix cycle. Assume that a developer fixes C1.
Next, she rebuilds the codebase, reruns the test-suite and gen-
erates a new spectrum (see Figure 1b). Since, C1 is fixed, test
cases t1 and t3 pass and t4 is the only remaining failing test
case as it executed the faulty component C3 (which is not yet
fixed). Ochiai can now rank C3 at the top of the ranked list;
the developer can, now, identify C3 as a faulty component
and fix it. The total developer effort in this case is 0.5.

However, there is one major drawback to this. Every time a
buggy component is identified and fixed, the codebase has to
be rebuilt and the spectrum has to be regenerated by running
the entire test-suite, which is costly. If there are k bugs in
a program, the build-test-rank-fix cycle has to be repeated k
times. This could have been avoided, if we could simulate the
process of fixing a bug and regenerating a spectrum.

We design a multiverse analysis approach that simulates
the build-test-rank-fix cycle to localize multiple faults (Fig-
ure 2). We start with the initial ranked list generated from
the original spectrum of a program. Assume that, Ci has the
highest suspiciousness score in the initial list. We, imagine
an universe Ui where Ci is the dominant fault. Now in Ui,
we try to simulate a repair of Ci. Note that, in Figure 1b, we
simulated a repair of C1 by passing all tests which executed

C1. It was possible as we knew there was no intersection be-
tween the execution patterns of the dominant fault C1 and the
dormant fault C3. In real life, this may not always hold. By
rerunning the tests, we would have known exactly which tests
fail, but this is not possible in a simulation. Hence, we assume
that whenever we simulate a repair of some componentCi, all
tests which executed Ci, may still fail with probability p due
to some other fault. The problem still remains, however, as
computing p is difficult. The activity matrix is usually sparse,
the fraction of tests compared to the number of components
is low and there are very few failing tests. Further, SBFL is
a “black-box” technique and hence we have no information
available on the programs being tested other than the spec-
trum. Hence, we treat p as a hyperparameter and attempt to
make a good estimate over a set of training examples with
known ground truths. We choose to treat p as a hyperparam-
eter and tune it over a set of benchmarks rather than over in-
dividual programs as doing so will result in loss of generality
over unknown programs.

Once a repair of Ci is simulated in Ui, we get a new error
vector and generate a new ranked list whereCk is the topmost
faulty component (Figure 2). However, in real-life scenarios,
the topmost ranked component may not necessarily be faulty.
So, we repeat the above with the topmost µ components (µ
is an user-provided hyperparameter) from the root list assum-
ing that the dominant fault will occur within rank µ. In Fig-
ure 2, we also create an universe for the component Cj that is
ranked second in the initial ranked list. We continue spawn-
ing hypothetical universes until rank µ. For each of the above
µ universes, we recursively repeat the process: for example,
from the universe Ui, we spawn universes U{i,k} where we
imagine components {Ci, Ck} to be faulty and U{i,l} where
we imagine components {Ci, Cl} to be faulty and so on.

Interestingly, in the universe Ui (where Ci was assumed
faulty and fixed), Ck bubbles up as the most suspicious com-
ponent in the new ranked list. Intuitively, conditioning on the
assumption that “Ci is the first fault” exposes Ck as the sec-
ond likely faulty component. Further, in another universe,
where we imagined both Ci and Ck to be faulty and thus
simulated fixing these components, another dormant fault Cp

was exposed. We continue this process of spawning such uni-
verses until no more failing tests remain in the spectrum.

Our multiverse analysis strategy essentially constructs a
multiverse tree. The original universe with no assumptions
(ranked list generated from the original spectrum) is the root
of the tree.

More formally, the initial universe with no assumptions
(denoted as U>) is the standard setting for SBFL. The SBFL
score S of a component Ca is supposed to estimate the prob-
ability that Ca is faulty (the SBFL score is proportional to
some monotonically increasing function f of the probability):

SU>(Ca) ∝ f(Prob(Ca is faulty))

We “lift” these metrics to universes that are conditioned on
the assumptions that certain components are faulty:

SU1,2,...,n(Ca) ∝ f(Prob(Ca is faulty | C1, . . . , Cn are faulty))

Once all possible universes have been spawned, we merge
the ranked lists across all the universes (the multiverse) into a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3142



Algorithm 1: EXPLORER(A, E, n, S, µ, β, p)
Input: Activity Matrix A, error Vector E, number of

components n, SBFL metric S, number of universes
µ, bound on total number of universes β and
probability of a test failing after a simulated fix p

Output: Ranked list of components L
1 QueueM← ∅, List L′← ∅, k ← 0
2 R>← RANKEDLIST(A, E, S)
3 M.enqueue(〈R>, E〉)
4 L′[k]←R>
5 k++
6 whileM 6= ∅ and k ≤ β do
7 〈R′, E′〉 ←M.dequeue()
8 for i← 1 to µ do
9 〈R′′, E′′〉 ← SIMULATE(A, E′,R′[i], S, p)

10 ifR′′ 6= ∅ then
11 M.enqueue(〈R′′, E′′〉)
12 L′[k]←R′′
13 k++

14 L ← MERGE(L′, n)
15 return L

single new ranked list where the dormant faulty components
have been ”bubbled up”. While merging, we ensure that the
components are ranked according to the highest score that
each of them has received over the entire multiverse.

As the multiverse tree can grow exponentially, we use a hy-
perparameter β as a bound: we stop exploring new universes
when either the total number of universes exceed β or there
are no more universes to explore.

Application. The proposed fault localization strategy can
reduce the number of build-test-rank-fix iterations by ranking
most of the faulty components at the top of the list. Hence,
now the developer can examine components up to the top-k
ranks in the ranked list produced by the fault localizer, and
thereby, fix many of the faults in each iteration, thereby re-
ducing the number of build-test-rank-fix iterations.

4 Algorithms
We demonstrate our multiverse analysis approach in Algo-
rithm 1. It takes as input a spectrum (activity matrixA and er-
ror vectorE), number of components in the program n, an un-
derlying SBFL metric S (such as Ochiai, Tarantula etc.). S is
a hyperparameter as it is not known which SBFL metric per-
forms the best. Hyperparameter µ denotes that we will only
simulate the repair of top-µ components from each ranked
list, i.e., each parent universe can have at most µ children
universes. Hyperparameter β is a bound on the total number
of universes to explore. Hyperparameter p is the probability
with which we assume that a test involving a fixed (simulated)
component may still fail due to other faults. Algorithm 1 pro-
duces a ranked list L after multiverse analysis.

Our algorithm explores (traverses) the multiverse tree in a
breadth-first manner. We begin our exploration by initializing
an empty queueM that will store the universes pending ex-
ploration in order of their inception, an empty list L′ that will
store all the ranked lists in the multiverse in the order in which

Algorithm 2: SIMULATE(A, E, C, S, p)
Input: Activity Matrix A, error Vector E, component C

which is imagined to be faulty, SBFL metric S,
probability of a test failing after a simulated fix p

Output: Tuple of new ranked list and error vector 〈R, E〉
1 foreach row ρ in A do
2 if A[ρ][C] = 1 and E[ρ] = 1 then
3 /*if test ρ executed C and it failed, assume C is

fixed and sample the error bit E[ρ] from the
outcome of a Bernoulli trial with a probability of
success p*/

4 E[ρ]← Bernoulli(p)

5 if E = ~0 then
6 /*if all test outcomes are “success”, return “spurious”

universe*/
7 return 〈∅,~0〉
8 else
9 R← RANKEDLIST(A, E, S)

10 return 〈R, E〉

they were generated and a counter k which keeps track of how
many universes have been explored so far (Line 1). Next,
we generate the first ranked list R> where no component is
assumed to be faulty, by invoking the procedure RankedList
with arguments A, E and S (Line 2). The RankedList proce-
dure returns a ranked list of components and their suspicious-
ness scores computed using S (see Figure 1a). A universe is
a tuple of a ranked list and an error vector; we enqueue the
first universe 〈R>, E〉 in the multiverse queue M (Line 3).
We also add the first ranked list R> in L′ (Line 4). Next, we
explore all the unvisited universes in queueM until eitherM
is empty, or we exceed the bound β.

To explore a universe we dequeue one universe (〈R′, E′〉)
fromM (Line 7). Next, for each component in R′ upto rank
µ, we invoke the Simulate procedure in Line 9. The Simu-
late procedure takes as input A, E′, R′[i], the ith component
which will be assumed to be faulty, S, p and returns a new
universe 〈R′′, E′′〉 where a repair of R′[i] has been simu-
lated. If R′′ is empty, then the new universe is spurious, i.e.,
it contains no failing test cases and we do not consider it for
further simulation. Otherwise, we enqueue the new universe
inM (Line 11), add the new ranked listR′′ toL′[k] (Line 12)
and continue the process.

Once we have explored the multiverse, all the ranked lists
in L′ are merged into a single ranked list by invoking Merge
(Line 14) and returned.

The Simulate procedure is shown in Algorithm 2. It takes
as input A, E, S, a component C which is to be assumed
faulty and p. Algorithm 2 simulates a repair of C and returns
a new ranked list R where faulty components dominated by
C should bubble up; along with a new simulated error vector
E. Algorithm 2 starts by iterating over each row (test case) in
A. For each test ρ, if ρ executes C, i.e., A[ρ][C] is 1 and if
it failed, i.e., E[ρ] is 1, then the new outcome of ρ, assuming
C is fixed, is decided by a Bernoulli trial with a probability
of success p (Line 4). If the outcome of the Bernoulli trial is
failure, i.e., 0, then we assume that the test ρ passes after a
simulated repair of C, i.e., E[ρ] is also 0. Otherwise, if the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3143



Algorithm 3: MERGE(L′, n)
Input: List of all ranked lists in multiverse L′, number of

components n
Output: Ranked list of components L

1 ListM← ~0
2 for i← 1 to L′.size do
3 for j ← 1 to n do
4 c← L′[i][j] //component of rank j in list i
5 score← L′[i][j].score
6 if score >M[c] then
7 M[c]← score

8 return SORTANDRANK(M)

Project Spectrums % of spectrums with k faults
k = 1 k = 2 k = 3 k ≥ 4

Chart 50 26% 24% 16% 34%
Closure 68 47% 32% 9% 12%
Lang 139 30% 43% 19% 8%
Math 378 38% 34% 14% 14%
Mockito 48 25% 58% 17% 0%
Time 89 62% 21% 10% 7%

Table 2: Details of the spectrums used in the experiments.

outcome of the trial is success, i.e., 1, we assume that test
ρ may still fail due to other faults and set E[ρ] to 1. Next,
we check whether the new error vector E contains any failing
tests. If there is none, then we return a spurious universe
〈∅,~0〉 (Line 7). Otherwise, we generate a new ranked list R
by invoking RankedList with the modified error vector E, A
and S (Line 9). Finally we return this new universe as a tuple
〈R, E〉 (Line 10).

Algorithm 3 demonstrates the Merge procedure which
takes as input L′, the list of all ranked lists in the multiverse
and number of components n (number of columns in A) and
produces a single ranked list L. It starts by initiating a list
M with ~0 (Line 1) which is used to store the highest score of
each component over the entire multiverse.

Next, we iterate over each list L′[i] from the multiverse
(Line 2). For each component c at rank j (Line 3) in L′[i],
we check whether the score of c in L′[i] is greater than its
highest score M[c] that have been seen so far (Line 6). If
true, then we updateM[c] with the new high score, otherwise
we move on to the next component without an update. At the
end,M[i] contains the highest score of component i over the
entire mutiverse. Finally, we sort the suspiciousness scores in
M and return the final ranked list of components (Line 8).

Note that, there can be many possible ways to merge the
ranked lists in the multiverse. Algorithm 3 is one among such
possibilities which we have found to be effective.

5 Empirical Analysis
We implement the proposed multiverse analysis approach in
a tool called ARTEMIS. To evaluate the effectiveness of our
proposed approach, we experimentally evaluate the following
research questions:

• RQ1: What are the optimal choices of hyperparameters
for ARTEMIS?

• RQ2: How does ARTEMIS compare against the most
popular SBFL metrics?

Experimental Subjects. We have performed our experi-
ments on six java project repositories, Chart, Closure, Lang,
Math, Mockito and Time from the DEFECTS4J benchmark
suite [Just et al., 2014]. These are large open source soft-
wares containing 22, 000 to 96, 000 lines of code and have
been developed over a decade. Overall, these repositories
contain 395 real life software bugs and each bug correspond
to one or more faults. The ground truth for each bug is avail-
able for fault localization studies. DEFECTS4J has been ex-
clusively used in many recent fault localization studies [Pear-
son et al., 2017; Chatterjee et al., 2020]. There exists other
buggy datasets such as (SIR) [Do et al., 2005] or Siemens
suite [Hutchins et al., 1994], however, we have not used these
as the size of the programs are very small (around only 100
to 500 lines of code) and the bugs do not represent real world
behavior as they are either hand-crafted or simple mutations.

Spectrums. We have first collected the spectrums gener-
ated in [Chatterjee et al., 2020] for the DEFECTS4J dataset
v1.4.01. The spectrums were generated by EVOSUITE [Fraser
and Arcuri, 2011]. To ensure the diagnostic quality of test-
suites, the state-of-the-art fitness functions ULYSIS [Chatter-
jee et al., 2020], DDU [Perez et al., 2017] and COVERAGE
were used as the search criteria for the evolutionary algorithm
in EVOSUITE. The spectrums were generated at line gran-
ularity, i.e., each component (column) in an activity matrix
correspond to a line of code. Spectrums without failing tests
were discarded as fault localization cannot be performed on
such instances. Overall, we use 772 spectrums. Additional
details are provided in Table 2.

Note that, we elect to use an automated test-generation
framework as our objective is to utilize ARTEMIS to address
the shortcomings of an automated fault localization pipeline.
Automated testing has been found to be very effective in pro-
viding more coverage and exposing unexpected faults in pro-
grams [Serra et al., 2019]. Manually written test suites are
good at exposing faults but they also incur additional cost for
employing developers.

5.1 Evaluation Metrics
EXAM score is one of the popular choices to compare fault
localization performance. EXAM score is defined as k/m,
where k is the rank of the faulty component and m is the
total number of components in the program; a low EXAM
score indicates an effective fault localization technique. Note
that, there exist many other similar metrics which quantify
developer effort for debugging. We choose to use EXAM
score as it provides a human-interpretable score in terms of
components checked by a developer to catch a fault [Wong et
al., 2016].

We also used the top-n [Li and Zhang, 2017; Pearson et
al., 2017], also known as acc@n [B. Le et al., 2016] or

1https://github.com/rjust/defects4j/tree/
v1.4.0

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3144

https://github.com/rjust/defects4j/tree/v1.4.0
https://github.com/rjust/defects4j/tree/v1.4.0


Ochiai D2 Barinel

1.75e−11 7.35e−14 9.24e−13

Op2 Tarantula Kulczynski

5.27e−21 8.14e−12 4.59e−12

Table 3: P-values for the hypothesis test between ARTEMIS and
the base SBFL metrics on 1526 faults from 772 spectrums over all
projects.

Einspect@n [Zou et al., 2021], which counts the number or
percentage of faults successfully localized within the top-n
ranks.

5.2 RQ1: Hyperparameter Selection
Our multiverse analysis (Algorithm 1) uses the following hy-
perparameters: µ, β, the underlying SBFL metric S and p. To
select the best hyperparameter combination and to show that
the configuration generalizes, we use k-fold cross validation.
We construct six folds over the set of spectrums for each of
the six projects. In each fold, we set aside the spectrums from
one project as test data and search for the best hyperparame-
ters over the spectrums from the remaining five projects. This
ensures that the performance of ARTEMIS generalizes when
being tested on unknown projects.

We employ a grid search to select the best value of hyper-
parameters. We search for µ in a range from 1 to 20. Since, µ
is the maximum number of children for each node in the mul-
tiverse tree, it has an exponential effect on the size of the tree
and going any higher significantly slows down ARTEMIS. For
β, we restrict the search in {5, 10, 15, 20, . . . , 100}. A higher
value of β has no noticeable impact on the performance of
ARTEMIS as on real softwares, the number of failing tests are
often very small and all failing tests are usually exhausted
well before a value of 100. We search for the best SBFL met-
ric S to use in ARTEMIS from the set {Ochiai, D2, Barinel,
Op2, Tarantula, Kulczynski} as these had been identified
as the top performing SBFL metrics in a recent study [Pear-
son et al., 2017]. Finally, for p, the probability with which a
test may fail after a simulated repair, we search for an optimal
value within {1e − 5, 1e − 4, . . . , 1e − 1}. We constrain the
search for p within a set of small values as an execution path
containing multiple faults in a well tested software reposi-
tory, i.e. where p can be greater than 0, is rare. Hence, a high
value for p may not generalize well. For each of the six folds,
we select the best hyperparameter combination for ARTEMIS
which provides the lowest EXAM score on average on the
training data and use it to localize faults from the spectrums
of the test data, i.e., the spectrums from the unknown project.
This is a standard problem in any statistical/machine learning
task on adapting hyperparameters to new datasets. Generally,
we assume that some ground truths are available on the new
datasets for tuning the hyperparameters. Finally, we compare
the performance of ARTEMIS against each of the base SBFL
metrics on the test data.

For each fold, we select the hyperparameter combinations
that provide the lowest EXAM score on average on the train-
ing data and rank the faulty components on the test data.

ARTEMIS provides an average improvement of 21%, 11%,
17%, 11%, 23%, 10% respectively on test data Chart, Clo-
sure, Lang, Math, Mockito, Time over the base SBFL met-
rics. ARTEMIS performs better than each base SBFL metric
in each fold which signifies that ARTEMIS generalizes well on
unknown buggy spectrums. The most prevalent hyperparam-
eter combinations over all of the six folds are {S = Ochiai,
µ = 17, β = 20, p = 1e− 5} (detailed results in appendix).

5.3 RQ2: Comparison against Most Popular SBFL
Metrics

To determine how ARTEMIS fares against the base SBFL
metrics we compare the EXAM score for each faults using
ARTEMIS (with the most prevalent hyperparameter combina-
tion; S = Ochiai, µ = 17, β = 20, p = 1e− 5) against each
of the base SBFL metrics.

First, we conduct an one-tailed paired Wilcoxon Signed-
rank test [Rosner et al., 2006] between the EXAM score
for each fault by ARTEMIS against that of each base SBFL
metric. To perform the statistical tests, we denote the vector
of EXAM scores using ARTEMIS as X and for each base
metric i, we denote the same as Yi. Next, we test the null
hypothesis H0: the median of (X − Yi)=0 against the alter-
native hypothesis H1: the median of (X − Yi)< 0. If we
can refute H0 with 99% confidence interval, we infer that
ARTEMIS is statistically better than the base metric i (simi-
lar strategy is followed in [Chatterjee et al., 2020]). We do
not conduct a statistical test for each project separately as the
number of spectrums in some projects are too small for a reli-
able statistical test. Instead we perform the hypothesis testing
over 1526 faulty components contained in 772 spectrums. We
found that the performance of ARTEMIS is statistically better
than every base SBFL metric (see Table 3).

Table 4 presents the mean (with standard deviation) and
median percentage improvement in developer effort (in terms
of EXAM score) that ARTEMIS provides over each of the
base SBFL metrics. Overall, ARTEMIS provides approxi-
mately 17% mean and 14% median improvement over the
base SBFL metrics on average.

Table 5 demonstrates the percentage of faulty components
that are ranked within top-n positions in the ranked lists using
any approach. Note that , ARTEMIS is as good as or slightly
better than the base SBFL metrics while placing dominant
faults within the first rank. ARTEMIS places 8% of the faults
at the first rank which is also achieved by Ochiai and D2 while
the rest perform slightly worse. This indicates that ARTEMIS
does not push down dominant faults in an effort to bubble up
the dormant faults. The effect of bubbling up dormant faults
can be seen from n = 2 and onward. ARTEMIS places 17% of
the faults within rank 2 or less, whereas Ochiai, D2, Barinel
and Tarantula could place only 12%. Similarly, ARTEMIS
places 31% of the faults within rank 5, whereas Ochiai places
only 26% and the rest performs even worse. This demon-
strates the effectiveness of our proposed approach (project-
wise comparison for Tables 4 and 5 provided in appendix).

6 Related Work
One-fault-at-a-time approaches work by examining the
ranked list until a developer catches a fault. Next, this fault is

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3145



Ochiai D2 Barinel Op2 Tarantula Kulczynski

Mean(s.d) 16(3.2)% 24(4.7)% 17(2.9)% 27(5.1)% 17(2.9)% 18(4.5)%
Median 13% 19% 14% 22% 14% 14%

Table 4: Mean (with standard deviation) and median percentage improvement in developer effort (EXAM score) using ARTEMIS over the
base SBFL metrics on 1526 faults from 772 spectrums from all projects.

top-n ARTEMIS Ochiai D2 Barinel Op2 Tarantula Kulczynski

n = 1 8% 8% 8% 6% 5% 6% 7%
n = 2 17% 12% 12% 12% 10% 12% 11%
n = 5 31% 26% 25% 24% 20% 24% 25%
n = 10 50% 46% 42% 41% 37% 41% 46%
n = 20 69% 65% 61% 63% 54% 63% 65%
n = 50 87% 83% 80% 86% 76% 86% 84%

Table 5: Percentage of faulty components that are ranked within top-
n. Number of faults over 772 spectrums is 1526.

repaired, the test-suite is rerun and the hunt for next fault be-
gins anew by re-ranking the components. This approach has
seen application in the DStar technique [Wong et al., 2013]
and Bayesian reasoning techniques [Abreu et al., 2009c].
One disadvantage associated with such approaches is the cost
of rerunning the test-suite every time a fault is fixed. We
sidestep this problem entirely with effective simulation of the
“fix-and-re-rank” strategy. Furthermore, one potential weak-
ness of most techniques using Bayesian reasoning is the un-
derlying assumption that multiple faulty components fail in-
dependently which may not always hold in real-life scenar-
ios [Wong et al., 2016].

Multiple fault localization techniques usually attempt to
rank entire sets of components based on their collective suspi-
ciousness rather than ranking single components, e.g., [Abreu
et al., 2009b; Abreu et al., 2011] propose an approach that
generates a ranked list of multi-candidate diagnoses.

Multi-fault localization techniques which aim to produce
diagnostic reports on multi-component candidates are orthog-
onal to our strategy, i.e., all these techniques attempt to rank
multi-component faulty candidates. Furthermore, these tech-
niques (like [Abreu et al., 2009b; Abreu et al., 2011]) re-
quire expensive hitting set computations and therefore do not
scale well and have only been demonstrated on small pro-
grams from the SIEMENS suite.

[Jeffrey et al., 2009] proposed a fault localization method
based on value replacement for reducing the time to localize
multiple bugs by using an iterative approach to rank and lo-
calize multiple bugs. However, the method has a high compu-
tational overhead, which can be costly in larger subject pro-
grams. [Wei and Han, 2013] proposed a parameter combina-
tion approach coined PBC to aid in localizing bugs in multiple
bug programs. The authors used a bisection method to cluster
failed test cases with crosstab-based fault localization tech-
nique. The result shows that PBC performs better than Taran-
tula [Jones et al., 2002]. [Steimann and Frenkel, 2012] used
partitioning procedures from integer linear programming to
improve SBFL efficacy on multi-fault programs. This method
breaks down the fault localization problem into various par-

titions to facilitate localization by multiple developers. One
issue with clustering based approaches is that they assume a
precise causal relationship between faults and their execution
profiles, i.e., test-cases which trigger the same buggy com-
ponent will exhibit similar activity patterns. However, this
assumption may not always hold [Wong et al., 2016].

There exist earlier studies that have used rank refinement
strategies. A tester feedback driven approach [Bandyopad-
hyay and Ghosh, 2012] was proposed to gradually filter false
positives (tests which execute faulty components, but do not
trigger failure) from the test-suite in order to refine rank-
ings. This proved to be comparable to Ochiai on the Siemens
and Unix utilities suite. A neural network based approach
was proposed [Zhao et al., 2022] for boosting SBFL metric
rankings on Defects4J benchmarks by performing analysis on
method interactions in addition to the spectrums. Another
approach used a combination of SBFL metrics [Majd et al.,
2022] in order to boost the overall ranking of faulty compo-
nents in the Siemens benchmark suite.

Multiverse analysis has been previously used for generat-
ing “good” test-suites [Chatterjee et al., 2020] which is or-
thogonal to the problem of fault localization. Chatterjee et
al. used multiverse analysis to quantify the diagnostic qual-
ity of a test-suite to lead an evolutionary search for a “good”
test-suite. For a program with m components, this approach
explores exactly m universes with the inherent assumption
that the program contains a single fault. In contrast, we ex-
plore a multiverse tree in order to bubble up dormant faults in
a multi-fault scenario.

7 Conclusion
We propose an approach that simulates repair of dominating
faulty components so that the dormant faults in a program
can be exposed earlier. We implement our ideas into a tool
named ARTEMIS, and experiment with six of the most pop-
ular and widely studied SBFL metrics as the baseline. We
show that the hyperparameters of ARTEMIS generalize well
over unknown data. Further, ARTEMIS provides a statisti-
cally significant improvement of approximately 17% mean
and 14% median over the base SBFL metrics in terms of de-
veloper effort (EXAM score) on average.

Threats to validity. We performed experiments on six real-
life softwares and generated tests using Coverage, DDU and
ULYSIS which are three most popular fitness functions for
evolutionary search based test generation using EVOSUITE.
Though we believe that our study generalizes beyond the en-
vironment in which it was performed, experiments to repli-
cate this study in other environments can be conducted. Fur-
ther, we used the most popular SBFL metrics as the baseline,
but experiments on other heuristics can also be performed.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3146



Acknowledgments
We are thankful to Intel for their support via the Intel India
Research Fellowship Program and the guidance of the men-
tors from the organization. We also wish to thank Google
Research for their support. This work was also partially
supported by FCT through the LASIGE Research Unit (ref.
UIDB/00408/2020 and ref. UIDP/00408/2020) and INESC-
ID (ref. UIDB/50021/2020).

References
[Abreu et al., 2009a] Rui Abreu, Peter Zoeteweij, Rob Gol-

steijn, and Arjan JC Van Gemund. A practical evaluation
of spectrum-based fault localization. Journal of Systems
and Software, 82(11):1780–1792, 2009.

[Abreu et al., 2009b] Rui Abreu, Peter Zoeteweij, and Ar-
jan JC Van Gemund. Localizing software faults simultane-
ously. In 2009 Ninth International Conference on Quality
Software, pages 367–376. IEEE, 2009.

[Abreu et al., 2009c] Rui Abreu, Peter Zoeteweij, and Ar-
jan J.C. van Gemund. Spectrum-Based Multiple Fault Lo-
calization. In 2009 IEEE/ACM International Conference
on Automated Software Engineering, pages 88–99, 2009.

[Abreu et al., 2011] Rui Abreu, Peter Zoeteweij, and Ar-
jan JC Van Gemund. Simultaneous debugging of software
faults. Journal of Systems and Software, 84(4):573–586,
2011.

[B. Le et al., 2016] Tien-Duy B. Le, David Lo, Claire
Le Goues, and Lars Grunske. A Learning-to-Rank Based
Fault Localization Approach Using Likely Invariants. In
Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2016, page 177–188,
New York, NY, USA, 2016. Association for Computing
Machinery.

[Bandyopadhyay and Ghosh, 2012] Aritra Bandyopadhyay
and Sudipto Ghosh. Tester feedback driven fault local-
ization. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pages 41–
50, 2012.

[Chatterjee et al., 2020] Prantik Chatterjee, Abhijit Chatter-
jee, José Campos, Rui Abreu, and Subhajit Roy. Diagnos-
ing software faults using multiverse analysis. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
20, pages 1629–1635. International Joint Conferences on
Artificial Intelligence Organization, 7 2020. Main track.

[Choi et al., 2010] Seung-Seok Choi, Sung-Hyuk Cha, and
Charles C Tappert. A survey of binary similarity and dis-
tance measures. Journal of systemics, cybernetics and in-
formatics, 8(1):43–48, 2010.

[Do et al., 2005] Hyunsook Do, Sebastian Elbaum, and
Gregg Rothermel. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential
impact. Empirical Software Engineering, 10(4):405–435,
2005.

[Fraser and Arcuri, 2011] Gordon Fraser and Andrea Arcuri.
EvoSuite: Automatic Test Suite Generation for Object-
Oriented Software. In Proc. of the 19th ACM ESEC/FSE,
page 416–419. ACM, 2011.

[Hutchins et al., 1994] Monica Hutchins, Herb Foster, Tarak
Goradia, and Thomas Ostrand. Experiments on the effec-
tiveness of dataflow-and control-flow-based test adequacy
criteria. In Proceedings of 16th International conference
on Software engineering, pages 191–200. IEEE, 1994.

[Jeffrey et al., 2009] Dennis Jeffrey, Neelam Gupta, and Ra-
jiv Gupta. Effective and efficient localization of multiple
faults using value replacement. In 2009 IEEE Interna-
tional Conference on Software Maintenance, pages 221–
230. IEEE, 2009.

[Jones and Harrold, 2005] James A Jones and Mary Jean
Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated soft-
ware engineering, pages 273–282, 2005.

[Jones et al., 2002] James A Jones, Mary Jean Harrold, and
John Stasko. Visualization of test information to assist
fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, pages
467–477. IEEE, 2002.

[Just et al., 2014] René Just, Darioush Jalali, and Michael D.
Ernst. Defects4J: A Database of Existing Faults to Enable
Controlled Testing Studies for Java Programs. In Proc. of
the 23rd ISSTA, page 437–440. ACM, 2014.

[Li and Zhang, 2017] Xia Li and Lingming Zhang. Trans-
forming Programs and Tests in Tandem for Fault Localiza-
tion. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[Majd et al., 2022] Amirabbas Majd, Mojtaba Vahidi-Asl,
Alireza Khalilian, and Babak Bagheri. Consilientsfl: using
preferential voting system to generate combinatorial rank-
ing metrics for spectrum-based fault localization. Applied
Intelligence, pages 1–21, 2022.

[Naish et al., 2011] Lee Naish, Hua Jie Lee, and Kotagiri
Ramamohanarao. A model for spectra-based software di-
agnosis. ACM Transactions on software engineering and
methodology (TOSEM), 20(3):1–32, 2011.

[Pearson et al., 2017] Spencer Pearson, José Campos, René
Just, Gordon Fraser, Rui Abreu, Michael D Ernst, Deric
Pang, and Benjamin Keller. Evaluating and improving
fault localization. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 609–
620. IEEE, 2017.

[Perez et al., 2017] Alexandre Perez, Rui Abreu, and Arie
van Deursen. A test-suite diagnosability metric for
spectrum-based fault localization approaches. In 2017
IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 654–664. IEEE, 2017.

[Rosner et al., 2006] Bernard Rosner, Robert J Glynn, and
Mei-Ling T Lee. The wilcoxon signed rank test for paired
comparisons of clustered data. Biometrics, 62(1):185–192,
2006.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3147



[Serra et al., 2019] Domenico Serra, Giovanni Grano, Fabio
Palomba, Filomena Ferrucci, Harald C Gall, and Alberto
Bacchelli. On the effectiveness of manual and automatic
unit test generation: ten years later. In 2019 IEEE/ACM
16th International Conference on Mining Software Repos-
itories (MSR), pages 121–125. IEEE, 2019.

[Steimann and Frenkel, 2012] Friedrich Steimann and Mar-
cus Frenkel. Improving coverage-based localization of
multiple faults using algorithms from integer linear pro-
gramming. In 2012 IEEE 23rd International Sympo-
sium on Software Reliability Engineering, pages 121–130.
IEEE, 2012.

[Wei and Han, 2013] Zheng Wei and Bai Han. Multiple-bug
oriented fault localization: A parameter-based combina-
tion approach. In 2013 IEEE Seventh International Con-
ference on Software Security and Reliability Companion,
pages 125–130. IEEE, 2013.

[Wong et al., 2013] W Eric Wong, Vidroha Debroy, Ruizhi
Gao, and Yihao Li. The dstar method for effective soft-
ware fault localization. IEEE Transactions on Reliability,
63(1):290–308, 2013.

[Wong et al., 2016] W Eric Wong, Ruizhi Gao, Yihao Li,
Rui Abreu, and Franz Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering,
42(8):707–740, 2016.

[Zhao et al., 2022] Guyu Zhao, Hongdou He, and Yifang
Huang. Fault centrality: boosting spectrum-based fault lo-
calization via local influence calculation. Applied Intelli-
gence, 52(7):7113–7135, 2022.

[Zou et al., 2021] Daming Zou, Jingjing Liang, Yingfei
Xiong, Michael D. Ernst, and Lu Zhang. An Empiri-
cal Study of Fault Localization Families and Their Com-
binations. IEEE Transactions on Software Engineering,
47(2):332–347, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3148


	Introduction
	Background
	Overview
	Algorithms
	Empirical Analysis
	Evaluation Metrics
	RQ1: Hyperparameter Selection
	RQ2: Comparison against Most Popular SBFL Metrics

	Related Work
	Conclusion

