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Abstract
Generalized planning (GP) studies the computation
of general solutions for a set of planning problems.
Computing general solutions with correctness guar-
antee has long been a key issue in GP. Abstrac-
tions are widely used to solve GP problems. For
example, a popular abstraction model for GP is
qualitative numeric planning (QNP), which extends
classical planning with non-negative real variables
that can be increased or decreased by some arbi-
trary amount. The refinement of correct solutions
of sound abstractions are solutions with correctness
guarantees for GP problems. More recent litera-
ture proposed a uniform abstraction framework for
GP and gave model-theoretic definitions of sound
and complete abstractions for GP problems. In this
paper, based on the previous work, we explore au-
tomatic verification of sound abstractions for GP.
Firstly, we present a proof-theoretic characteriza-
tion for sound abstractions. Secondly, based on
the characterization, we give a sufficient condition
for sound abstractions with deterministic actions.
Then we study how to verify the sufficient con-
dition when the abstraction models are bounded
QNPs where integer variables can be incremented
or decremented by one. To this end, we develop
methods to handle counting and transitive closure,
which are often used to define numerical variables.
Finally, we implement a sound bounded QNP ab-
straction verification system and report experimen-
tal results on several domains.

1 Introduction
Generalized planning (GP) studies the computation of gen-
eral solutions for a set of planning problems [Srivastava et al.,
2008; Hu and De Giacomo, 2011; Bonet and Geffner, 2018;
Segovia et al., 2019; Illanes and McIlraith, 2019]. For exam-
ple, the general solution “while the block A is not clear, pick
the top block above A and place it on the table” will even-
tually meet the goal clear(A) no matter how many blocks
the tower has. Computing general solutions with correctness
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guarantee has long been a key issue in GP. However, so far
only limited correctness results have been obtained, mainly
for the so-called 1d planning problems [Hu and Levesque,
2010] and extended-LL domains [Srivastava et al., 2011a].

Abstractions are widely used to solve GP problems. The
idea is to develop an abstract model of the problem, which
is easier to solve, and exploit a solution in the abstract
model to find a solution in the concrete model. A popu-
lar kind of abstract models for GP are qualitative numeri-
cal planning (QNP) problems, introduced by [Srivastava et
al., 2011b]: they showed that QNPs are decidable, and pro-
posed a generate-and-test method to solve QNPs. Bonet and
Geffner [2018] proposed solving a generalized classical plan-
ning problem by abstracting it into a QNP, they showed that if
the abstraction is sound, then a solution to the QNP is also a
solution to the original problem. Here, soundness of abstrac-
tions is the key to guarantee correctness of solutions to the
original problem.

The automatic generation of sound abstractions for GP
problems has attracted the attention of researchers in recent
years. Bonet et al. [2019a] proposed learning a QNP abstrac-
tion for a GP problem from a sample set of instances, how-
ever, the abstraction is guaranteed to be sound only for the
sample instances. Further, Bonet et al. [2019b] showed how
to obtain first-order formulas that define a set of instances on
which the abstraction is guaranteed to be sound. Illanes and
McIlraith [2019] considered solving a class of GP problems
by automatically deriving a sound QNP abstraction from an
instance of the problem, by introducing a counter for each set
of indistinguishable objects, however, this class of problems
is too restricted.

Recently, Banihashemi et al. [2017] proposed an agent ab-
straction framework based on the situation calculus [Reiter,
2001] and Golog [Levesque et al., 1997]. They related a high-
level (HL) action theory to a low-level (LL) action theory by
the notion of a refinement mapping, which specifies how each
high-level action is implemented by a low-level Golog pro-
gram and how each high-level fluent can be translated into a
low-level formula. Based on their work, Cui et al. [2021]
proposed a uniform abstraction framework for GP. They for-
malized a GP problem as a triple of a basic action theory, a
trajectory constraint, and a goal. They gave model-theoretic
definitions of sound/complete abstractions of a GP problem,
and showed that solutions to a GP problem are nicely related
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to those of its sound/complete abstractions. In particular, the
refinement of any solution to a sound abstraction is a solution
to the original problem.

The significance of the research line initiated by Bonet and
Geffner [2018] is that soundness of abstractions together with
correctness of high-level solutions guarantee correctness of
low-level solutions. In this paper, based on Cui et al.’s work,
we explore automatic verification of sound abstractions for
GP. First of all, we give a proof-theoretic characterization of
sound abstractions for GP in the situation calculus. Secondly,
based on the characterization, we give a sufficient condition
for sound abstractions. Then we study how to verify the suf-
ficient condition when the abstraction models are bounded
QNPs where integer variables can be incremented or decre-
mented by one. To address this, we exploit universal and
existential extensions of regression, and develop methods to
handle counting and transitive closure. Using the SMT solver
Z3, we implemented a sound bounded QNP verification sys-
tem and experimented with 7 domains: 5 from the literature
and 2 made by us. Experimental results showed that our sys-
tem was able to successfully verify soundness of abstractions
for all domains in seconds.

2 Preliminaries
In this section, we introduce the situation calculus and Golog,
regression and its two extensions, and a generalized planning
abstraction framework.

2.1 Situation Calculus and Golog
The situation calculus [Reiter, 2001] is a many-sorted first-
order language with some second-order ingredients suitable
for describing dynamic worlds. There are three disjoint sorts:
action for actions, situation for situations, and object for
everything else. The language also has the following com-
ponents: a situation constant S0 denoting the initial situa-
tion; a binary function do(a, s) denoting the successor situ-
ation to s resulting from performing action a; a binary re-
lation Poss(a, s) indicating that action a is possible in sit-
uation s; a binary relation s ⊑ s′, meaning situation s is
a sub-history of s′; a set of relational (functional) fluents,
i.e., predicates (functions) taking a situation term as their last
argument. A formula is uniform in s if it does not men-
tion any situation term other than s. We call a formula with
all situation arguments eliminated a situation-suppressed for-
mula. For a situation-suppressed formula ϕ, we use ϕ[s] to
denote the formula obtained from ϕ by restoring s as the sit-
uation arguments to all fluents. A situation s is executable
if it is possible to perform the actions in s one by one:
Exec(s)

.
= ∀a, s′.do(a, s′) ⊑ s ⊃ Poss(a, s′).

In the situation calculus, a particular domain of application
can be specified by a basic action theory (BAT) of the fol-
lowing form: D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 , where
Σ is the set of the foundational axioms for situations; Dap

is a set of action precondition axioms, one for each action
function A of the form Poss(A(x⃗), s) ≡ ΠA(x⃗, s), where
ΠA(x⃗, s) is uniform in s; Dss is a set of successor state ax-
ioms (SSAs), one for each relation fluent symbol P of the
form P (x⃗, do(a, s)) ≡ ϕP (x⃗, a, s), and one for each func-
tional fluent symbol f of the form f(x⃗, do(a, s)) = y ≡

ψf (x⃗, y, a, s), where ϕP (x⃗, a, s) and ψf (x⃗, y, a, s) are uni-
form in s; Duna is the set of unique name axioms for actions;
DS0

is the initial knowledge base stating facts about S0.
Levesque et al. [1997] introduced a high-level program-

ming language Golog with the following syntax:
δ ::= α| φ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗,

where α is an action term; φ is a situation-suppressed formula
and φ? tests whether φ holds; program δ1; δ2 represents the
sequential execution of δ1 and δ2; program δ1|δ2 denotes the
non-deterministic choice between δ1 and δ2; program πx.δ
denotes the non-deterministic choice of a value for parameter
x in δ; program δ∗ means executing program δ for a non-
deterministic number of times.

Golog has two kinds of semantics: transition semantics and
evaluation semantics [De Giacomo et al., 2000]. In transi-
tion semantics, a configuration is a pair (δ, s) of a situation
s and a program δ remaining to be executed. The predicate
Trans(δ, s, δ′, s′) means that there is a transition from con-
figuration (δ, s) to (δ′, s′) in one elementary step. The predi-
cate Final(δ, s) means that the configuration (δ, s) is a final
one, which holds if program δ may legally terminate in sit-
uation s. In evaluation semantics, the predicate Do(δ, s, s′)
means that executing the program δ in situation s will termi-
nate in a situation s′. Do can be defined with Trans and
Final as follows: Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧
Final(δ′, s′), where, Trans∗ denotes the transitive closure
of Trans.

2.2 Regression and Its Extensions
Regression is an important computational mechanism for rea-
soning about deterministic actions and their effects in the sit-
uation calculus [Reiter, 2001]. The following is the definition
of a one-step regression operator:
Definition 1. Given a BAT D and a formula ϕ. We use
RD[ϕ] to denote the formula obtained from ϕ by the fol-
lowing steps: for each term f (⃗t, do(α, σ)), replace ϕ with
∃y.ψf (⃗t, y, α, σ) ∧ ϕ[f (⃗t, do(α, σ))/y]1; replace each atom
P (⃗t, do(α, σ)) with ϕP (⃗t, α, σ); replace each precondition
atom Poss(A(⃗t), σ) with ΠA(⃗t, σ); and further simplify the
result with Duna.
Proposition 1. D |= ϕ ≡ RD[ϕ].

Luo et al. [2020] presented the existentially extended re-
gression, notation RE [ϕ(s), δ] denotes a state formula ex-
pressing that there exists an execution of program δ starting
from s making ϕ hold.
Definition 2. Given a situation-suppressed formula ϕ and a
Golog program δ, the extended regression RE [ϕ(s), δ] can be
inductively defined as follows:

• RE [ϕ(s), α] = RD[Poss(α, s) ∧ ϕ(do(α, s))],
• RE [ϕ(s), ψ?] = ψ[s] ∧ ϕ(s),
• RE [ϕ(s), δ1; δ2] = RE [RE [ϕ(s), δ2], δ1],

• RE [ϕ(s), δ1|δ2] = RE [ϕ(s), δ1] ∨RE [ϕ(s), δ2],

1ϕ[t′/t] denotes that formula obtained from ϕ by replacing all
occurrences of t′ in ϕ by t.
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• RE [ϕ(s), (πx)δ(x)] = (∃x)RE [ϕ(s), δ(x)].

Proposition 2. Given a basic action theory D, a Golog pro-
gram δ and a situation-suppressed formula ϕ, we have:

D |= RE [ϕ(s), δ] ≡ ∃s′.Do(δ, s, s′) ∧ ϕ[s′].
Li and Liu [2015] presented the universally extended re-

gression, notation RU [ϕ(s), δ] denotes a state formula ex-
pressing that all executions of program δ starting from smak-
ing ϕ hold. To get the definition of universally extended re-
gression, one can replace the symbols RE , ∧, ∨, and ∃ in
Definition 2 with RU , ⊃, ∧, and ∀, respectively.

Proposition 3. Given a basic action theory D, a Golog pro-
gram δ and a situation-suppressed formula ϕ, we have:

D |= RU [ϕ(s), δ] ≡ ∀s′.[Do(δ, s, s′) ⊃ ϕ(s′)].

2.3 Generalized Planning Abstraction Framework
Situation calculus cannot express the property of termina-
tion, counting, transitive closure, and non-deterministic ac-
tions. Cui et al. [2021] extended the situation calculus for
these four aspects: to represent the property of termination,
following [Schulte and Delgrande, 2004], they use the situa-
tion calculus with infinite histories; to represent planning with
non-deterministic actions, they treat a non-deterministic ac-
tion as a non-deterministic program; to extended the situation
calculus with counting, following the logic FOCN [Kuske
and Schweikardt, 2017], they introduce counting terms of
the form #ȳ.φ, meaning the number of tuples ȳ satisfying
formula φ; transitive closure is often used to define count-
ing terms, following transitive closure logic [Immerman and
Vardi, 1997], they introduced the notation [TCx̄,ȳφ](ū, v̄),
where φ(x̄, ȳ) is a formula with 2k free variables, ū and v̄
are two k-tuples of terms, which says that the pair (ū, v̄) is
contained in the reflexive transitive closure of the binary rela-
tion on k-tuples that is defined by φ.

Now we introduce the GP abstraction framework proposed
in [Cui et al., 2021].

Definition 3. A GP problem is a triple G = ⟨D, C,G⟩, where
D is a BAT, C is a trajectory constraint, i.e., a situation cal-
culus formula with a free variable of infinite histories, and G
is a goal condition.

Example 1. In the blocks world, an agent can perform two
kinds of actions: mt(x) (move x to the table, provided x is
being held, and unstack(x, y) (unstack x from y, provided
x is clear and x is on y.There are four fluents: clear(x),
ontable(x), on(x, y), and holding(x). In this problem, the
trajectory constraint C is ⊤, the goal state G is clear(A),
some example axioms from D are as follows:

Precondition Axioms.
Poss(mt(x), s) ≡ clear(x, s) ∧ ¬ontable(x, s);

Successor State Axioms.
on(x, y, do(a, s)) ≡ on(x, y, s) ∧ ¬a = unstack(x, y);

Initial Situation Axiom.
∃x.on+(x,A) ∧ ontable(A) ∧ ¬holding(x),

where the formula on+(x,A) is a transitive closure formula,
which means that the block x is above block A.

Abstractions for GP problems are specified by the follow-
ing notion of refinement mapping:

Definition 4. A function m is a refinement mapping from
Gh= ⟨Dh, Ch, Gh⟩ to Gl= ⟨Dl, Cl, Gl⟩ if for each HL de-
terministic or non-deterministic action type A, m(A(x⃗)) =
δA(x⃗), where δA(x⃗) is a LL program; for each HL rela-
tional fluent P , m(P (x⃗)) = ϕP (x⃗), where ϕP (x⃗) is a LL
situation-suppressed formula; for each HL functional fluent
f , m(f(x⃗)) = τf (x⃗), where τf (x⃗) is a LL (counting) term.

Given a refinement mappingm, they introduced an isomor-
phism relation, called m-isomorphic, between a HL and a LL
situation as follows:

Definition 5. Given a refinement mapping m, a situation sh
of a model Mh is m-isomorphic to a situation sl in a model
Ml, written sh ∼m sl, if: for any HL relational fluent P , and
variable assignment v, we have Mh, v[s/sh] |= P (x⃗, s) iff
Ml, v[s/sl] |= m(P )(x⃗, s); for any HL functional fluent f ,
variable assignment v, we have Mh, v[s/sh] |= f(x⃗, s) = y
iff Ml, v[s/sl] |= m(f)(x⃗, s) = y.

To relate HL and LL models, they defined two relations:
m-simulation and m-back-simulation. Intuitively, simulation
means: whenever a refinement of a HL action can occur, so
can the HL action, and back-simulation means the other di-
rection. Here we only present the definition of m-simulation
relation, m-back-simulation relation can be defined symmet-
rically. In the following, ∆M

S denotes the situation domain
of M ; SM

0 stands for the initial situation of M ; the notation
Term(δ, s, C) means starting in situation s, program δ termi-
nates under constraint C:

Term(δ, s, C)
.
= ¬∃h.C(h)∧

∀s′ ❁ h ∃δ′.T rans∗(δ, s, δ′, s′).

Definition 6. A relationB ⊆ ∆Mh

S ×∆Ml

S is anm-simulation
relation betweenMh andMl, if ⟨SMh

0 , SMl
0 ⟩ ∈ B and the fol-

lowing hold: (1) ⟨sh, sl⟩ ∈ B implies that: sh ∼m sl; for any
HL action type A, and variable assignment v, Ml, v[s/sl] |=
Term(m(A(x⃗)), s, Cl), and if there is a situation s′l s.t.
Ml, v[s/sl, s

′/s′l] |= Do(m(A(x⃗)), s, s′), then there is a sit-
uation s′h s.t. Mh, v[s/sh, s

′/s′h] |= Do(A(x⃗), s, s′) and
⟨s′h, s′l⟩ ∈ B. (2) For any infinite HL action sequence σ, if
there is an infinite history in Ml generated by m(σ) and sat-
isfying Cl, then there is an infinite history in Mh generated
by σ and satisfying Ch.

Based on the notions above, they defined sound/complete
abstraction on model and theory level. Sound abstraction
means that HL behavior entails LL behavior, and complete
abstraction means the other direction.

Definition 7. Mh is a sound m-abstraction of Ml, if there is
an m-back-simulation relation B between Mh and Ml.

Definition 8. Mh is a completem-abstraction ofMl, if there
is a m-simulation relation B between Mh and Ml.

On the theory level, sound and complete abstractions are
defined as follows:

Definition 9. Gh is a sound m-abstraction of Gl, if for any
model Ml of Dl:
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• there is a model Mh of Dh such that: (1) Mh is a sound
m-abstraction of Ml via B1; (2) for any situations sh
in Mh, sl in Ml, if ⟨sh, sl⟩ ∈ B1 and Mh, v[s/sh] |=
Gh[s], then Ml, v[s/sl] |= Gl[s], and,

• there is a model M ′
h of Dh such that: (1) M ′

h is a com-
plete m-abstraction of Ml via B2; (2) for any situations
sh in M ′

h, sl in Ml, if ⟨sh, sl⟩ ∈ B2 and M ′
h, v[s/sh] |=

Gh[s], then Ml, v[s/sl] |= Gl[s].
Definition 10. Gh is a complete m-abstraction of Gl, if for
any model Mh of Dh:

• there is a model Ml of Dl such that: (1) Mh is a com-
plete m-abstraction of Ml via B1; (2) for any situations
sh in Mh, sl in Ml, if ⟨sh, sl⟩ ∈ B1 and Ml, v[s/sl] |=
Gl[s], then Mh, v[s/sh] |= Gh[s], and,

• there is a model M ′
l of Dl such that: (1) Mh is a sound

m-abstraction of M ′
l via B2; (2) for any situations sh in

Mh, s′l inM ′
l , if ⟨sh, s′l⟩ ∈ B2 andM ′

l , v[s/s
′
l] |= Gl[s],

then Mh, v[s/sh] |= Gh[s].

3 Proof-Theoretic Characterization
In this section, we give proof-theoretic characterizations of
abstractions for GP.

First of all, we introduce some notations and conventions.
We define the program of doing any HL action sequence and
its refinement as follows:
anyhlas

.
= (|A∈Ah

πx⃗.A(x⃗))∗, anyllps
.
= m(anyhlas).

We call a situation s s.t. Do(anyllps, S0, s) holds an exe-
cutable refinement of a HL situation, ER in short. The follow-
ing notation Infexe(δ, h, C) means h is an infinite execution
of program δ satisfying trajectory constraint C:
Infexe(δ, h, C)

.
= C(h) ∧ ∀s′ ❁ h∃δ′. T rans∗(δ, S0, δ

′, s′).

We introduce an abbreviation R(s, s′), which means that sit-
uations s and s′ result from executing the refinement of the
same HL action sequence:

R(s, s′)
.
= ∀P.P (S0, S0)∧∧

A∈Ah
∀x⃗, s, s1, s′, s′1.(P (s, s′) ∧Do(m(A(x⃗)), s, s1)

∧Do(m(A(x⃗)), s′, s′1) ⊃ P (s1, s
′
1)) ⊃ P (s, s′).

Let ϕ be a HL formula uniform in a situation. We usem(ϕ)
to denote the formula resulting from replacing each high-level
symbol in ϕ with its LL definitions. We now define m(C) for
a HL trajectory constraint C. For this purpose, we first define
a normal form for trajectory constraints.
Definition 11. Let C be a trajectory constraint. We say that
C is in normal form if C contains no occurrence of action
variables or Poss, and any appearance of do must be in the
form of s′ = do(A(⃗t), s), where s and s′ are variables.
Proposition 4. Any trajectory constraint can be converted to
an equivalent one in normal form.

Proof. First, note that there are a finite number of action
functions A1, . . . , An, and hence we have ∀a

∨n
i=1 ∃x⃗.a =

Ai(x⃗). Thus, quantification over action variables can be re-
moved as follows: replace ∃aϕ(a) with

∨n
i=1 ∃x⃗ϕ(Ai(x⃗)).

Then Poss(Ai(⃗t), σ) can be replaced with the instantiated

RHS of the action precondition axiom for Ai. Let C be
the resulting trajectory constraint. Let do(A(⃗t), σ) be an ap-
pearance of do not in the required form. We replace C by
∃s.s = do(A(⃗t), σ) ∧ C[do(A(⃗t), σ)/s], where C[t1/t2] de-
notes the formula obtained from C by replacing any appear-
ance of t1 by t2. We repeat this process until any appearance
of do is in the required form.

Definition 12. Let C be a HL trajectory constraint. We
first convert it into an equivalent one C ′ in normal form.
We let m(C) denote the LL constraint obtained from C ′

as follows: first replace any appearance of ∃s ❁ h with
∃s ❁ h.Do(anyllps, S0, s), then replace any appearance of
s′ = do(A(⃗t), s) withDo(m(A(⃗t)), s, s′), and finally replace
any high-level symbols with its LL definitions.

We now extend them-simulation orm-back-simulation re-
lation B to infinite histories, and show that if a HL infinite
history hh and a LL infinite history hl are B-related, then hh
satisfies a constraint C iff hl satisfies m(C).

Definition 13. Let Mh be a sound or complete abstraction of
Ml via B. Let hh and hl be infinite histories of Mh and Ml,
respectively. We write ⟨hh, hl⟩ ∈ B if the following hold: for
any sh ❁ hh, there is an ER sl ❁ hl s.t. ⟨sh, sl⟩ ∈ B; and
for any ER sl ❁ hl, there is sh ❁ hh s.t. ⟨sh, sl⟩ ∈ B.

Proposition 5. Let Mh be a sound or complete abstraction
of Ml via B. Let ⟨hh, hl⟩ ∈ B. Let C be a HL trajectory
constraint. Then Mh, v[h/hh] |= C(h) iff Ml, v[h/hl] |=
m(C)(h).

Proof. WLOG, we assume that C is in normal form. We
prove by induction that for any sub-formula C ′ of C, for any
free variables s⃗ and x⃗, and for any sub-situations s⃗h of hh and
any ER sub-situations s⃗l of hl s.t. ⟨sih, sil⟩ ∈ B for any index
i, we have Mh, v[h/hh, s⃗/s⃗h] |= C ′ iff Ml, v[h/hl, s⃗/s⃗l] |=
m(C ′). The base cases are of the following forms s ⊑ s′,
s′ = do(A(⃗t), s), P (x⃗, s), and f(x⃗, s) = y. All these cases
can be easily proved. The induction cases are those of ¬,
∧, ∃x, and ∃s ❁ h. We only prove the last case, the other
cases are easy. So suppose Mh, v[h/hh, s⃗/s⃗h] |= ∃s ❁ h.C ′.
Then there is sh ❁ hh s.t. Mh, v[h/hh, s⃗/s⃗h, s/sh] |= C ′.
By Definition 13, there is an ER sl ❁ hl s.t. ⟨sh, sl⟩ ∈ B.
By induction hypothesis, Mh, v[h/hh, s⃗/s⃗h, s/sh] |= C ′ iff
Ml, v[h/hl, s⃗/s⃗l, s/sl] |= m(C ′). Thus Ml, v[h/hl, s⃗/s⃗l] |=
∃s ❁ h.Do(anyllps, S0, s) ∧ m(C ′), which is m(∃s ❁

h.C ′). The other direction can be similarly proved.

Non-deterministic actions in [Cui et al., 2021] are treated
as non-deterministic Golog programs. In particular, each
non-deterministic action A has a definition in the form
A(x⃗)

.
= πu⃗.Ad(x⃗, u⃗), where Ad is a deterministic action.

We let ΠA(x⃗, s) denote ∃u⃗.ΠAd
(x⃗, u⃗, s), let ϕP,Ad

(y⃗, x⃗, u⃗, s)
denote ϕP (y⃗, Ad(x⃗, u⃗), s) simplified by using Duna, and let
ψf,Ad

(y⃗, z, x⃗, u⃗, s)) denote ψf (y⃗, z, Ad(x⃗, u⃗), s) simplified
by using Duna.

We now introduce the following abbreviations:
ψT

.
=

∧
A∈Ah

∀x⃗.Term(m(A(x⃗)), s, Cl),

ξP
.
=

∧
A∈Ah

∀x⃗, s′.Do(m(A(x⃗)), s, s′) ⊃ ∃u⃗.
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∧
P∈Ph

[∀y⃗.m(P (y⃗, s′)) ≡ m(ϕP,Ad
(y⃗, x⃗, u⃗, s))],

ξf
.
=

∧
A∈Ah

∀x⃗, s′.Do(m(A(x⃗)), s, s′) ⊃ ∃u⃗.∧
f∈Fh

[∀y⃗, z.m(f(y⃗, s′) = z) ≡ m(ψf,Ad
(y⃗, z, x⃗, u⃗, s))],

where, ψT says that the refinement of any HL action termi-
nates in s under Cl; ξP and ξf says that for any HL action
A(x⃗), if its refinement transforms situation s to s′, then there
is u⃗ s.t. the mapping of all SSAs instantiated with Ad(x⃗, u⃗)
hold for s and s′.

The following theorem gives a proof-theoretic characteri-
zation for sound abstractions, where Item 1 and Item 6 are
easy to understand; Item 2 says that Dl entails that for any ER,
i.e., executable refinement of a HL situation, the executabil-
ity of the refinement of any HL action implies its mapped
precondition; Item 3 says that Dl entails that for any ER, the
mapped precondition of any HL action implies that the exe-
cutability of its refinement holds in some R-related situation;
and Item 5 says that Dl entails that the existence of an infinite
execution of anyllps satisfing the LL constraint is equivalent
to the existence of one satisfying the mapped HL constraint.

Theorem 1. Gh is a sound m-abstraction of Gl iff the follow-
ing conditions hold:

1. DS0

l |= m(ϕ), where ϕ ∈ DS0

h ;

2. Dl |= ∀s.Do(anyllps, S0, s) ⊃∧
A∈Ah

∀x⃗, s′.Do(m(A(x⃗)), s, s′) ⊃ m(ΠA(x⃗, s));

3. Dl |= ∀s.Do(anyllps, S0, s) ⊃∧
A∈Ah

∀x⃗.m(ΠA(x⃗, s)) ⊃
∃s′, s′′.R(s, s′) ∧Do(m(A(x⃗)), s′, s′′);

4. Dl |= ∀s.Do(anyllps, S0, s) ⊃ ψT ∧ ξP ∧ ξf ;

5. Dl |= ∃hl.Infexe(anyllps, hl, Cl) ≡
∃hl.Infexe(anyllps, hl,m(Ch));

6. Dl |= ∀s.Do(anyllps, S0, s) ∧m(Gh)[s] ⊃ Gl[s].

Proof. (sketch) ⇒: Item 1 and 6 are easy to prove. For Item
2 and 4, according to Definition 9, for each model Ml of Gl,
there exist a model Mh of Gh s.t. Mh is a complete abstrac-
tion of Ml via a m-simulation relation B1. Let sl be a LL
situation which satisfies Do(anyllps, S0, s), then based on
Definition 6, there is a HL situation sh s.t. ⟨sh, sl⟩ ∈ B1, and
for any HL action typeA: ifm(A(x⃗)) is executable in sl, then
A(x⃗) is executable in sh, thus, sl satisfies m(ΠA(x⃗, s)); sl
satisfies Term(m(A(x⃗)), s, Cl); if there exists a LL situation
s′l satisfies Do(m(A(x⃗)), sl, s

′
l), then there exists an action

A(x⃗, u⃗) and a HL situation s′h, s.t. ⟨s′h, s′l⟩ ∈ B1, further-
more, if sh and s′h satisfy the HL fluent-action related SSAs,
then sl and s′l satisfy the mapped HL fluent-action related
SSAs. For Item 3, we can prove that Mh is also a sound m-
abstraction of Ml via a m-back-simulation relation B2, then
for ⟨sh, sl⟩ ∈ B1, there also exists a LL situation s′l, such
that ⟨sh, s′l⟩ ∈ B2, thus, sl and s′l are R-related, furthermore,
A(x⃗) is executable in sh, then m(A(x⃗)) is executable in s′l.
Finally, let hl be a LL infinite history, then there exists a HL
infinite history hh, based on the relationB2, we can construct
another LL infinite history h′l, this coupled with Proposition
5 can imply Item 5.

⇐: For any LL model Ml, by using refinement mapping,
we first construct a HL model Mh, then based on the Item
1, 2, 4, and 5, we can construct a m-simulation relation B1

betweenMh andMl. Similarly, based on the Item 1, 3, 4, and
5, we can construct am-back-simulation relationB2 between
Mh and Ml. Then, we can get that Gh is sound abstraction of
Gl based on Item 6 and Definition 9.

Complete abstraction on the theory level means that for
each HL model Mh, there exist two LL models Ml, M ′

l s.t.
Mh is a sound abstraction of Ml, and a complete abstraction
of M ′

l . However, in this case, Ml and M ′
l may be different,

and thus we cannot give a proof-theoretic characterization for
complete abstractions. Nonetheless, we give a sufficient and
necessary condition for complete abstractions in terms of the
existence of two LL models Ml and M ′

l satisfying 5 condi-
tions where Item 2 says that Ml satisfies for any ER, ψT , ξP ,
and ξf hold, and the LL goal implies the mapped HL goal,
and the executability of the refinement of any HL action im-
plies its mapped precondition; Item 3 says that M ′

l satisfies
that there exists a set P of situations including the initial situ-
ation such that for any P -situation, ψT , ξP , and ξf hold, and
the LL goal implies the mapped HL goal, and the mapped
precondition of any HL action implies that its refinement is
executable and leads to a P -situation.
Theorem 2. Gh is a complete m-abstraction of Gl iff for any
model Mh of Dh, there are two models Ml, M ′

l of Dl s.t.

1. SMh
0 ∼m SMl

0 , SMh
0 ∼m S

M ′
l

0 ;

2. Ml |= ∀s.Do(anyllps, S0, s) ⊃∧
A∈Ah

[∀x⃗, s′.Do(m(A(x⃗)), s, s′) ⊃ m(ΠA(x⃗, s))]

∧ψT ∧ ξP ∧ ξf ∧ [Gl[s] ⊃ m(Gh)[s]];

3. M ′
l |= ∃P.P (S0) ∧ ∀s.P (s) ⊃∧

A∈Ah
∀x⃗.m(ΠA(x⃗, s)) ⊃ ∃s′.Do(m(A(x⃗)), s, s′)

∧P (s′) ∧ ψT ∧ ξP ∧ ξf ∧ [Gl[s] ⊃ m(Gh)[s]];

4. if Ml |= ∃hl.Infexe(anyllps, hl, Cl),
then Mh |= ∃hh.Infexe(anyhlas, hh, Ch);

5. if Mh |= ∃hh.Infexe(anyhlas, hh, Ch),
then M ′

l |= ∃hl.Infexe(anyllps, hl, Cl).

Proof. (sketch) ⇒: Item 1 is easy to prove. For Item 2, ac-
cording to the Definition 10, we know that for each HL model
Mh of Dh, there exist a LL model Ml, such that Mh is a
complete abstraction of Ml via a m-simulation relation B1.
Let sl be a LL situation which satisfies Do(anyllps, S0, s),
then based on Definition 6, there is a HL situation sh s.t.
⟨sh, sl⟩ ∈ B1, and for any HL action type A: if m(A(x⃗))
is executable in sl, then A(x⃗) is executable in sh, thus, sl
satisfies m(ΠA(x⃗, s)); sl satisfies Term(m(A(x⃗)), s, Cl); if
there exists a LL situation s′l satisfies Do(m(A(x⃗)), sl, s

′
l),

then there exists an action A(x⃗, u⃗) and a HL situation s′h, s.t.
⟨s′h, s′l⟩ ∈ B1, furthermore, if sh and s′h satisfy the HL fluent-
action related SSAs, then sl and s′l satisfy the mapped HL
fluent-action related SSAs; if sl satisfies Gl, then sh satisfies
Gh, and hence, sl satisfies m(Gh). For Item 3, according to
the Definition 10, we know that for the HL model Mh, there
is another LL model M ′

l , such that Mh is a sound abstraction
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of M ′
l via a m-back-simulation relation B2. We construct

the situation set P of M ′
l based on the following two steps:

(i) SM ′
l

0 ∈ P ; (ii) for any LL program anyllps, if there is
a situation sl satisfies Do(anyllps, SM ′

l
0 , sl), then sl ∈ P .

Now we let sh be a reachable situation of Mh via executing
anyhlas, then according to the construction of P , there is a
situation sl ∈ P of M ′

l , such that ⟨sh, sl⟩ ∈ B2, and for any
HL action type A: if A(x⃗) is executable in sh, then m(A(x⃗))
is executable in sl, thus, sl satisfies m(ΠA(x⃗, s)); sl satisfies
Term(m(A(x⃗)), s, Cl); if there exists a HL situation s′h sat-
isfies Do(A(x⃗), sh, s′h), then there exists an action A(x⃗, u⃗)
and a LL situation s′l ∈ P , s.t. ⟨s′h, s′l⟩ ∈ B2, furthermore,
if sh and s′h satisfy the HL fluent-action related SSAs, then
sl and s′l satisfy the mapped HL fluent-action related SSAs;
if sl satisfies Gl, then sh satisfies Gh, and hence, sl satisfies
m(Gh). Item 4 and 5 can be proved by using the Definition 8
and 7, respectively.

⇐: For the model Mh and Ml, based on the Item 1, 2, and
4, we can construct a m-simulation relation B1 between Mh

and Ml. Similarly, based on the Item 1, 3, and 5, we can
construct a m-back-simulation relation B2 between Mh and
Ml. Then, we can get that Gh is complete abstraction of Gl

based on the Definition 10.

4 Automatic Verification for Soundness of
Bounded QNP Abstractions

In this section, we explore how to automatically verify
the soundness of bounded QNP abstractions with theorem
provers. To this end, we first introduce some restrictions in
Theorem 1, and give a sufficient condition for sound abstrac-
tions, which is verifiable in first-order logic with counting and
transitive closure. Then, based on the sufficient condition, we
present the methodology of sound bounded QNP abstraction
verification with theorem provers. Particularly, we develop
methods to handle counting and transitive closure.

4.1 A Sufficient Condition for Sound Abstraction
We first discuss how to obtain a sufficient condition for sound
abstractions from Theorem 1:

(1). Situations that satisfy Do(anyllps, S0, s) are all ex-
ecutable. State constraints are formulas that hold in all exe-
cutable situations. Given a BAT D and a formula ϕ(s), ϕ(s)
is a state constraint for D if D |= ∀s.Exec(s) ⊃ ϕ(s). Thus,
we can replace the condition Do(anyllps, S0, s) by provid-
ing LL state constraints in tasks 2, 3, 4 and 6 in Theorem 1.
We use Dsc to denote a set of state constraints, and abuse Dsc

as the conjunction of its elements;
(2). Determining whether a given program terminates is

the quintessential undecidable problem. We assume that any
HL action refinement does not involve iterations. Then, the
formula ψT in task 4 is true trivially;

(3). We restrict that each HL action is deterministic, thus,
we can ignore trajectory constraints, and then ignore task 5;

(4). Since tasks 2 and 3 involve the reasoning about
LL Golog programs, we use existentially extended regres-
sion to compute executability conditions of Golog programs.

Given a program δ and a situation s, the executability con-
dition pre(δ, s) of δ in the situation s can be computed as
RE [⊤(s), A(x⃗)]. Thus, in tasks 2 and 3, we can equiva-
lently replace Do(m(A(x⃗), s, s′)) by pre(m(A(x⃗)), s). In
addition, we introduce the following abbreviation:

ξA
.
=

∧
A∈Ah

∀x⃗.pre(m(A(x⃗)), s) ≡ m(ΠA(x⃗, s)),

which means that for any HL action A(x⃗) and a LL situa-
tion s, m(A(x⃗)) is executable in s if and only if s satisfies
the refinement of precondition of the action A(x⃗). Then,
for getting a sufficient condition for sound abstractions, we
verify a stronger task which can implies both task 2 and 3:
|=foct ∀s.Dsc(s) ⊃ ξA, where, |=foct denotes the entailment
in first-order logic with counting and transitive closure;

(5). For further discussion, we introduce two more abbre-
viations as follows:
ζP

.
=

∧
A∈Ah

∀x⃗.pre(m(A(x⃗), s))

⊃
∧

P∈Ph
∀y⃗.[RE [m(P (y⃗))[s],m(A(x⃗))]

⊃ m(ϕP,A(x⃗, y⃗, s))] ∧ [m(ϕP,A(x⃗, y⃗, s))
⊃ RU [m(P (y⃗))[s],m(A(x⃗))],

ζf
.
=

∧
A∈Ah

∀x⃗.pre(m(A(x⃗), s))

⊃
∧

f∈Fh
∀y⃗, z.[RE [m(f(y⃗) = z)[s],m(A(x⃗))]

⊃ m(ψf,A(x⃗, y⃗, z, s))] ∧ [m(ψf,A(x⃗, y⃗, z, s))
⊃ RU [m(f(y⃗) = z)[s],m(A(x⃗))]],

where, ζP says that if the LL programm(A(x⃗)) is executable
in situation s, then there exists an execution of m(A(x⃗))
starting from s making m(P (y⃗)) hold, and all executions of
m(A(x⃗)) starting from s making m(P (y⃗)) hold. ζf and ζP
have similar meaning.

Based on the two extended regression definitions, we can
get that task 4 is equivalent to |=foct ∀s.Dsc(s) ⊃ ζP ∧ ζf .

Finally, we can get the following corollary.

Corollary 1. Given a GP problem Gl and its abstraction Gh,
suppose that all the HL actions are deterministic and their
refinements do not involve iteration, then Gh is a sound ab-
straction of Gl if:

1. DS0

l |=foct m(ϕ), where ϕ ∈ DS0

h ;

2. |=foct ∀s.Dsc(s) ⊃ ξA;

3. |=foct ∀s.Dsc(s) ⊃ ζP ∧ ζf ;

4. |=foct ∀s.Dsc(s) ∧m(Gh)[s] ⊃ Gl[s].

Note that when conditions of Corollary 1 do not hold, we
cannot determine whether an abstraction is sound.

4.2 Sound Bounded QNP Abstraction Verification
QNPs are classical planning problems extended with non-
negative real variables and non-deterministic actions that in-
crease or decrease the values of variables by positive indeter-
minate amounts. QNPs were first introduced by Srivastava et
al. [2011b], and nowadays, they have been widely used for
modeling abstractions of GP problems.

Given a set of propositional variables F and a set of non-
negative numerical variables V , we refer to p and ¬p for
p ∈ F as the F -literals, v > 0 and v = 0 for v ∈ V as
the V -literals. A pair of complementary literals has the form
{p,¬p} for p ∈ F , or {v > 0, v = 0} for v ∈ V . A set
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of literals is consistent if it does not contain complementary
literals. Let LX (resp. LF ) denote the set of all consistent
sets of literals from F ∪ V (resp. F ).
Definition 14. A QNP problem Q = ⟨F, V, I, O,G⟩ consists
of F , a set of propositional variables; V , a set of non-negative
real variables; I ∈ LX , a set of initial true literals; G ∈ LX ,
the set of goal literals; and O, a set of actions. Every a ∈ O
has a set of preconditions pre(a) ∈ LX , a set of proposi-
tional effects eff (a) ∈ LF , and a set of numerical effects N(a)
which contain special atoms of the form inc(v) or dec(v) to
increase or decrease v by some arbitrary amount for v ∈ V .
Actions with the dec(v) effect must feature the precondition
v > 0 for any variable v ∈ V .

Many abstraction models of GP problems involve integer
variables. For example, Bonet and Geffner [2018] proposed
abstracting generalized classical planning problems into a
variant of QNPs where the numerical variables of QNPs are
all non-negative integer variables. In this work, we consider
that abstractions of GP problems are bounded QNPs where
integer variables can be incremented or decremented by one.
Definition 15. A bounded QNP problem is a 5-tuple Q =
⟨F, V, I, O,G⟩ where F is a set of propositional variables; V
is a set of non-negative integer variables; I ∈ LX is a set of
initial true literals; G ∈ LX is the set of goal literals; and O
is a set of actions. Every a ∈ O has a set of preconditions
pre(a) ∈ LX , a set of propositional effects eff (a) ∈ LF

and a set of numerical effects N(a) of the form v ↑ (v ↓) for
v ∈ V , which means that v is incremented (decremented) by
1. Actions with the v ↓ effect must feature the precondition
v > 0 for any variable v ∈ V .
Example 1 cont’d. An abstraction for the GP problem
ClearA is a bounded QNP Q = ⟨F, V, I, O,G⟩, where
F = {H} contains a propositional variable H that means the
agent holding a block; V = {n} contains a numerical vari-
able n that means the number of blocks above A; the initial
state I is n > 0 ∧ ¬H; the goal state G is n = 0; the actions
in O = {pickabove, putaside} are defined as follows:

pickabove : ⟨¬H ∧ n > 0;H,n− 1⟩; putaside : ⟨H;¬H⟩.
In the bounded QNP abstraction case, the verification for

tasks 1 and 2 can be easily transformed into two first-order
theorem proving tasks with transitive closure; the verification
for task 3 in Corollary 1 can be more specific, concretely, it
can be divided as the following two tasks:

For each HL relational fluent p ∈ Ph, and HL action A ∈
Ah,Amakes p true (the false case can be discussed similarly)
means that in LL, all the executions ofm(A) makem(p) true,
then we have the following task 3∗:
|=fot ∀s.Dsc(s)∧

∀x⃗.pre(m(A(x⃗)), s) ⊃ RU [m(p(s)),m(A(x⃗))],

where, the notation |=fot means the first-order entailment
with transitive closure.

For each HL functional fluent n ∈ Fh, and HL action
A ∈ Ah, ifAmakes n increase by 1 (the decrease case can be
discussed similarly), then for any LL situation s and any situ-
ation s′ that is arrived by executingm(A(x⃗)) from s, we have
m(n)[s′] = m(n)[s] + 1. Assuming that m(n) = #x.ϕ(x),
we have the following formula Ψ holds:

[∃x.ϕ(x, s′) ∧ ¬ϕ(x, s)] ∧ [∀x.ϕ(x, s) ⊃ ϕ(x, s′)]∧
[∀x, y.ϕ(x, s) ∧ ¬ϕ(x, s′) ∧ ϕ(y, s′) ∧ ϕ(y, s) ⊃ x = y],

which means that there exists only one object that makes ϕ(x)
true from false after the execution of the program m(A(x⃗)).
Then based on Proposition 3, we have the following task 3#:

|=fot ∀s.Dsc(s)∧
∀x⃗.pre(m(A(x⃗)), s) ⊃ RU [Ψ(s),m(A(x⃗))].

Transitive closure formulas are often used to define count-
ing terms. Thus, task 3# may involve regression about tran-
sitive closure. In fact, the definition of one-step regression of
transitive closure formulas is the same as Definition 1.

Example 1 cont’d. Given the successor state axiom of flu-
ent on(x, y, s) in Example 1, and a transitive closure formula
ϕ: [TCx,yon(x, y)](x,C, s

′), the regression result RD[ϕ] of
ϕ related to the concrete action unstack(A,B) is as follows:

[TCx,yon(x, y) ∧ (x ̸= A ∨ y ̸= B)](x,C, s),

where, s′ = do(unstack(A,B), s).
Existing first-order theorem provers cannot express the

transitive closure of formulas with the form [TCx,yφ](u, v).
To handle this case, we first define the formula φ(x, y) as a
new relation P (x, y), then equivalently replace the formula
[TCx,yφ](u, v) with P+(x, y), and finally feed it into a the-
orem prover. Furthermore, existing theorem provers cannot
express the minimality of transitive closure as well, thus, we
can only verify the weak transitivity.

5 Verification System and Experiment Results
In this section, we designed a sound bounded QNP abstrac-
tion verification system2. The inputs of our system include a
GP problem coupled with state constraints, a refinement map-
ping, and an abstraction problem. The output of our system
is True / Unknown. GP problems in our system take the
form of STRIPS-like problems. The only extension of GP
problems to STRIPS problems is that their initial states can
be first-order formulas with transitive closure (see Example
1). The formalization of bounded QNP abstractions in our
system is similar to that in [Bonet and Geffner, 2020].

The workflow of our verification system is as follows:

Step 1. Given the input GP problem, the system automati-
cally generates the LL BAT;

Step 2. Based on the abstraction problem, refinement map-
ping, LL BAT, and LL state constraints, the system generates
the verification tasks that we mention in Corollary 1. Con-
cretely, the system generates task 1 for the HL and LL initial
states; task 2 for each HL action; task 3∗ for each pair of
HL relational fluent and action; task 3# for each pair of HL
functional fluent and action; task 4 for the HL and LL goals.

Step 3. The system feeds all the tasks above into the Z3-
solver (version 4.8.10.0) [de Moura and Bjørner, 2008] for
verification. If all these tasks can be verified, then the system
returns True, else returns Unknown.

We use the following example to demonstrate the verifica-
tion process of our system:

2The system is available at https://github.com/sysulic/AVS.
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Example 2. This problem involves a robot with two grippers
whose goal is to move some balls from room R into room D.
Each gripper may carry one ball at a time. The LL predicates
are: at(r), in(b, r), free(g), and carry(g, b). Actions are:
move(r, r′), pick(b, r, g), and drop(b, r, g). The initial state
is at(R) ∧ ∀g.free(g) ∧ ∃b.in(b, R).

The domain constraint Dsc of this problem is as follows:

• ∀g∃b.carry(b, g) ≡ ¬free(g),
• at(R) ≡ ¬at(D), ¬at(R) ≡ at(D),

• ∀b, g.in(b, R) ≡ ¬in(b,D) ∧ ¬carry(b, g),
• ∀b, g.in(b,D) ≡ ¬in(b, R) ∧ ¬carry(b, g),
• ∀b, g.carry(b, g) ≡ ¬in(b, R) ∧ ¬in(b,D),

• ∀b1, b2, g.carry(b1, g) ∧ carry(b2, g) ⊃ b1 = b2.

The bounded QNP problem in HL involves three numerical
variables B, C, and G that denote, respectively, the number
of balls at the source room, the number of balls carried by
grippers, the number of free grippers. Boolean variable T
means the robot is in the target room. The initial state is B >
0 ∧ C = 0 ∧ G > 0 ∧ ¬T , and the goal condition is B = 0.
Actions are as follows:

• Move : ⟨¬T ;T ⟩, Leave : ⟨T ;¬T ⟩,
• Pick : ⟨¬T,B > 0, G > 0;B − 1, C + 1, G− 1⟩,
• Drop : ⟨T,C > 0; C − 1, G+ 1⟩.

The refinement mapping is as follows:

• m(B) = #b.in(b, R), m(G) = #g.free(g),

• m(C) = #b.∃g.carry(b, g), m(T ) = at(D),

• m(Move) = (at(R))?;move(R,D),

• m(Leave) = (at(D))?;move(D,R),

• m(Drop) =
πb, g.(carry(b, g) ∧ at(D))?; drop(b,D, g)

• m(Pick) =
πb, g.(at(R) ∧ in(b, R) ∧ free(g))?; pick(b, R, g).

The system automatically generates 13 tasks for this prob-
lem, some of them are as follows:

• verification involves initial state:
|=foct Dsc ∧ at(R) ∧ ∀g.free(g) ∧ ∃b.in(b, R) ⊃
∃b.in(b, R)∧¬∃b, g.carry(b, g)∧∃g.free(g)∧¬at(D),

• verification involves goal state:
|=foct Dsc∧∀b.in(b,D) ⊃ ∀b.¬in(b, R)∧∀g.free(g),

• verification involves precondition of Pick:
|=foct Dsc ∧ ∃b, g.in(b, R) ∧ at(R) ∧ free(g)
⊃ ¬at(D) ∧ ∃b.in(b, R) ∧ ∃g.free(g),

• verification involves the fluent-action pair (T,Move):
|=foct ∀s.Dsc(s) ∧ pre(m(Move), s)
⊃ RU [m(T (s)),m(Move)], where,

– pre(m(Move), s) ≡ at(R),
– RU [m(T (s)),m(Move)] ≡ at(R) ⊃ (at(R) ⊃
(¬at(D) ∧D = D) ∨ (at(D) ∧ ¬D = R)).

Domain #A #F #P T(s) Result
ClearA 2 1 2 4.1687 True
Gripper 4 5 2 7.0014 True

Logistics 4 3 2 6.0052 True
OnAB 4 3 8 10.2191 True

GetLast 2 1 1 3.5302 True
FindA 2 1 1 3.5369 True
Corner 2 2 0 3.6378 True

Table 1: Experimental Results

Our verification system was also tested on other 6 domains.
Abstractions of ClearA, OnAB come from [Bonet et al.,
2019a]. Abstractions of other problems are provided by us.

OnAB is about achieving the goal On(A,B) in
blocksworld domain where a gripper is initially empty, and
the blocks A and B are in different towers with blocks above
them; Logistics involves a vehicle whose goal is to load
goods from the source location and transport them to the tar-
get location; GetLast and FindA are both linked list domain
problems. The predicate and the action sets of these two prob-
lems are the same. The goal of GetLast is to traverse all the
elements in a linked list, while FindA aims at finding the el-
ement A in a linked list; Corner contains instances that an
agent needs to navigate in a rectangle grid and arrive at the
point (0, 0) from any other points (x, y).

Our experiments were run on a Windows machine with a
3.7GHz CPU and 16GB RAM, the default time limit of each
subtask was 15s. We summarize the experimental results in
Table 1. #A is the number of HL actions. #F is the number
of HL functional fluent F . #P is the number of HL relational
fluent P . T is the total time costs of all verification tasks.
Experimental results showed that our system was able to suc-
cessfully verify soundness of abstractions for all domains in
a reasonable time.

6 Conclusion
In GP, solutions of sound abstractions are those with cor-
rectness guarantees for the original problems. In this paper,
based on Cui et al.’s work, we explored automatic verifica-
tion of sound abstractions for GP. We gave a proof-theoretic
characterization of sound abstractions for GP in the situation
calculus. Then, we got a sufficient condition for sound ab-
stractions. To implement it in the bounded QNP abstrac-
tion case,we exploited regression extensions and presented
methods to handle counting and transitive closure. In the fu-
ture, we are interested in automatic verification concerning
trajectory constraints for non-deterministic abstractions, such
as FOND. We are also interested in automatic learning ab-
stractions and abstraction revision based on the verification
of sound abstraction.
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