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Abstract
Circumscription is one of the most powerful ways
to extend Description Logics (DLs) with non-
monotonic reasoning features, albeit with huge
computational costs and undecidability in many
cases. In this paper, we introduce pointwise cir-
cumscription for DLs, which is not only intuitive
in terms of knowledge representation, but also pro-
vides a sound approximation of classic circum-
scription and has reduced computational complex-
ity. Our main idea is to replace the second-
order quantification step of classic circumscription
with a series of (pointwise) local checks on all
domain elements and their immediate neighbour-
hood. Our main positive results are for ontolo-
gies in DLs ALCIO and ALCI: we prove that
for TBoxes of modal depth 1 (i.e. without nest-
ing of existential or universal quantifiers) standard
reasoning problems under pointwise circumscrip-
tion are (co)NEXPTIME-complete and EXPTIME-
complete, respectively. The restriction of modal
depth still yields a large class of ontologies use-
ful in practice, and it is further justified by a strong
undecidability result for pointwise circumscription
with general TBoxes in ALCIO.

1 Introduction
Description Logics (DLs) are a family of formalisms for
Knowledge Representation & Reasoning, specifically de-
signed for describing entities of a problem domain and their
relations in the so-called ontologies [Baader et al., 2017].
Most DLs, including those that underlie the W3C OWL stan-
dard ontology languages, are based on first-order logic and
thus inherit many of its features, including monotonicity. In
a monotonic formalism, an inference of a fact from a theory
can never be withdrawn, even if new facts become available.
This makes it difficult to capture human-like common-sense
reasoning, where we may draw default conclusions that can
be revised in the light of new information.

Consider the following DL knowledge base. It says that
margherita (mar ) is a pizza that has tomatoes (tmt) and moz-
zarella (moz ) as ingredients, which in turn are vegetarian in-
gredients. It further states that pizzas whose all ingredients

are vegetarian are vegetarian pizzas.

Pizza(mar) Vegetarian(tmt) Vegetarian(moz )

hasIngredient(mar , tmt) hasIngredient(mar ,moz )

Pizza u ∀hasIngredient.Vegetarian v VegetarianPizza

The classical semantics of DLs does not allow us to infer that
Margherita is a vegetarian pizza, which might come as a sur-
prise. Indeed, this is because the open-world assumption of
classical logic does not rule the existence of some (possibly
unidentified) non-vegetarian ingredient of Margherita. From
the perspective of common-sense reasoning, we may want to
conclude that a dish only has the ingredients that are explic-
itly stated or logically implied in the knowledge base, i.e. the
extensions of the role hasIngredient should be minimized.

Adding non-monotonic features to monotonic formalisms
is a big challenge, and it often causes undecidability or a sig-
nificant increase in the complexity of reasoning. Several non-
monotonic extensions of DLs have been proposed, aiming to
balance the computational cost and the expressiveness (see,
e.g., [Baader and Hollunder, 1995; Donini et al., 1998;
Giordano et al., 2013; Britz et al., 2021; Casini et al., 2019;
Bonatti et al., 2009]). A prominent research line here is cir-
cumscribed DLs [Bonatti et al., 2009; Bonatti et al., 2011;
Bonatti et al., 2015; Bonatti, 2021; Bonatti et al., 2022].

Circumscription is a powerful tool that was first introduced
by McCarthy as an extension of first-order logic. In the basic
setting, the intended (or preferred) models of a circumscribed
theory are its classical models that additionally have mini-
mal extensions of some selected predicates [McCarthy, 1980;
McCarthy, 1986; Lifschitz, 1985]. In general, additionally
to the minimized predicates, one may specify—by means of
a circumscription pattern—the predicates whose extensions
must remain fixed and the predicates that may vary freely dur-
ing the selection of an intended model. Circumscription cap-
tures many use cases for non-monotonic reasoning and can
simulate various common-sense reasoning formalisms (see,
e.g., [Lin and Zhou, 2011]).

Circumscribed DLs are an expressive and versatile fam-
ily of languages, but unfortunately the complexity of rea-
soning is often very high, and reasoning is undecidable al-
ready in circumscribed ALC if roles are allowed to be mini-
mized. On the other hand, decidability is achieved for frag-
ments of ALCIOQ under the assumption that roles are only
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varying [Bonatti et al., 2009]. The key reason for the high
complexity is the second-order quantification that is needed
in order to identify the preferred models of a circumscribed
DL knowledge base (KB). The main goal of our work is to
lower the computational complexity of reasoning by consid-
ering an alternative (weaker) notion of circumscription that is
useful for knowledge representation and does not use such a
powerful second-order quantification.

We introduce pointwise circumscription in DLs. The basic
idea here is to replace the single global minimality check of
classical circumscription by multiple local minimality checks
at all domain elements and their immediate neighborhood.
This opens the way to use algorithmic methods (like the mo-
saic technique and integer programming) to obtain positive
decidability results. This is similar in spirit but orthogonal to
the notion introduced by Lifschitz 1986 for first-order logic,
where the second-order quantification over predicate exten-
sions is replaced with a series of additions or removals of
tuples in predicates (see the last section for more details).

The main contributions of this paper are the following.

◦ We formally define the notion of pointwise circumscrip-
tion for DLs. We argue that it yields a useful way to apply a
form of the closed-world assumption to DL ontologies and al-
lows to draw intuitive common-sense conclusions from them.
Pointwise circumscription is a sound approximation of classic
circumscription: if an ontology entails a fact under pointwise
circumscription, then the entailment also holds under clas-
sic circumscription. The converse does not hold in general,
because the more “aggressive” minimization step of global
circumscription allows to discard some classical models that
are in turn retained by the pointwise version.

◦ We study the computational complexity of reason-
ing under pointwise circumscription. Specifically, we con-
sider standard DL reasoning problems (concept satisfiabil-
ity, concept subsumption, and entailment of assertions) for
ontologies expressed in (fragments of) the very expressive
DL ALCIO. For ontologies with TBoxes of modal depth
1 (i.e. without nesting of existential or universal quantifiers)
we show (co)NEXPTIME membership results. In the case of
ALCI without ABoxes, we have membership in EXPTIME.
These results ensure decidability of reasoning in settings that
are undecidable under classical circumscription, e.g., with
varying concept names, with minimized roles, or with fixed
roles. The restriction on quantifier depth still yields a large
class of ontologies that is relevant practice (e.g., the popular
DLs of the DL-Lite family also disallow nesting of quanti-
fiers). The upper bounds are obtained by a sophisticated re-
duction to integer programming. We also observe that under
pointwise circumscription these logics lose the finite model
property that holds under the classical semantics.

◦ The upper bounds above are worst-case optimal; we pro-
vide a matching (co)NEXPTIME lower bound forALCIO by
a reduction from an exponential grid tiling problem. Interest-
ingly, the lower bound also applies to ALCI with ABoxes.
Finally, as an additional justification for the considered syn-
tactic restriction, we provide a strong undecidability result
for pointwise circumscription with general TBoxes (of modal
depth greater than 1).

◦ Our initial algorithm for concept satisfiability under point-
wise circumscription is presented for concept names only. To
lift it to arbitrary concept satisfiability in Section 4.1, we
extend our setting by adding constraints to circumscribed
knowledge bases. This appear to be interesting on their own
right as an additional tool for flexible yet computationally
manageable non-monotonic reasoning in DLs.

2 Preliminaries
Here we recall the DL ALCIO. We use NC , NR, and NI
to denote countably infinite, mutually disjoint sets of concept
names, role names, and individuals. The expression r− is the
inverse role of a role name r ∈ NR. Elements ofN+

R = NR∪
{r− | r ∈ NR} are called roles. We let r−− = r. Given a set
R ⊆ N+

R of roles, we let R− = {r− | r ∈ R}. In ALCIO,
concepts C are defined using the following grammar:

C := > | ⊥ | A | {a} | ¬C | C t C | C u C | ∃r.C | ∀r.C

with A ∈ NC , r ∈ N+
R , and a ∈ NI . A concept inclusion

is an expression of the form C v D, where C and D are
concepts. An expression of the form A(a), where A ∈ NC
and a ∈ NI , is a concept assertion. An expression of the
form r(a, b), with r ∈ NR and a, b ∈ NI , is a role asser-
tion. A TBox T in ALCIO is a set of concept inclusions,
and an ABox A is a set of concept and role assertions. A
knowledge base (KB) in ALCIO is a pair K = (T ,A),
where T is a TBox and A is an ABox. Given a TBox T ,
we let NC(T ), NR(T ), and NI(T ) denote the sets of con-
cept names, role names, and individual names occurring in
T , respectively. We denote with N+

C (T ) = NC(T ) ∪ {{a} |
a ∈ NI(T )} ∪ {>,⊥} the set of basic concepts occurring in
T and N+

R (T ) = NR(T ) ∪ {r− | r ∈ NR(T )}. Given a
concept C in ALCIO, the depth of C, denoted with d(C), is
the maximal number of nested quantifiers occurring inC, and
given a TBox T , the depth of T is the maximal d(C) over all
concepts C occurring in T .

As usual, the semantics is defined by means of interpre-
tations I = (∆I , ·I) where ∆I is the domain and ·I the
interpretation function. The latter associates to each a ∈ NI
a unique element aI ∈ ∆I , to each A ∈ NC a set AI ⊆ ∆I

and to each r ∈ NR a set rI ⊆ ∆I ×∆I . The extension of
remaining concept and role expressions inALCIO is defined
as usual [Baader et al., 2017]. The notions of a model of an
inclusion, a TBox, a KB are also standard. We use M (Γ) to
denote the set of models of a TBox or a KB Γ. We say a con-
cept C is satisfiable w.r.t. a KB K, if CI 6= ∅ holds for some
I ∈ M (K). We say a concept C is subsumed by a concept D
w.r.t. a KB K, if CI ⊆ DI holds for all I ∈ M (K). We say
a individual a is an instance of a concept C w.r.t. a KB K, if
aI ∈ CI holds for all I ∈ M (K).

3 Pointwise Circumscription
Circumscription—whether classical or pointwise—extends
first-order logic with predicate minimization. In the so-called
preferred models the extensions of the predicates that are in-
dicated as ‘minimized’ must be as small as possible, that is,
removing any tuple would result in the interpretation not be-
ing a model. Other predicates may be forced to remain fixed,
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Minimal model
S,HG,AAws chc C,HG

AH AH
cjhH hH

hH ≺•PC

Non-minimal model
S,HGws chc C,HG

AH AH
cjhH hH

hHhH

Figure 1: Two comparable models of K′C in Example 1 (the signature is abbreviated)

or allowed to vary freely. The specification of how to treat
each predicate is given by a circumscription pattern.

We recall the classic notion of circumscription for DLs,
following Bonatti et al. (2009). We denote circumscription
patterns as triples P = (M,V, F ), where M,V , and F are
mutually disjoint subsets of NC ∪NR, respectively standing
for minimized, varying, and fixed. If K is a KB and P =
(M,V, F ) a circumscription pattern such that M,V and F
partition the signature of K, we say that “K is circumscribed
with the pattern P”, in symbols CircP(K).
Definition 1. Let P = (M,V, F ) be a circumscription pat-
tern, and assume a pair of interpretations I,J . We write
I �P J if the following conditions are satisfied:

(i) ∆I = ∆J and aI = aJ for all individuals a,
(ii) QI ⊆ QJ for all Q ∈M , and

(iii) QI = QJ for all Q ∈ F .
We write I ≺P J , if I �P J andQI ⊂QJ for someQ∈M .
Definition 2. An interpretation I is a minimal model of
CircP(K), in symbols I |= CircP(K), if I |= K and there
is no interpretation J s.t. J |= K and J ≺P I. We use
MM (K,P) to denote the set of minimal models of CircP(K).

Definition 1 does not restrict in any way how the extension
of Q may differ in I and J . It quantifies universally over all
subsets of QJ , which may globally drop an arbitrary number
of tuples. We introduce a weaker preference relation between
interpretations, allowing to compare only structures that dif-
fer on at most one ‘point’, i.e., one domain element.
Definition 3. Assume a circumscription pattern P and a pair
of interpretations I,J . We write I �•P J , if I �P J and
there exists e ∈ ∆I such that:

(i) AI \ {e} = AJ \ {e} for all concept names A, and
(ii) rI ∩ (∆ × ∆) = rJ ∩ (∆ × ∆) for all role names r,

where ∆ = ∆I \ {e}.
We write I ≺•P J , if I �•P J andQI ⊂QJ for someQ∈M .
Definition 4. An interpretation I is a pointwise minimal
model of CircP(K), in symbols I |=• CircP(K), if I |= K
and there is no interpretation J s.t. J |= K and J ≺•P I.
We use PMM (K,P) to denote the set of pointwise minimal
models of CircP(K).

The standard definitions of concept satisfiability, concept
subsumption, and concept instances are adapted to pointwise
minimal models in the obvious way: assume an individual
a, concepts C,D, and a circumscribed KB CircP(K). We
write CircP(K) |=• C, if CI 6= ∅ holds for some I ∈

PMM (K,P). We write CircP(K) |=• C v D, if CI ⊆ DI

holds for all I ∈ PMM (K,P). We write CircP(K) |=•
C(a), if aI ∈ CI holds for all I ∈ PMM (K,P). The afore-
mentioned reasoning tasks can be reduced polynomially one
into the other, using an immediate adaptation of the reduc-
tions in Bonatti et al.(2009).

Example 1. Consider the KB KC about aquatic animals

Shark(white shark) Crab(caribbean hermit crab)

Crab v HasGills Shark v HasGills

HasGills v ∃hasHabitat.AquaHabitat

HasGills u ∀hasHabitat.AquaHabitat v AquaAnimal

circumscribed with the pattern PC = (MC , VC , FC), where
MC = {hasHabitat}, VC = {AquaAnimal}, and all
the other predicates are fixed. Then CircPC

(KC) |=•
AquaAnimal(white shark), and the same holds for
caribbean hermit crab. But if we extend KC into K′C by
asserting that Caribbean hermit crabs live in the jungle
hasHabitat(caribbean hermit crab, carib jungle) (they
only need water to store in the shell and keep their gills moist)
then K′C 6|=• AquaAnimal(caribbean hermit crab); the
relation |=• is indeed non-monotonic. Figure 1 shows two
models of K′C of which the leftmost one is a preferred model.

In this example global and pointwise circumscription co-
incide. However, role minimization causes undecidability for
the global semantics, while under the pointwise semantics it
falls into the decidable fragment we study below.

Given a KB K and a circumscription pattern P it is easy to
show that MM (K,P) ⊆ PMM (K,P), hence all logical con-
sequence under pointwise circumscription also follow under
global circumscription. The converse does not always hold,
as the next example shows.

Example 2. Consider T = {A v ∃r.A} circumscribed with
P = ({A, r}, ∅, ∅). Then the interpretation I, where ∆I =
{e1, e2}, AI = {e1, e2} and rI = {(e1, e2), (e2, e1)}, is
such that I ∈ PMM (T ,P) and I 6∈ MM (T ,P).

When searching for minimal models, classical circum-
scription allows for the reconfiguration of the predicate ex-
tensions across the entire model. For instance, if a role is
minimized, we may remove arbitrarily many pairs anywhere
in the model to obtain a smaller model. Pointwise circum-
scription allows only for local changes of the extensions: the
minimization can only affect a domain element and the roles
it participates in, leaving the rest of structure unmodified. By
repeatedly applying such local changes, we can often repli-
cate the minimization across the entire model of classical cir-
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cumscription, but not always. Specifically, if there exist cy-
cles in a model, it may be possible to eliminate from the ex-
tension of a minimized predicate all objects participating in a
cycle at once, while the attempt to eliminate them pointwise,
one after another, could lead to a violation of the axioms, as
one can see in Example 2. This inability of pointwise cir-
cumscription to detect non-minimality in cycles is the core
difference with respect to the classical global one.

Varying roles also play an important role in the nega-
tive computational behaviour of classical circumscription:
concept satisfiability with respect to circumscribed KBs in
ALCIO is NEXPNP-complete under classic circumscription,
assuming that all roles are varying [Bonatti et al., 2009]. To
decide whether a model is minimal, we must consider arbi-
trary reconfigurations of all the varying concepts and roles,
across the full model: the non-minimality of a model I may
be witnessed by an interpretation J that has a very differ-
ent structure from I. In contrast, we restrict varying predi-
cates to concepts and do not allow them to vary freely across
the model. In this way, to test minimality, it suffices to con-
sider only local modifications at a single domain element at
a time, without allowing to create connections to previously
unrelated objects. We prove in the next section that under
pointwise circumscription, allowing roles to be minimized or
fixed, reasoning is decidable in a very expressive fragment
of ALCIO. In contrast, such circumscription patterns lead
to undecidability under classical circumscription already in
ALC [Bonatti et al., 2009], and the decidability results in
the presence of general TBoxes are limited to circumscription
patterns with only varying roles. We believe that minimized
roles are quite useful in practice and allow to model interest-
ing real-life problems.

4 Decidablity Results
In this section we focus on the fragment of ALCIO where
concept expressions have depth at most one, that is, there
is no nesting of quantifiers. We denote this fragment
ALCIOd≤1. For our upper bounds, we restrict circumscrip-
tion patterns by disallowing varying roles, i.e. V ⊆ NC .

We now provide an algorithm for concept name satisfia-
bility w.r.t. circumscribed TBoxes under pointwise seman-
tics. In this setting, just like in standard ALCIO, reasoning
w.r.t (circumscribed) KBs can be polynomial reduced to rea-
soning w.r.t. (circumscribed) TBoxes: assertions A(b) and
r(a, b) can be written as TBox inclusions {a} v A and
{a} v ∃r.{b}, respectively.

We start by observing that this restricted fragment is quite
expressive and does not have the finite model property.

Proposition 1. Let G ∈ NC . There exists a circum-
scribed TBox CircP(T ) in ALCIOd≤1 such that each I ∈
PMM (T ,P) with GI 6= ∅ has an infinite domain.

Proof (sketch). Take the following TBox Tinf :

{a} v B B v ∀r−.⊥ > v C tD
> v ∃p−.{a} C v ∃r.C1 C1 v ∃r−.D

C,D C,D C,D C,D
G,B

a

C1, D1 C1, D1 C1, D1

r r r
p p

p
p

Figure 2: Infinite minimal model contained in every I ∈
PMM (Tinf ,Pinf ) that satisfies G.

D v ∃r.D1 D1 v ∃r−.C
∀p.(C uD u ({a} t (C1 uD1))) v G

with the circumscription pattern Pinf = (NC(T ) ∪
NR(T ), ∅, ∅). One can show that any model J of Tinf with
finite domain and GJ 6= ∅ is not ≺•Pinf

- minimal. The in-
terpretation in Figure 2 is an infinite minimal model of this
TBox whereGI 6= ∅, and it can be monomorphically embed-
ded in any J ∈ MM (Tinf ,Pinf ) such that GJ 6= ∅.

Our decidability results are achieved using the mosaic tech-
nique [Németi, 1992]: we show that the existence of a point-
wise minimal model can be reduced to checking the existence
of a finite family of ‘fragments’ of models that can be ‘assem-
bled’ into a model. The model pieces are called star types
and are defined as pairs (T, ρ) where T describes the set of
concepts that hold at a domain element, while ρ stores the de-
scription of the neighbourhood of the element described by T .
We call spikes the elements of ρ. We need to find a multiplic-
ity function N telling us how many copies of each star type
we should take to guarantee that a model in PMM (T ,P) can
be built. To make sure that the model is pointwise minimal
we impose local minimality conditions on the star types, and
we also need to do some book-keeping to guarantee that the
minimality is preserved while assembling the model. Hence
each spike in ρ not only describes the local neighbourhood
of a node, but also includes two labelling functions that keep
track of the justifications for some predicates.

We assume TBoxes in negation normal form (NNF). Given
a concept C, we denote with∼C the negation normal form of
¬C. Given a TBox T , the closure of T , denoted with cl(T ),
is the smallest subset of concepts containing every concept in
T that is closed under subconcepts and negations (in NNF).
Given a concept C, cl(C) denotes the closure of C and it is
defined analogously to the closure of a TBox.
Definition 5. Given a TBox T , a concept-type is a subset
T ⊆ cl(T ) such that:

(i) if C v D ∈ T , then ∼C ∈ T or D ∈ T ;
(ii) C ∈ T if and only if ∼C 6∈ T ;

(iii) if C1 t C2 ∈ T , then C1 ∈ T or C2 ∈ T ;
(iv) if C1 u C2 ∈ T , then {C1, C2} ⊆ T .
Types(T ) denotes the set of all concept-types T with
⊥ 6∈ T . Given a concept-type T ∈ Types(T ) and a con-
cept C ∈ T , we say that C is forced in T if T ′ 6∈ Types(T )
where T ′ is obtained from T by (1) removing C and any
C1 u · · · u Cn, with Ci = C, for some i ≤ n, and (2) adding

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3170



∼C and ∼(C1 u · · · u Cn), for any removed conjunction.
When labelling spikes, forced concepts allow us to correctly
identify when a concept ∃r.C is necessary for the local con-
sistency of the star type and uniquely represented in the spike.

Now we formally define star types. To enhance readability,
we denote with r a role or an inverse of a role, i.e. r ∈ NR
or r = t−, with t ∈ NR. If r = t−, then r− denotes t.
For any concept D, we denote with sub(D) the set of all
(sub)concepts occurring in D. Given a TBox T , we define
the set of labels

LT = {∃r.B ∈ sub(∼ C tD)| C v D ∈ T }.

By N∗ we denote the set of extended natural numbers N ∪
{0,∞} with the usual sum and product operations.

A multiset S is a pair S = (A,mS), where A is a set of el-
ements, called support set, and mS : A→ N∗ \ {0} is a func-
tion associating to each element of A its multiplicity. Given
a multiset S, we use supp(S) to denote the support of S. We
denote with |S| the cardinality of the multiset, given by the
sum of the multiplicities of its elements. Given a multiset S
such that mS(e) <∞, for any e ∈ supp(S) we define the set
Sm = {(e, j)|e ∈ supp(S) ∧ 0 < j ≤ mS(e)}.
Definition 6. Assume a TBox T in ALCIOd≤1. A star type
is a pair (T, ρ) where (a) T ∈ Types(T ), (b) ρ is a multiset
where supp(ρ) is a set of spikes s = (Rs, Ts, Ls, L

−
s ) such

that Rs ⊆ N+
R (T ), Ts ∈ Types(T ) and Ls, L−s ⊆ LT .

A star type (T, ρ) is suitable for T if the following condi-
tions are satisfied:
(1) |ρ| is finite;

(2) If ∃r.B ∈ T then there exists s ∈ supp(ρ) such that
r ∈ Rs and B ∈ Ts;

(3) If ∀r.B ∈ T then for all s ∈ supp(ρ) such that r ∈ Rs,
B ∈ Ts;

(4) For all s ∈ supp(ρ), if ∀r.B ∈ Ts and r ∈ R−s then
B ∈ T .

For each s ∈ supp(ρ) the labellings Ls and L−s are as fol-
lows:
(5) ∃r.B ∈ Ls if and only if

(a) ∃r.B ∈ T , r ∈ Rs and B ∈ Ts, and there is no
s′ ∈ supp(ρ) s.t. s′ 6= s, r ∈ Rs′ and B ∈ Ts′ ,

(b) mρ(s) = 1,
(c) ∃r.B is forced in T .

(6) ∃r.B ∈ L−s only if ∃r.B ∈ Ts, r ∈ R−s and B ∈ Ts.
We shortly discuss the conditions above. Condition (1) en-

sures that the number of spikes in a star type is bounded, and
will be important to keep the number of star types ‘small’;
conditions (2)-(4) ensure that the star type represents a frag-
ment of a model of a given TBox; condition (5) and (6) deal
with the content of the labelling sets Ls and L−s , of a given
spike s. The set Ls stores exactly those existentials in T that
have its unique and necessary witness in s. In particular, con-
dition (c) is relevant, as a concept-type T might contain ar-
bitrary disjunctions of concepts of the form ∃r.C such that
each of the existentials is uniquely represented by a spike,
but might not be necessary for the local consistency of the

type. The role of L−s is a bit more involved and related to the
conditions in Theorem 1: it allows us to mark existential con-
cepts in Ts that may not be minimally satisfied at the current
T , but which are necessary when we append another star type
at s whose labelling is coherent with L−s .

We say a star type (T, ρ) is k-bounded if |ρ| ≤ k. We
denote by T(T ) the set of all star types suitable for T , and by
Tk(T ) those that are k-bounded.

We define a minimality condition on star types reflecting
≺•P minimality. Let R+ = R ∪R−.

Definition 7. Given P = (M,V, F ) and (T, ρ), (T ′, ρ′) ∈
Tk(T ), we say that (T, ρ) ≤P (T ′, ρ′) if

(i) M ∩ T ⊆M ∩ T ′ and F ∩ T = F ∩ T ′,
(ii) there exists a bijection f : ρm → ρ′m associating to each

(s, i) ∈ ρm an element f(s, i) = (s′, j) ∈ ρ′m s. t.:

• M ∩R+
s ⊆M ∩R+

s′ and F ∩R+
s = F ∩R+

s′ ,

• Ts = Ts′ and L−s = L−s′ .

We say that (T, ρ) <P (T ′, ρ′) if M ∩ T ⊂ M ∩ T ′ or M ∩
R+
s ⊂M ∩R+

s′ , for some s ∈ supp(ρ) with f(s, i) = (s′, j).
A star type (T, ρ) is minimal if there exists no (T ′, ρ′) such
that (T ′, ρ′) <P (T, ρ).

We denote by Tmin(T ,P) the set of all star types in T(T )
that are minimal given P , and by Tmin

k (T ,P) those that are
additionally k-bounded.

Definition 8. Assume two star types (T, ρ), (T ′, ρ′) ∈ T(T ).
Given a spike s ∈ supp(ρ), such that s = (Rs, T

′, Ls, ∅),
we say that ρ′ is compatible with s if for any r ∈ R−s and
B ∈ T such that ∃r.B ∈ T ′, there is no s′ ∈ supp(ρ′) with
∃r.B ∈ Ls′ .

A star type (T, ρ) can be extended with a spike s =
(Rs, Ts, Ls, L

−
s ). Let ρ′ be the multiset with support

supp(ρ) ∪ {s}. The multiplicity function mρ′ is as follows:
if there exists s′ ∈ supp(ρ) with s′ = s, then mρ′(s) =
mρ(s

′)+1, otherwise mρ′(s) = 1; for all s′′ ∈ supp(ρ) with
s′′ 6= s, mρ′(s

′′) = mρ(s
′′). We denote with (T, ρ) + s the

result of the extension.
Given a star type (T, ρ) and a spike s = (R, T ′, L, L−) ∈

supp(ρ), we call inverse of s the spike s− = (R−, T, L−, L).

Lemma 1. Assume (T, ρ), (T ′, ρ′) ∈ Tmin(T ,P). For any
s ∈ supp(ρ) with s = (Rs, T

′, Ls, ∅), if ρ′ is compatible with
s, then (T ′, ρ′) + s− is also in Tmin(T ,P).

The following conditions on the multiplicity functionN en-
sure that we can assemble a model. They are analogous to
those in [Gogacz et al., 2020a], but account also for point-
wise minimality. Given a TBox T , let ‖T ‖ = |cl(T )|.
Theorem 1. Let P = (M,V, F ) be a circumscription pat-
tern with V ∩ NR = ∅. Consider a TBox T in ALCIOd≤1
and a concept name C0. Let n := 5‖T ‖, the following are
equivalent:

(i) There exist I ∈ PMM (T ,P) such that CI0 6= ∅;
(ii) There exists a function N : Tmin

n (T ,P)→ N∗ such that
the following conditions are satisfied:
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(1) For all a ∈ NI(T ),∑
(T,ρ)∈Tmin

n (T ,P)
{a}∈T

N((T, ρ)) = 1

(2)
∑

(T,ρ)∈Tmin
n (T ,P)

C0∈T

N((T, ρ)) ≥ 1

(3) For all T, T ′ ∈ Types(T ), R ⊆ N+
R and L,L− ⊆

LT with L− 6= ∅,∑
(T,ρ)∈Tmin

n (T ,P)
s=(R,T ′,L,L−)∈supp(ρ)

mρ(s) ·N(T, ρ) ≤
∑

(T ′,ρ′)∈Tmin
n (T ,P)

s−∈supp(ρ′)

N(T ′, ρ′)

(4) For all T, T ′ ∈ Types(T ), R ⊆ N+
R and L ⊆ LT ,∑

(T,ρ)∈Tmin
n (T ,P)

s=(R,T ′,L,∅)∈supp(ρ)

N(T, ρ) > 0 implies
∑

(T ′,ρ′)∈Tmin
n (T ,P)

and ρ′compatible with s

N(T ′, ρ′) > 0.

Let us briefly discuss the conditions (1)-(4) above: (1) en-
sures that each nominal is instantiated only once; (2) ensures
the satisfaction of C0; (3) implies that for each spike with
L− 6= ∅ there exists at least one star type having the in-
verse of the spike in its set of spikes (intuitively this allows an
overlapping between the spikes and preserves the meaning of
the labelling sets); (4) ensures that, for each spike such that
L− = ∅ has a compatible star type, i.e. such that the resulting
extended star type is minimal.

Following Gogacz et al.(2020a; 2020b), we use a system
of inequalities to find the function N . A system of linear in-
equalities is a pair (V, E), where V is a set of variables and E
is a set of linear inequalities of the form a1x1 + · · ·+anxn+
c ≤ b1y1 + · · · + bmym, where a1, . . . , an, b1, . . . , bm ∈ N,
c ∈ Z, {x1, . . . , xn, y1, . . . , ym} ⊆ V . If c ≤ 0 the inequal-
ity is called positive. We call extended system of inequalities
any system (V, E , I) where (V, E) is a system of linear in-
equalities and I is a set of implications x1 + · · · + xn >
0 ⇒ y1 + · · · + ym > 0, with x1, . . . , xn, y1, . . . , ym ∈ V .
By introducing for each (T, ρ) a variable x(T,ρ), the con-
ditions (1)-(4) can be transformed into an extended system
(V, E , I) such that a solution S corresponds to a function
N : Tmin

n (T ,P)→ N∗ satisfying (1)-(4), and vice versa.
Given an extended system (V, E , I) in which all the co-

efficients are in the integers in the interval [−a, a] for some
a ∈ N, the existence of a solution S for H can be decided
in non-deterministic polynomial time in |V | + |E| + |I| + a
[Gogacz et al., 2020a]. If the system contains only posi-
tive inequalities, the existence of a solution can be decided
in deterministic polynomial time [Lutz et al., 2005]. The
aforementioned results apply in the settings of Theorem 1,
as the only coefficients greater than 1 result from (3). Since
the multiplicity of each spike is bounded by 5‖T ‖, all the
coefficients of the system of inequalities are in the interval
[−5‖T ‖, 5‖T ‖].
Theorem 2. For ALCIOd≤1 KBs, concept name satisfiabil-
ity under pointwise circumscription is in NEXPTIME if all
roles are either minimized or fixed.

The upper bound of Theorem 2 is tight: following the idea
of [Tobies, 2000] we can reduce the exponential grid tiling
problem to concept satisfiability w.r.t. circumscribed KBs in
ALCId≤1 under the pointwise semantics.

Theorem 3. For ALCId≤1 KBs, concept name satisfiability
under pointwise circumscription is NEXPTIME-hard.

Crucially, the hardness proof uses one individual and ABox
assertions (which in ALCI cannot be internalized in the
TBox). If there are no individuals, we can drop (1) in Theo-
rem 1 and obtain a positive extended system of inequalities.
The matching lower bound is inherited from (classical) ALC
[Schild, 1991].

Corollary 1. For ALCId≤1 TBoxes, concept name satis-
fiability under pointwise circumscription is in EXPTIME-
complete if all roles are either minimized or fixed.

4.1 Constraints for General Concept Satifiability
In this section we lift our results from concept names to arbi-
trary concepts. Classically, this can be done introducing new
axioms to the TBox. However, under pointwise circumscrip-
tion this affects the semantics.

Example 3. Consider the TBox T = {A v ∃r.B, B v
∃r.C} and the circumscription pattern P = (M,V, F ) with
M = {C} and F = {A,B, r}. Consider the concept
C0 = ∃r.∃r.C. We extend T with the TBox TC0

= {D0 v
∃r.∃r.C}, reducing checking the satisfiability of C0 to check-
ing the satisfiability of D0. The circumscription pattern P
can be extended to P ′ = (M,V ∪ {D0}, F ). Consider
the interpretation I such that ∆I = {a, b, c} and rI =
{(a, b), (b, c)}, AI = BI = ∅, DI0 = {a}, and CI = {c}.
It is easy to see that I ∈ PMM (T ∪ TC0

,P ′). However,
I ′ 6∈ PMM (T ,P) where I ′ is the model of T obtained
from I restricting it to the syntax of T and C0. Putting D0

into M or F instead does not preserve the semantics either.
For the case where D0 ∈ M , consider ∆J = {a, b, c},
DJ0 = {a}, AJ = {a}, BJ = {b}, CJ = {a, b, c} and
rJ = {(a, b), (b, c)}. Then D0 can be minimized at a. In
contrast, the model J ′ obtained from J restricting it to the
syntax of T and C0 is minimal.

Given a concept C0 with d(C0) > 0 and a circumscribed
TBox CircP(T ) in ALCIOd≤1, checking the satisfiability
of C0 in a minimal model of T has no influence on the min-
imality of the model itself. We use constraints to filter out
those models that do not satisfy a given concept C0. A con-
straint set C is a collection of pairs of concepts (C,D), with
the intuitive meaning “if C holds, then D must hold too”.
The pair (T , C) denotes a TBox T equipped with a constraint
set C. Given a circumscription pattern P we denote with
CircP(T , C) a circumscribed TBox T equipped with a set
of constraints C.

Definition 9. Given a KB K, a set of constraints C and a
circumscription pattern P , we say that an interpretation I is
a model of CircP(K, C), in symbols I |=• CircP(K, C), if
I |=• CircP(K), and CI ⊆ DI , for all (C,D) ∈ C.

Given CircP(K, C) we denote with PMM (K, C,P) the set
of all interpretations I such that I |=• CircP(K, C).
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Although classically constraints behave as axioms, under
the (pointwise) circumscription setting constraints represent a
further level of expressiveness. This key aspect is underlined
in the example below.
Example 4. Assume that we want to describe the following
scenario. Administrators can grant to users access to classi-
fied files. If a classified file is read, the permission to do so
should have been granted. Consider the knowledge base K
Classified Document(f1) User(John) read(John, f1)

∃access granted by.Admin v Has Read Permission

Consider the constraint set C with the unique constraint

(Classified Document, ∀(read)−.Has Read Permission)

circumscribed with M = {Has Read permission} and
keeping all the other predicates fixed. The constraint im-
poses that whenever a classified document is read, the user
reading it has permission to do so, and this permission is
granted by an Admin, as the concept Has Read permission
is minimized. Thus, in any minimal model of (K, C) we
have that John is an instance of Has Read Permition u
∃access granted by.Admin. Counterintuitively, if we re-
place the constraint with the axiom

Classified Document v ∀(read)−.Has Read Permission

we can derive that John has permission to read f1 without
the approval of an administrator.

We can introduce a constraint to reduce general concept
satisfiability to satisfiability of a concept name.
Proposition 2. Assume a circumscription pattern P =
(M,V, F ), a TBox T and a concept C0 in ALCIO of ar-
bitrary depth. The following are equivalent:

(i) ∃I ∈ PMM (T ,P) such that CI0 6= ∅,

(ii) ∃I ′ ∈ PMM (T , C,P ′) such that C ′0
I′ 6= ∅,

with C = {(C ′0, C0)}, C ′0 concept name not occurring in T
and P ′ = (M,V ∪ {C ′0}, F ).

To adapt our mosaic technique to constraints, we first re-
duce their depth. The depth of a constraint C, denoted with
d(C), is the maximum of the depths of the concepts occurring
in C. Observe that the constraint set C of Proposition 2 has
the same depth as C0. A constraint set C of depth n can be
transformed in a constraint set C of depth n− 1 applying the
following steps:
(CN1) For each (C,D) ∈ C, introduce a fresh symbolDi for

each sub-concept Bi with d(Bi) = 1, with i ≤ k ∈ N,
(CN2) Build the constraint set C′, (a) replacing each occur-

rence of Bi in D with Di, (b) adding the constraint
(Di, Bi), if Bi in D, or (Bi, Di), if Bi in C, for each
i ≤ k.

Iteratively applying (CN1)-(CN2), a constraint set of arbitrary
depth can be reduced to depth 1.
Proposition 3. Assume CircP(T , C) with P = (M,V, F )
and d(C) > 1, and a concept C0. Let C′ be the constraint
set obtained from C applying (CN1)-(CN2) until d(C′) = 1,
and let H be the set of fresh concept names introduced. Let
P ′ = (M,V ∪H,F ). The following are equivalent:

> v ∃h.> u ∃v.> u ∃r.{a} (1)

> v
⊔
t∈T

(At u ⊔

t′∈T,t′ 6=t

¬At′) (2)

> v ⊔

t∈T
(At →

⊔
(t,t′)∈H

∀h.At′) (3)

> v ⊔

t∈T
(At →

⊔
(t,t′)∈V

∀v.At′) (4)

> v A tB (5)
A v ∃P.B t ∃P.∃P.B (6)

B v ∃P−.A t ∃P−.∃P−.A (7)

∀r−.(A uB) v G (8)

Figure 3: The TBox TP : ∃P abbreviates ∃h∃v∃h−∃v− and ∃P−
abbreviates ∃v∃h∃v−∃h−.

(i) ∃I ∈ PMM (T , C,P) such that CI0 6= ∅,

(ii) ∃I ′ ∈ PMM (T , C′,P ′) such that CI
′

0 6= ∅,
Star types can be required to satisfy a given set of con-

straints, provided that they have depth at most 1. Given a
constraint set C, cl(C) denotes the closure of C and is de-
fined analogously to the closure of a TBox. Let Types(T , C)
denotes the set of T ⊆ cl(T ) ∪ cl(C) satisfying (i)-(iv) of
Definition 5 such that ⊥ 6∈ T .

Definition 10. Given a TBox T in ALCIOd≤1 and a set of
constraints C with d(C) ≤ 1, a star type (T, ρ) is suitable for
(T , C) if T ∈ Types(T , C), (T, ρ) is suitable for T , and for
each (C,D) ∈ C, if C ∈ T then D ∈ T .

Given a TBox T , a set of constraints C and a circumscrip-
tion pattern P , we denote with Tmin

k (T , C,P) the set of all
k-bounded minimal (w.r.t. P) star types (T, ρ), suitable for
(T , C). Given a constraint set C, let ‖C‖ = |cl(C)|.
Theorem 4. Assume a circumscription pattern P , a TBox T
and set of constraints C in ALCIOd≤1. Let m = 5‖T ‖ +
‖C‖. Given a concept name C0, the following are equivalent:

(i) there exists I ∈ PMM (T , C,P) such that CI0 6= ∅,
(ii) there exists N : Tmin

m (T , C,P) → N∗, satisfying condi-
tions (1)-(4) in Theorem 1.

Corollary 2. Under pointwise circumscription, if all roles
are either minimized or fixed, general concept satisfiability is

• NEXPTIME-complete forALCIOd≤1 TBoxes and KBs,

• EXPTIME-complete for ALCId≤1 TBoxes.

5 Undecidability Result
Can we drop our restriction to TBoxes of depth one? Under
the classical semantics, and also under global circumscription
we can normalize TBoxes of arbitrary depth into TBoxes of
depth one. However, under pointwise circumscription, the
usual normalization does not preserve the semantics.
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Example 5. Consider the TBox T = {A v ∃r.∃r.B}
with the circumscription pattern P = (M,V, F ) with M =
{A,B} and F = {r}, and assume we want to check the sat-
isfiability of B w.r.t. CircP(T ). Applying a naive form of
normalization, renaming complex expressions with fresh con-
cept names, we obtain the TBox TN = {A v ∃r.C0, C0 ≡
∃r.B}. Consider the circumscription pattern PN = (M,V ∪
{C0}, F ). The interpretation IN such that ∆IN = {e1, e2},
CI0 = {e1}, BI = {e2} and rI = {(e1, e2)} is a pointwise
minimal model of CircPN(TN ), i.e. IN ∈ PMM (TN ,PN ),
such that BIN 6= ∅. However, the interpretation I obtained
restricting IN to the signature of T is not a pointwise mini-
mal model of CircP(T ). One can further observe that there
exists no I ∈ PMM (T ,P) such that BI 6= ∅. Putting C0

into M or F does not preserve the semantics either.
Looking for more sophisticated forms of normalization is

futile. With a reduction from the domino problem, we prove
that under the pointwise semantics reasoning w.r.t. circum-
scribedALCIO TBoxes of unbounded depth is undecidable.
An instance of the domino problem is a triple P = (T,H, V ),
where T is a set of tiles,H,V ⊆ T ×T are the horizontal and
vertical matchings between tiles. A solution for P is a map
τ : N× N→ T such that, for each i, j ∈ N:

• (τ(i, j), τ(i+ 1, j)) ∈ H , and
• (τ(i, j), τ(i, j + 1)) ∈ V .

Consider the TBox TP in Figure 3, with the circumscription
pattern P such that M = NC(T ) ∪NR(T ).
Lemma 2. P has a solution if and only if there exists I ∈
PMM (TP ,P) such that GI 6= ∅.

We use the spy-point technique (1). Axioms (5)-(8) enforce
the grid. In particular: axiom (5) ensures that each node is
labelled with A or B; axiom (8) implies that (in a minimal
model where G is satisfied) A and B are satisfied at every
point; axioms (6) and (7), together with the minimization of
h and v, enforce that there exists a unique hvh−v− path and
a unique vhv−h− path to each element.
Theorem 5. Reasoning w.r.t general TBoxes in pointwise cir-
cumscribed ALCIO is undecidable.

As mentioned, the reduction uses the spy-point technique,
which requires nominals. Thus, it does not easily carry over
ALCI . The problem of establishing the decidability (or
undecidability) of reasoning w.r.t. pointwise circumscribed
ALCI general KBs is left open.

6 Discussion and Future Work
In this paper, we have proposed a new notion of circumscrip-
tion for DLs with the aim of obtaining an expressive DL-
based framework for non-monotonic reasoning that circum-
vents the undecidability problems of classic circumscription.
E.g., to show that standard reasoning problems under point-
wise circumscription in ALCIO are in (co)NexpTime it suf-
fices to impose two restrictions: limiting quantifier depth to 1,
and disallowing varying roles. Such restrictions do not suffice
for ensuring decidability in classic circumscription. More-
over, even for fragments where both semantics are decidable,
our framework has lower complexity.

The term pointwise circumscription was first coined by Lif-
schitz (1986) who proposed a similar framework for first-
order logic. The basic idea there is to replace the second-
order quantification of classic circumscription with a (pos-
sibly infinite) conjunction of minimality tests for all tuples
of domain elements that participate in relations; each test
verifies the impossibility of removing the tuple from a rela-
tion while preserving a model of the input theory. Moreover,
in Lifschitz’s setting, second-order quantification is used for
varying predicates. That form of circumscription is orthog-
onal to ours: a “point” in the former corresponds to a single
tuple in a relation, while in this paper a “point” means an
object in a structure, and the minimality check concerns the
possibility of “improving” the structure by changing the con-
cept names or the roles that the object participates in.

There are several directions for future work. A natural next
step is to study the computational impact of varying roles. We
believe that they do not cause an increase in complexity for
ALCIO, but the algorithm becomes more involved, requiring
a more complex notion of star types and an additional condi-
tion in point (ii) of Theorem 1. We want to study pointwise
circumscription with priorities (as a generalization of parallel
circumscription here), and to further study the constraints in-
troduced in Section 4.1, which seem to provide additional ex-
pressiveness at little computational cost. We are also investi-
gating syntactic restrictions on ontologies—such as acyclicity
notions—to ensure that pointwise and global circumscription
coincide. We stress that the two semantics coincide for all our
knowledge representation examples, and we had to use an ar-
tificial example to stress the differences. This gives us hope
that, in practice, it will rarely be relevant that in our semantics
minimization is weaker than in global circumscription. We
plan to study rewritings of pointwise circumscribed ontolo-
gies into ontologies under the standard semantics, thus en-
abling reuse of existing efficient reasoners. Finally, we want
to extend our investigation to further extensions of ALCI ,
e.g., with role hierarchies, and qualified number restrictions.
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