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Abstract
Compensation is a strategy that a semantics may
follow when it faces dilemmas between quality and
quantity of attackers. It allows several weak at-
tacks to compensate one strong attack. It is based
on compensation degree, which is a tuple that in-
dicates (i) to what extent an attack is weak and
(ii) the number of weak attacks needed to com-
pensate a strong one. Existing principles on com-
pensation do not specify the parameters, thus it is
unclear whether semantics satisfying them com-
pensate at only one degree or several degrees, and
which ones. This paper proposes a parameterised
family of gradual semantics, which unifies multiple
semantics that share some principles but differ in
their strategy regarding solving dilemmas. Indeed,
we show that the two semantics taking the extreme
values of the parameter favour respectively quan-
tity and quality, while all the remaining ones com-
pensate at some degree. We define three classes of
compensation degrees and show that the novel fam-
ily is able to compensate at all of them while none
of the existing gradual semantics does.

1 Introduction
An argumentation system is made of an argumentation graph
and a semantics. The former is a graph whose nodes are
arguments, and the edges represent attacks between argu-
ments. Each argument may have a basic weigh, which rep-
resents its intrinsic strength, for example the degree of trust-
worthiness of the argument’s source [da Costa Pereira et al.,
2011]. A semantics is a formal method that evaluates the
strength of every argument in the graph. This evaluation is
crucial since it determines the outcomes of the system. Con-
sequently, a plethora of semantics have been proposed in the
literature. The very first ones are the extension semantics in-
troduced in [Dung, 1995]. They calculate sets of jointly ac-
ceptable arguments, called extensions, which they use to clas-
sify arguments as sceptically accepted, credulously accepted
and rejected. In [Cayrol and Lagasquie-Schiex, 2005] an-
other type of semantics, called gradual, has been introduced
with the purpose of refining the above cited semantics. Ex-
amples of such semantics are Trust-based [da Costa Pereira

et al., 2011], h−Categorizer [Besnard and Hunter, 2001;
Pu et al., 2014], social semantics [Leite and Martins, 2011].

Due to the large number of semantics in the literature, for-
mal properties, or principles, have been proposed to analyse
the underpinnings of each semantics and to compare pairs of
semantics in [Amgoud et al., 2017]. Three of those prop-
erties, namely Cardinality Precedence (CP), Quality Prece-
dence (QP) and Compensation, describe three incompatible
strategies that a semantics may follow whenever it faces a
dilemma when comparing an argument that is attacked by a
few strong attackers with another argument that is attacked
by numerous weaker attackers.

Consider the argumentation graph G1 in Table 1 on a mul-
tiple criteria decision problem where A,B stand for buying
the houses h1 and h2 respectively, and argument Z for the
house h2 being very expensive. Furthermore, let Y1, X1, X2

stand for: the house h1 is far from the school s, there is a
metro station just in front of h1, there is another school in the
neighbourhood of h1. Assume that the remaining arguments
Y2, Y3 refer to other criteria in the same spirit as Y1 and they
are attacked by X3, . . . , X6. The arguments Y1, Y2 and Y3

are attacked while Z is not. Hence, a reasonable semantics
would declare Z as stronger than any Yi, i = 1, 3. It follows
that A has more attackers than B but its attackers are weaker
than the sole attacker of B. The question is which of the
two arguments A and B is stronger. A semantics which fol-
lows (CP) (resp. (QP)) would declare A weaker than B (resp.
A stronger than B). A semantics satisfying Compensation
might rather declare the two arguments equally strong.

Compensation is clearly based on a degree, which is a tu-
ple that indicates: i) to what extent an attacker is weak, ii)
the number of weak attackers needed to compensate a strong
one. However, its corresponding principles in [Amgoud et al.,
2017; Amgoud et al., 2022] do not refer to any compensation
degree. They state that in case of dilemma, a semantics may
compensate without specifying when this may happen, which
makes them the less informative properties in the literature. It
has been shown in [Amgoud et al., 2022] that there are two
gradual semantics in the literature that satisfy the property:
Trust-based [da Costa Pereira et al., 2011] and weighted h-
categorizer [Amgoud et al., 2017]. However, no insight is
given on their degree(s) of compensation.

In [Amgoud et al., 2016], the authors focused on a specific
class of degrees of compensation, and proposed a parame-
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G3

X1 X2 X3 X4 X5 X6

Y1 Y2

A B

ZY3

Table 1: Examples of Argumentation Graphs

terised family of gradual semantics that extend h-Categorizer
[Pu et al., 2014]. The aim is that every value of the param-
eter defines a semantics that compensates at a degree from
the class. However, it turns out that the semantics satisfy the
principle only when the number of attackers of A (in G1) is
fixed to be greater than the number of attackers of each Yi.
Hence, compensation is possible in this graph while it is not
possible in G2. This seems ad-hoc since there is no intuitive
reason for such a restriction. Furthermore, it is not clear what
semantics do in such graphs.

This paper investigates gradual semantics that satisfy com-
pensation at various degrees. Its contributions are five-fold:

1. It proposes a large parameterised family of gradual se-
mantics. The family is based on a parameter α, which
takes values from the interval (0,+∞), each of which
leads to a different semantics. The smaller its value,
the bigger the influence of the number of attacks. Con-
versely, the greater its value, the bigger the influence of
the quality of attackers. Thus, α determines the strategy
that a semantics follows to solve dilemmas.

2. It shows that the family is the first which unifies mul-
tiple semantics that share some principles but differ in
their behaviour regarding solving dilemmas. Indeed, it
proves that when α approaches 0, the corresponding se-
mantics satisfies (CP) while when it approaches +∞,
the semantics satisfies (QP). All the other values of α
guarantee (Compensation) with different degrees.

3. It proves that the new family encompasses the semantics
from [Amgoud et al., 2016] which compensate.

4. It discusses three classes of compensation situations,
i.e., three parameterised compensation degrees, and
shows that the new semantics satisfies all of the variants
of Compensation at some degree.

5. It shows that neither of the existing semantics satisfies
all the variants of compensation, meaning that the new
family has the greatest compensatory power.

The paper is organised as follows: Section 2 recalls the
background, Section 3 defines the novel family of semantics,
Section 4 introduces three classes of compensation degrees,
Section 5 analyses existing gradual semantics, and the last
section is devoted to some related work and concluding re-
marks. All proofs are provided in supplementary material.

2 Background
In the paper, we are interested in weighted argumentation
graphs. Their nodes are arguments, each of which has a basic
weight, and edges represent attacks (i.e., conflicts) between
arguments. For the sake of simplicity, weights of arguments
are elements of the unit interval [0, 1]. The greater the value,
the stronger the argument.
Definition 1 (Weighted Graph). A weighted argumentation
graph is a tuple G = ⟨A, w,R⟩, where A is a non-empty
finite set of arguments, w : A → [0, 1], and R ⊆ A×A. Let
AG denote the set of all weighted graphs.

For a, b ∈ A, w(a) is the basic weight of a, (a, b) ∈ R
means a attacks b.
Notations: Let G = ⟨A, w,R⟩ ∈ AG and a ∈ A. We denote
by w ≡ 1 the case where all arguments have a weight equal
to 1 and we call such a graph flat. AttG(a) denotes the set
{b ∈ A | (b, a) ∈ R} of direct attackers of a in G. Let
G′ = ⟨A′, w′,R′⟩ ∈ AG such that A ∩ A′ = ∅. G ⊕ G′ =
⟨A∪A′, w′′,R∪R′⟩ ∈ AG such that ∀x ∈ A (resp. x ∈ A′),
w′′(x) = w(x) (resp. w′′(x) = w′(x)).

A gradual semantics is a function that assigns a value from
a given ordered scale to each argument. Different scales can
be used, but as in most papers on gradual semantics, we use
the unit interval of reals [0, 1] with the interpretation: the
greater the value, the stronger the argument.
Definition 2 (Gradual Semantics). A gradual semantics is a
function S assigning to any G = ⟨A, w,R⟩ ∈ AG a weight-
ing DegSG on A, i.e., DegSG : A → [0, 1]. For any a ∈ A,
DegSG(a) is the strength of a in G under semantics S.

Let us now discuss the possible strategies that a semantics
may follow when it faces a conflict between the strength and
the quantity of attackers. Three strategies have been identified
in [Amgoud et al., 2017; Amgoud et al., 2022], they depend
on whether quantity or quality is more important. The first,
called Cardinality Precedence, states that a great number of
attackers has more effect on an argument than just a few. In
the graph G1, the argument A would be weaker than B.
Principle 1 (Cardinality Precedence). A semantics S satisfies
cardinality precedence (CP) iff, for any G = ⟨A, w,R⟩ ∈ AG,
for all a, b ∈ A, if

• w(a) = w(b), DegSG(a) > 0,

• |{x ∈ AttG(a) | DegSG(x) > 0}| < |{y ∈
AttG(b) | DegSG(y) > 0}|,
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A B Y1 Y2 Z X1 X2 X3 X4 X5 X6

α = 2 0.659 0.5 0.366 0.366 1 1 1 1 1 1 1
α = 0.5 0.50 0.50 0.250 0.250 1 1 1 1 1 1 1

Table 2: The values of arguments in G2 under semantics Sα, where α ∈ {0.5, 2}.

A B Y1 Y2 Y3 Z X1 X2 X3 X4 X5 X6

α = 2 0.527 0.5 0.518 0.518 0.518 1 0.659 0.659 0.659 0.659 0.659 0.659
α = 0.5 0.348 0.5 0.389 0.389 0.389 1 0.616 0.616 0.616 0.616 0.616 0.616

Table 3: The values of arguments in G3 under semantics Sα, where α ∈ {0.5, 2}.

then DegSG(a) > DegSG(b).

Quality Precedence gives more importance to the strength
of attackers. In the graph G1, the argument A would be
stronger than B.

Principle 2 (Quality Precedence). A semantics S satisfies
quality precedence (QP) iff, for any G = ⟨A, w,R⟩ ∈ AG,
for all a, b ∈ A, if

• w(a) = w(b), DegSG(a) > 0,

• ∃y ∈ AttG(b) such that DegSG(y) > 0 and ∀x ∈
AttG(a), DegSG(y) > DegSG(x),

then DegSG(a) > DegSG(b).

The third strategy is based on compensation. Its basic idea
is that several weak attacks have the same impact as few
strong attacks on an argument. For instance, in the graph G1,
the three weak attackers of A may compensate the strong at-
tacker of B, and thus A is as strong as B. Compensation is
very specific compared to other principles. It is clearly based
on a degree which is a tuple indicating i) to what extent an at-
tack is weak, and ii) the number of weak attackers needed to
compensate a strong one. An exact definition of compensa-
tion would fix the degree, however this is not an obvious task
since there are a lot of possibilities. Leaving the degree un-
fixed, as in the definition below from [Amgoud et al., 2022],
leads to a principle with a high degree of granularity, but it
does not state when a semantics compensates.

Principle 3 (Compensation). A semantics S satisfies com-
pensation iff it violates both CP and QP.

Remark: It is worth noticing that (CP), (QP) and Compen-
sation compare two groups of arguments (attackers). In [Am-
goud and Ben-Naim, 2013], the so-called group comparison
(GC) has been proposed for ranking pairs of arguments on
the basis of their attackers. It states that an argument A is
ranked at least as high as B if the attackers of B are at least
as numerous and well-ranked as those of A. This relation is
not applicable in the context of compensation. Consider for
instance the graph G1. (GC) declares the sets {Y1, Y2, Y3}
and {Z} as incomparable. Similarly, both in G2 and G3 the
groups of attackers would be incomparable with respect to
(GC). In fact, (GC) declares two sets as equally strong only
when they have the same cardinality and their arguments are
equally strong. Hence, it is orthogonal to compensation.

3 Novel Family of Gradual Semantics
This section introduces a novel family of gradual semantics
which compensate. The family evaluates the strengths of ar-
guments in weighted argumentation graphs. It is based on a
parameter α which takes values from (0,+∞), where each
value defines a semantics. We define the strength of an ar-
gument in an iterative way, starting from its basic weight in
the considered weighted graph, and updating its value in each
step, using the values of its attackers from the previous step.
Definition 3 (Parameterised Semantics Sα). Let G =
⟨A, w,R⟩ ∈ AG, and let us assume an ordering on A, i.e., let
A = {a1, . . . , an}. Let us define the sequence of n−tuples
s0(α,G), s1(α,G), s2(α,G), . . . in the following way:

• s0(α,G) = (w(a1), w(a2), . . . , w(an))

• si+1(α,G) = Fα(si(α,G)), where the update opera-
tor

Fα : [0, 1]n → [0, 1]n, Fα = (Fα
1 , . . . , F

α
n )

is defined by:

Fα
k (x1, . . . , xn) =

w(ak)

1 +
(∑

j:aj∈Att(ak)
xα
j

)min{1,1/α}

(1)
• s∗(α,G) = limn→+∞ sn(α,G).

Then DegSα

G is defined by

(DegSα

G (a1), . . . , Deg
Sα

G (an)) = s∗(α,G).

It is trivial to check that the values of DegSα

G do not depend
on the ordering of the set A. The exponent min{1, 1/α} in
the function that defines Fα

k is our technical solution of the
research problem: define a family of semantics that can com-
pensate at every degree (see Section 4), while the extreme
values of α favor quantity and quality (Theorem 5) and the
semantics satisfy desirable principles (Theorem 6).

The following result shows that Sα is always well defined.
Theorem 1. For every α ∈ (0,+∞) and every G ∈ AG, the
sequence {sn(α,G)}+∞

n=0 converges.
Example 1. The tables 2 and 3 summarise the strengths
(DegSα

G (.)) of arguments in the graphs G2 and G3 respec-
tively, for α = 2 and for α = 0.5. Note that the semantics
S0.5 considers the two arguments A and B as equally strong.
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In what follows, we show that Sα can be equivalently de-
fined in a more intuitive way, by calculating the strength of
an argument based on its basic weight and strengths of its at-
tackers in the way defined by the set of equations (2) (one
equation per argument). Our choice to define Sα as above is
because Definition 3 directly provides an algorithm for calcu-
lation the strength with arbitrary precision.
Theorem 2. For every G = ⟨A, w,R⟩ ∈ AG and every a ∈
A, the following holds:

DegSα

G (a) =
w(a)

1 +
(∑

b∈Att(a)(Deg
Sα

G (b))α
)min{1,1/α} (2)

We strengthen Theorem 2 by showing that DegSα

G is the
only function satisfying the equation (2). This characteri-
sation result means that (2) is an alternative definition of the
semantics, which is useful for checking some of its properties
in a convenient way.
Theorem 3. Let α ∈ (0,+∞), G = ⟨A, w,R⟩ ∈ AG and
D : A → [0, 1]. If D(a) = w(a)

1+(
∑

b∈Att(a)(D(b))α)
min{1,1/α} ,

for all a ∈ A, then D ≡ DegSα

G .

We consider two semantics as compatible if they return the
same ranking of arguments on each graph.
Definition 4 (Compatibility). Let S and S′ be two gradual
semantics. We say that S and S′ are compatible if for every
graph G = ⟨A, w,R⟩, for all a, b ∈ A, the following holds:

DegSG(a) ≥ DegSG(b) iff DegS
′

G(a) ≥ DegS
′

G(b).
We show that each two distinct semantics from the new

family are incompatible, which is expected since they are de-
signed to satisfy the compensation at different degrees. This
result shows that each (even a small) change in parameter α
impacts the way the semantics ranks the arguments.
Theorem 4. Let α, β ∈ (0,+∞). If α ̸= β, then the seman-
tics Sα and Sβ are not compatible.

In what follows, we characterize the two semantics
that take the extreme values of α. Let us first consider
the weighted max-based semantics from [Amgoud et al.,
2017]. This semantics is defined (if we adopt the terminol-
ogy from this paper) in the same way as Sα, with the dif-
ference that the update function Fα from Definition 3 is re-
placed with the function Fmax : [0, 1]n → [0, 1]n, Fmax =
(Fmax

1 , . . . , Fmax
n ), defined by

Fmax
k (x1, . . . , xn) =

w(ak)

1 + maxj:aj∈Att(ak) xj
. (3)

It was shown in [Amgoud et al., 2017] that the weighted
max-based semantics satisfies (QP).

Next we introduce a simplification of a weighted card-
based semantics from [Amgoud et al., 2017]. We define that
semantics as in Definition 3, by replacing Fα with the func-
tion F c defined by

F c
k (x1, . . . , xn) =

w(ak)

1 + |{xj | aj ∈ AttFG(ak), xj ̸= 0}|

where AttFG(a) is the set of attackers of a that have strictly
positive basic weight. Observe that the fixed point of this
function is reached after one iteration1, and from the form of
F c it is clear that the resulting semantics satisfies (CP).

Now we formally show that in the limit cases, when α ap-
proaches 0 (resp. +∞) we obtain semantics that satisfy (CP)
(respectively (QP)).
Theorem 5. The following two results hold.

• limα→+∞ Fα ≡ Fmax

• limα→0+ Fα ≡ F c.
We prove next that all of our semantics behave well with

respect to principles for gradual semantics proposed in [Am-
goud et al., 2017]. We recall those principles in Appendix A.
Note that there are other principles in the literature (eg., [Am-
goud et al., 2022; Baroni et al., 2019; Bonzon et al., 2021]),
but due to lack of space, we focus on the ones that highlight
the underpinnings of our semantics.
Theorem 6. For every α ∈ (0,+∞), Sα satisfies all the
principles from Appendix A, and compensation.

To sum up, this section introduced a novel parameterised
family which unifies multiple gradual semantics that share
some principles (in Appendix A) but differ in their behaviour
regarding solving dilemmas.

4 Classes of Compensation Degrees
We have seen previously that every semantics (not taking one
of the two extreme values of α) satisfies compensation. How-
ever, the latter does not inform precisely in which way a se-
mantics compensates as it leaves the compensation degree un-
fixed. The aim of this section is to shed light on various sit-
uations where semantics of the family compensate. There
are certainly a lot of possibilities but we focus here on three
classes of degrees. The first one has been introduced in [Am-
goud et al., 2016] for flat graphs. It defines a strong attack
as an attack from an unattacked argument, and a weak at-
tack as one that comes from an argument that is attacked by
i unattacked arguments. Before recalling the property, let us
introduce a useful notation.
Notation: For every G = ⟨A, w,R⟩ ∈ AG, Ci(G) = {a ∈
A such that |Att(a)| = i and ∀b ∈ Att(a), Att(b) = ∅}.

Let us now recall the way Compensation was defined by
Amgoud et al. (2016) for flat graphs of the form ⟨A, w ≡
1,R⟩. It says that an argument receiving one strong attack is
as good as an argument receiving n weak attacks.
Definition 5 ((n, i)-Compensation). Let n, i ∈ {1, 2, 3, . . .}.
A semantics S satisfies (n, i)-compensation iff for any G =
⟨A, w ≡ 1,R⟩ ∈ AG, for all a, b ∈ A, the following holds: if

• |Att(a)| = n, Att(a) ⊆ Ci(G), and
• |Att(b)| = 1, Att(b) ⊆ C0(G),

1Namely, after assigning the basic weights, the iterative applica-
tion of F c

k on an argument yields 0 in all iterations if and only if that
argument’s initial weight is 0. For other arguments (those having
strictly positive initial weight), we obtain the final result in the first
iteration, since it is depends only on the number of attackers having
positive acceptability degree, and that number does not change.
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then DegSG(a) = DegSG(b).
This definition is somehow limited since it ignores argu-

ments that are attacked by arguments which are themselves
attacked. In the graph G3, every attacker Yi of A is attacked
by two arguments which are themselves attacked. Hence, the
above definition does not apply on A and B even if there is
a conflict between the number and the strength of their at-
tackers. The notion of weakness is too specific that it ignores
reasonable cases of weak arguments. Furthermore, several
weak attackers can only compensate a single strong attacker.
We propose another class of degrees in which several weaker
attackers may compensate a smaller group of stronger attack-
ers, and the two parameters of compensation are fixed.
Definition 6 ((m, c, n, d)−Compensation). Let m,n ∈ N
such that m > n and 0 < c < d ≤ 1. A semantics S satisfies
(m, c, n, d)−compensation iff for any G = ⟨A, w,R⟩ ∈ AG,
for all a, b ∈ A such that w(a) = w(b), if

• |Att(a)| = m

• for every x ∈ Att(a), DegSG(x) = c

• |Att(b)| = n

• for every x ∈ Att(b), DegSG(x) = d

then DegSG(a) = DegSG(b).
This class is also limited since it assumes that all attackers

of an argument have the same strength. In what follows, we
relax this constraint. The idea is that two different sets of at-
tackers compensate as long as one set contains more attackers
(following Principle 1, we exclude worthless attackers, i.e.,
those attackers whose degree is 0), while the other contains
the arguments that are stronger than any of them.
Definition 7 ((m, c̄, n, d̄)−Compensation). Let m,n ∈ N
such that m > n and c̄ = (c1, . . . , cm) ∈ [0, 1]m

and d̄ = (d1, . . . , dn) ∈ [0, 1]n such that max ci <
max dj and min ci > 0. A semantics S satisfies
(m, c̄, n, d̄)−compensation, c̄ = (c1, . . . , cm) and d̄ =
(d1, . . . , dn), iff for any G = ⟨A, w,R⟩ ∈ AG, for all
a, b ∈ A such that w(a) = w(b), the following holds: if

• {z ∈ Att(a) | DegSG(z) > 0} = {x1, . . . , xm}
• (DegSG(x1), . . . , Deg

S
G(xm)) = (c1, . . . , cm)

• {z ∈ Att(b) | DegSG(z) > 0} = {y1, . . . , yn}
• (DegSG(y1), . . . , Deg

S
G(yn)) = (d1, . . . , dn)

then DegSG(a) = DegSG(b).
It is immediate to see that any of the three classes implies

Compensation.
Proposition 1. If a semantics S satisfies (n, i)− (resp.
(m, c, n, d)−, (m, c̄, n, d̄)−) Compensation, then S satisfies
Compensation.

We show next that semantics of our family satisfy
(n, i)−Compensation. We only exclude the case n = 1, since
one attacked argument does not compensate one non-attacked
argument.
Theorem 7. For every n, i ∈ N such that n > 1
there exists a unique α ∈ (0,+∞) such that Sα satisfies
(n, i)−Compensation.

Instances of the novel family of semantics can satisfy all
possible degrees of compensation as specified in Definition
6. This result shows that a smaller number of attackers of
some fixed degree can always compensate a greater number
of attackers of some fixed weaker (but still positive) degree.
Theorem 8. For every quadruple (m, c, n, d) which satis-
fies the conditions of Definition 6, there exists a unique α ∈
(0,+∞) such that Sα satisfies (m, c, n, d)−compensation.

Finally, we prove that of our family of semantics can cover
all possible degrees of compensation as defined in Definition
7. This result is more general and corresponds to the idea that
quantity can always be compensated by quality. Intuitively,
it says that any given set of attackers can always be compen-
sated by another set containing an attacker which is stronger
than each of them individually, regardless of exact strengths
of other attackers.
Theorem 9. For every quadruple (m, c̄, n, d̄) which satisfies
the conditions of Definition 7, there exists α ∈ (0,+∞) such
that Sα satisfies (m, c̄, n, d̄)−compensation.

To sum up, this section provided three classes of compen-
sation degrees which are guaranteed by semantics of the novel
family. This sheds light on various compensation situations.

5 Analyzing Existing Gradual Semantics
This section analyses existing semantics that satisfy Com-
pensation. There are three such semantics: the α−BBS
semantics from [Amgoud et al., 2016], Trust-based from
[da Costa Pereira et al., 2011] and weighted h−Categorizer
from [Amgoud et al., 2017]. Note that any gradual
semantics, like Iterative Schema from [Gabbay and Ro-
drigues, 2015], which violates Compensation does not
satisfy (n, i)-compensation, (m, c, n, d)-compensation nor
(m, c̄, n, d̄)−compensation due to Proposition 1.
α−BBS semantics. α-BBS is a family of gradual seman-
tics introduced in [Amgoud et al., 2016]. It evaluates argu-
ments of flat graphs, i.e., of the form G = ⟨A, w ≡ 1,R⟩.
It is based on a parameter α taking values from the interval
(0,+∞). Each value gives birth to one semantics, which
assigns a numerical value from [1,+∞) to every argument
a ∈ A as follows: If AttG(a) = ∅, then sα(a) = 1, else:

sα(a) = 1 +

 ∑
b∈AttG(a)

1

(sα(b))α

1/α

Note that this semantics uses the scale [1,+∞) instead of
[0, 1] (see Def. 2). Furthermore, the value sα(a) represents
the burden of the argument a (i.e., how heavily it is attacked),
and therefore follows the intuition that the smaller the value,
the stronger the argument.
Example 2. Consider the argumentation graph G1 from Ta-
ble 1 and let all the arguments have the weight 1. For α = 1,
we obtain sα(A) = sα(B) = 2.

α-BBS semantics have been proposed with the aim of en-
suring (n, i)−Compensation (Definition 5) at any degree. It
has been shown that the parameter α of those semantics is
related to the degree (n, i) as follows.
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Property 1 ([Amgoud et al., 2016]). For every n, i ∈ N such
that n > i there exists a unique α ∈ (0,+∞) such that
α−BBS satisfies (n, i)−Compensation.

Furthermore, it is easy to check that a stronger result holds,
namely that the α from the previous property is greater or
equal to 1.

Property 2. For every n, i ∈ N such that n > i there
exists a unique α ∈ [1,+∞) such that α−BBS satisfies
(n, i)−Compensation.

Together, the previous two results also imply that for
n > i, there exists no α ∈ (0, 1) such that α−BBS satisfies
(n, i)−Compensation.

However, the properties remain silent about cases where
n ≤ i (as in the graph G2). In what follows, we
show that there is no α−BBS semantics that satisfies
(n, i)−Compensation when n ≤ i.

Theorem 10. For every n, i ∈ N such that i ≥ n there
does not exist α ∈ (0,+∞) such that α−BBS satisfies
(n, i)−Compensation.

We can see that the values of α from (0, 1) are never used
by α−BBS to satisfy (n, i)−Compensation, and the values
from [1,+∞) can only compensate only for (n, i) such that
n > i.

Unlike α−BBS, our novel family has more compensation
capabilities as its semantics compensate at any degree (n, i)
even when n ≤ i, as stated by Theorem 7.

Example 3. Consider the graph G2 from Table 1. Accord-
ing to Theorem 10, α-BBS cannot compensate on G2. How-
ever, Theorem 7 shows that there exists a unique α that
yields compensation. Indeed, for α = 0.5, arguments A
and B in graph G2 have exactly the same degree, namely
DegSα

G2
(A) = DegSα

G2
(B) = 0.5.

The following result states that for every α ≥ 1, the se-
mantics Sα of our family corresponds to the inverse of the
corresponding α−BBS semantics. However, this result does
not hold for any α < 1.

Theorem 11. Let G = ⟨A, w,R⟩ ∈ AG such that w ≡ 1,
and let a ∈ A. For every α ∈ [1,+∞),

DegSα

G (a) =
1

sα(a)
.

This result shows that the novel family improves the family
proposed in [Amgoud et al., 2016] by keeping the semantics
that satisfy (n, i)−Compensation and replacing the remain-
ing ones with semantics that satisfy the principle (as shown
in Theorem 7). Consequently, instances of α-BBS where
α ∈ [1,+∞) inherit the properties of our family regarding
the two other classes of compensation degrees.

Trust-based semantics. Trust-based semantics (TB) has
been proposed in [da Costa Pereira et al., 2011] to eval-
uate the strength of arguments in weighted argumentation
graphs, where the basic weight assigned to an argument rep-
resents the degree of reliability of its source. For any graph

G = ⟨A, w,R⟩, any a ∈ A, the strength of a is the limit
reached by the scoring function f defined as follows:

DegTB
G (a) = lim

i→+∞
fi(a), where

fi(a) =
1

2
fi−1(a) +

1

2
min[w(a), 1−max

bRa
fi−1(b)] (4)

While it has been shown in [Amgoud et al., 2022] that (TB)
satisfies Compensation, the following result shows that it is
not able to compensate at any of the three classes of compen-
sation degrees.

Theorem 12. The following properties hold:

• There exist no n, i ∈ {1, 2, 3, . . .} such that Trust-based
semantics satisfies (n, i)−Compensation.

• There exist no m, c, n, d such that Trust-based semantics
satisfies (m, c, n, d)−Compensation.

• There exist no m, c, n, d such that Trust-based semantics
satisfies (m, c̄, n, d̄)−Compensation.

Weighted h-Categoriser Introduced in [Amgoud et al.,
2017], weighted h-Categoriser evaluates arguments in
weighted graphs as follows: For any graph G = ⟨A, w,R⟩,
any a ∈ A, DegHbsG (a) = w(a) if AttG(a) = ∅, else:

DegHbsG (a) =
w(a)

1 +
∑

b∈AttG(a)

DegHbsG (b)
.

It has been shown in [Amgoud et al., 2022] that Hbs
satisfies Compensation. It has also been shown in [Am-
goud et al., 2016] that in case of flat graphs, it satisfies
(n, i)−Compensation when n = i+ 1.

Property 3 ([Amgoud et al., 2016; Amgoud et al., 2022]).
• Hbs satisfies Compensation.

• Hbs satisfies (n, i)−Compensation if and only if n =
i+ 1.

The following result shows that under some conditions,
Hbs can compensate at the two other classes of degrees.

Theorem 13. The following properties hold:

• Hbs satisfies (m, c, n, d)−compensation if and only if
m · c = n · d

• Hbs satisfies (m, c̄, n, d̄)−compensation if and only if∑m
i=1 ci =

∑n
j=1 dj

To sum up, this section showed that the novel family of-
fers semantics with greater compensation capabilities. They
allow compensation at more degrees than the existing grad-
ual semantics. Furthermore, the family encompasses some
semantics of α−BBS as well as Hbs.

6 Related Work and Conclusion
This paper investigated gradual semantics, which have been
initiated by Cayrol and Lagasquie-Schiex (2005). Several se-
mantics and approaches have been proposed since then (eg.,
[Besnard and Hunter, 2001; da Costa Pereira et al., 2011;
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Leite and Martins, 2011; Rago et al., 2016; Potyka, 2018;
Amgoud et al., 2022]) and several efforts have also been
made to study principles underlying gradual semantics (eg.,
[Amgoud and Ben-Naim, 2013; Bonzon et al., 2016; Baroni
et al., 2019; Yun et al., 2020; Amgoud et al., 2022]. This
paper focused on one of them, namely compensation. The
latter is one of the possible strategies to follow when facing a
dilemma between the quantity and the quality of attackers.

In this paper we pointed out some limits of existing princi-
ples that formalise the notion of compensation, and proposed
ways for getting rid of them. The idea is to have insight on
the ways semantics compensate. For that purpose, we defined
three classes of compensation degrees. We also proposed a
large family of gradual semantics which encompasses seman-
tics that are able to compensate at any of those degrees. We
have shown that there is no other gradual semantics in the
literature that is able to do the same job.

Let us draw the reader’s attention to the fact that the notion
of compensation is different from of accrual [Prakken, 2005;
Lucero et al., 2009]. Compensation is related to the fact that
the effect of few strong attackers can be similar to that of more
weaker attackers. Accrual focuses on claims, and shows how
different reasons supporting the same claim may be aggre-
gated into a single argument.

Viana and Alcântara (2021) defined two new principles:
Quality Compensation and Cardinality Compensation, which
are weakened versions of Quality Precedence and Cardinality
Precedence, respectively. They allow, for example, to use the
quality of attacks to decide which argument is stronger in case
the overall sum of attacks on two arguments is equal. We do
not provide a more fine-grained discussion regarding these
principles because our principles are neither inspired by nor
related to them.

As a future work, we plan to investigate other reasonable
degrees of compensation, and apply our formal approach in
multiple criteria decision making.

Appendix A: Principles for Semantics
In what follows, we recall some properties from [Amgoud et
al., 2017]. Let S be a semantics.

Anonymity: S satisfies anonymity iff ∀G = ⟨A, w,R⟩, G′ =
⟨A′, w′,R′⟩ ∈ AG, for any isomorphism f from G to G′, the
following holds: ∀ a ∈ A, DegSG(a) = DegSG′(f(a)).

Independence: S satisfies independence iff ∀G =
⟨A, w,R⟩,G′ = ⟨A′, w′,R′⟩ ∈ AG s.t A ∩ A′ = ∅, the
following holds: ∀ a ∈ A, DegSG(a) = DegSG⊕G′(a).

Directionality: S satisfies directionality iff ∀G =
⟨A, w,R⟩ ∈ AG, ∀a, b ∈ A, ∀G′ = ⟨A′, w′,R′⟩ ∈ AG, s.t.

• A′ = A,
• w′ = w,
• R′ = R∪ {(a, b)},

it holds that: ∀x ∈ A, if there is no path from b to x, then
DegSG(x) = DegSG′(x).

Equivalence: S satisfies equivalence iff ∀G = ⟨A, w,R⟩ ∈
AG, ∀a, b ∈ A, if

• w(a) = w(b), and

• there exists a bijective function f from Att(a) to Att(b)
s.t. ∀x ∈ Att(a), DegSG(x) = DegSG(f(x)),

then DegSG(a) = DegSG(b).

Maximality: S satisfies maximality iff ∀G = ⟨A, w,R⟩ ∈
AG, ∀a ∈ A, if Att(a) = ∅, then DegSG(a) = w(a).

Neutrality: S satisfies neutrality iff ∀G = ⟨A, w,R⟩ ∈ AG,
∀a, b ∈ A, if

• w(a) = w(b), and

• Att(b) = Att(a) ∪ {x} s.t. x ∈ A \ Att(a) and
DegSG(x) = 0,

then DegSG(a) = DegSG(b).

Weakening: S satisfies weakening iff ∀G = ⟨A, w,R⟩ ∈ AG,
∀a ∈ A, if

• w(a) > 0, and

• ∃b ∈ Att(a) s.t. w(b) > 0,

then DegSG(a) < w(a).

Proportionality: S satisfies proportionality iff ∀G =
⟨A, w,R⟩ ∈ AG, ∀a, b ∈ A, if

• Att(a) = Att(b),

• w(a) > w(b),

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).

Resilience: S satisfies resilience iff ∀G = ⟨A, w,R⟩ ∈ AG,
∀a ∈ A, DegSG(a) = 0 iff w(a) = 0.

Reinforcement: S satisfies reinforcement iff ∀G =
⟨A, w,R⟩ ∈ AG, ∀a, b ∈ A, if

• w(a) = w(b),

• DegSG(a) > 0,

• Att(a) \ Att(b) = {x}, Att(b) \ Att(a) = {y},

• DegSG(y) > DegSG(x),

then DegSG(a) > DegSG(b).

Counting: S satisfies counting iff ∀G = ⟨A, w,R⟩ ∈ AG,
∀a, b ∈ A, if

• w(a) = w(b),

• Att(b) = Att(a)∪{x} with x /∈ Att(a), DegSG(x) > 0,
and DegSG(a) > 0,

then DegSG(a) > DegSG(b).
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belle, Sébastien Konieczny, and Nicolas Maudet. A
parametrized ranking-based semantics compatible with
persuasion principles. Argument and Computation,
12(1):49–85, 2021.

[Cayrol and Lagasquie-Schiex, 2005] Claudette Cayrol and
Marie-Christine Lagasquie-Schiex. Graduality in argu-
mentation. Journal of Artificial Intelligence Research
(JAIR), 23:245–297, 2005.

[da Costa Pereira et al., 2011] Célia da Costa Pereira, An-
drea Tettamanzi, and Serena Villata. Changing one’s mind:
Erase or rewind? In International Joint Conference on Ar-
tificial Intelligence IJCAI’11, pages 164–171, 2011.

[Dung, 1995] Phan Minh Dung. On the Acceptability of
Arguments and its Fundamental Role in Non-Monotonic
Reasoning, Logic Programming and n-Person Games. Ar-
tificial Intelligence, 77:321–357, 1995.

[Gabbay and Rodrigues, 2015] Dov M. Gabbay and Odi-
naldo Rodrigues. Equilibrium states in numerical argu-
mentation networks. Logica Universalis, 9(4):411–473,
2015.

[Leite and Martins, 2011] João Leite and João Martins. So-
cial abstract argumentation. In International Joint Con-
ference on Artificial Intelligence IJCAI’11, pages 2287–
2292, 2011.

[Lucero et al., 2009] Mauro Javier Gómez Lucero, Car-
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[Viana and Alcântara, 2021] Henrique Viana and João F. L.
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