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Abstract
One favors decision trees (DTs) of the smallest
size or depth to facilitate explainability and inter-
pretability. However, learning such an optimal DT
from data is well-known to be NP-hard. To over-
come this complexity barrier, Ordyniak and Szei-
der (AAAI 21) initiated the study of optimal DT
learning under the parameterized complexity per-
spective. They showed that solution size (i.e., num-
ber of nodes or depth of the DT) is insufficient
to obtain fixed-parameter tractability (FPT). There-
fore, they proposed an FPT algorithm that utilizes
two auxiliary parameters: the maximum difference
(as a structural property of the data set) and maxi-
mum domain size. They left it as an open question
of whether bounding the maximum domain size is
necessary.
The main result of this paper answers this question.
We present FPT algorithms for learning a smallest
or lowest-depth DT from data, with the only param-
eters solution size and maximum difference. Thus,
our algorithm is significantly more potent than the
one by Szeider and Ordyniak as it can handle prob-
lem inputs with features that range over unbounded
domains. We also close several gaps concerning the
quality of approximation one obtains by only con-
sidering DTs based on minimum support sets.

1 Introduction
Decision Trees (DTs) have proved to be extremely use-
ful tools for describing, classifying, and generalizing
data [Larose and Larose, 2014; Murthy, 1998; Quinlan,
1986]. Because of their simplicity, DTs are particularly
attractive for providing interpretable models of the under-
lying data, an aspect whose importance has been strongly
emphasized over recent years [Darwiche and Hirth, 2023;
Doshi-Velez and Kim, 2017; Goodman and Flaxman, 2017;
Lipton, 2018; Monroe, 2018]. In this context, one prefers
small trees (trees of small size or small depth), as they are
easier to interpret and require fewer tests to make a classi-
fication. Small trees are also preferred in view of the par-
simony principle (Occam’s Razor) since small trees are ex-
pected to generalize better to new data [Bessiere et al., 2009].

However, learning small trees is computationally costly: it
is NP-hard to decide whether a given data set can be repre-
sented by a DT of a certain size or depth [Hyafil and Rivest,
1976]. In view of this complexity barrier, several methods
based on branch & bound algorithms, constraint program-
ming, mixed-inter programming, or satisfiability solving have
been proposed for learning small DTs [Avellaneda, 2020;
Bessiere et al., 2009; Aglin et al., 2020a; Aglin et al., 2020b;
Bertsimas and Dunn, 2017; Demirovic et al., 2022; Hu et al.,
2020; Janota and Morgado, 2020; Narodytska et al., 2018;
Shati et al., 2021; Schidler and Szeider, 2021; Verhaeghe et
al., 2020; Verwer and Zhang, 2017; Verwer and Zhang, 2019;
Zhu et al., 2020]. This bulk of recent empirical work under-
lines the importance of computing optimal decision trees.

In this paper, we investigate the problem of finding small
decision trees (w.r.t. size or depth) under the framework
of Parameterized Complexity [Downey and Fellows, 2013;
Gottlob et al., 2002; Niedermeier, 2006]. This framework
allows us to achieve a more fine-grained and qualitative anal-
ysis, revealing properties of the input data in terms of prob-
lem parameters that provide run-time guarantees for decision
tree learning algorithms. The key notion of Parameterized
Complexity is fixed-parameter tractability (FPT) which gen-
eralizes the classical polynomial time tractability by allowing
the running time to be exponential in a function of the prob-
lem parameters while remaining polynomial in the input size
(we provide more detailed definitions in Section 2). Fixed-
parameter tractability captures the scalability of algorithms to
large inputs as long as the problem parameters remain small.
Several fundamental problems that arise in AI have been stud-
ied in terms of their fixed-parameter tractability, including
Planning [Bäckström et al., 2012], SAT and CSP [Bessière et
al., 2008; Gaspers et al., 2017], Computational Social Choice
[Bredereck et al., 2017], Machine Learning [Ganian et al.,
2018], and Argumentation [Dvorák et al., 2012].

For DT learning, we consider parameterizations of the fol-
lowing two fundamental NP-hard problems:

MINIMUM DECISION TREE SIZE (DTS): we are given a
set of examples, labelled positive or negative, each over a
set of features; each feature f ranges over a linearly ordered
range of possible values (by choosing an arbitary ordering
this also captures categorical data), and an integer s (for size).
The task is to find a DT of minimum size or report correctly
that no decision tree with at most s nodes exists. Here we
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parameters complexity

solution size maximum difference FPT †

solution size - W[2]-hard‡, in XP‡

- maximum difference para-NP-hard‡

- - para-NP-hard‡

Table 1: † this paper, Theorem 4; ‡ are results by Ordyniak and
Szeider [2021].

consider DTs where each node tests whether a certain feature
is below a certain threshold or not.

MINIMUM DECISION TREE DEPTH (DTD) is defined
similarly, where instead of the bound s on the total number
of nodes, a bound d (for depth) on the number of nodes on
any root-to-leaf path is provided.

For both problems, it is natural to include the solution size
(i.e., s for DTS and d for DTD, respectively) as a parame-
ter since our objective is to learn DTs where these values are
small. However, Ordyniak and Szeider’s [2021] complexity
analysis revealed that solution size is not sufficient to obtain
fixed-parameter tractability. They, therefore, proposed two
additional problem parameters: (i) the maximum domain size,
i.e., the largest number of different values a feature ranges
over, and (ii) the maximum difference, i.e., the largest number
of features two examples with a different classification can
disagree in. With these two additional parameters at hand, Or-
dyniak and Szeider could show that DTS and DTD are fixed-
parameter tractable. They showed that without including the
maximum difference in the parameterization, one loses fixed-
parameter tractability. However, they left it open whether the
maximum domain size is indeed needed as a parameter.

In this paper, we answer this open problem, obtaining
fixed-parameter tractability of DTS and DTD just with the
two parameters solution size and maximum difference. Our
main result can be stated as follows.

• DTS and DTD are fixed-parameter tractable parame-
terized by solution size and maximum difference (Theo-
rem 4).

This result completes Ordyniak and Szeider’s parameter-
ized complexity classification, as shown in Table 1.

Our result is surprising, as for similar problems, the
domain size must be included in the parameterization.
For instance, the Constraint Satisfaction Problem (CSP) is
fixed-parameter tractable by the combined parameter primal
treewidth and domain size [Gottlob et al., 2002; Samer and
Szeider, 2010], and by the combined parameter strong back-
door size and domain size [Gaspers et al., 2017]; in both cases
the problem becomes W[1]-hard (and hence fixed-parameter
intractable) when domain size is dropped from the parame-
terization.

Our result has a beneficial algorithmic impact. As we do
not need to parameterize by maximum domain size, we have a
significantly more powerful algorithm that allows us to com-
pute optimal DTs (in terms of smallest depth/size) even for
instances where features range over a large set of possible
values. What makes our result further appealing is that the
maximum difference, the only additional parameter we need

in addition to solution size, is quite small in real-world data
sets. Ordyniak and Szeider [2021] list values for various stan-
dard benchmark sets from the UCI Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml). In some cases, the max-
imum difference is two orders of magnitude smaller than the
number of examples or features.

A subset of the features that suffices to correctly classify a
classification instance is called a support set. Ordyniak and
Szeider [2021] observed that, in general, a small or low-depth
DT would not necessarily use a smallest support set. Indeed,
this property of small or low-depth DTs provides a challenge
to algorithmically finding such DTs, as we cannot first min-
imize the feature set in a preprocessing phase if we want to
find DTs of the smallest size or lowest depth. In the sec-
ond part of this paper, we quantify the impact on the size and
depth of DTs when minimizing first the feature set. It turns
out that regarding this question, it is significant whether the
considered data is over features with unbounded domain size
or if the domain size is bounded. For the unbounded domain
case we obtain the following result.

• The smallest size (depth) of a DT for a classification in-
stance (with unbounded domain) using only features of
a smallest support set can be arbitrarily larger than the
size (depth) of an optimal DT for that classification in-
stance (Theorem 17).

For the bounded domain case (all features are binary), we
obtain the following results.

• The smallest size (depth) of a DT for a binary classifi-
cation instance using only features of a smallest support
set is at most by an exponential factor larger than the
size (depth) of an optimal DT for that classification in-
stance (Theorem 15).

• There exist binary classification instances where this ex-
ponential factor is unavoidable (Theorem 16).

These separation results are relevant to practitioners who
develop algorithms for DT minimization. It is tempting to
first minimize the set of features to achieve a smaller instance
size, so that the input to a SAT or CP encoding is easier to
handle. However, our separation results establish that one has
to consider that the result will be significantly worse than the
optimum.

2 Preliminaries
We refer for a more in-depth treatment of Parameterized com-
plexity (PC) to other sources [Cygan et al., 2015]. PC consid-
ers problems in a two-dimensional setting, where a problem
instance is a pair (I, k), where I is the main part and k is
the parameter. A parameterized problem is fixed-parameter
tractable if there exists a computable function f such that in-
stances (I, k) can be solved in time f(k)∥I∥O(1).

2.1 Classification Problems
An example e is a function e : feat(e) → Z defined on a finite
set feat(e) of features, where each feature f comes with a
possibly infinite linearly ordered domain dom(f) ⊆ Z, which
we assume to be, w.l.o.g., a subset of the integers. For a set
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E of examples, we put feat(E) =
⋃

e∈E feat(e). We say that
two examples e1, e2 agree on a feature f if f ∈ feat(e1), f ∈
feat(e2) and e1(f) = e2(f). If f ∈ feat(e1), f ∈ feat(e2)
but e1(f) ̸= e2(f), we say that the examples disagree on f .

A classification instance (CI) (also called a partially de-
fined Boolean function [Ibaraki et al., 2011]) E = E+ ⊎ E−

is the disjoint union of two sets of examples, where for all
e1, e2 ∈ E we have feat(e1) = feat(e2). The examples in
E+ are said to be positive; the examples in E− are said to
be negative. A set X of examples is uniform if X ⊆ E+ or
X ⊆ E−; otherwise X is non-uniform. We say that a CI E is
binary if all features in feat(E) are binary, i.e., e(f) ∈ {0, 1}
for every f ∈ feat(e).

Given a CI E, a subset F ⊆ feat(E) is a support set of
E if any two examples e1 ∈ E+ and e2 ∈ E− disagree in
at least one feature of F . Finding a smallest support set, de-
noted by MSS(E), for a classification instance E is an NP-
hard task [Ibaraki et al., 2011, Theorem 12.2].

2.2 Decision Trees
A decision tree (DT) is a rooted binary tree T with vertex set
V (T ) and edge set A(T ) such that each leaf node is either a
positive or a negative leaf and the following holds for each
non-leaf t of T :

• t is labelled with a feature denoted by featT (t) or simply
feat(t) if T is clear from the context,

• t is labelled with an integer threshold denoted by λT (t)
or simply λ(t) if T is clear from the context,

• t has 2 children, i.e., a left child and a right child.

We write feat(T ) = { feat(t) | t ∈ V (T ) } for the set of all
features used by T . The size of T is its number of nodes, i.e.
|V (T )|.

Let E be a CI and let T be a DT with feat(T ) ⊆ feat(E).
We say that a node tA is a left (right) ancestor of t if t is con-
tained in the subtree of T rooted at the left (right) child of tA.
For each node t of T , we define ET (t) as the set of all exam-
ples e ∈ E such that for every left (right) ancestor tA of t in
T , it holds that e(feat(tA)) ≤ λ(tA) (e(feat(tA)) > λ(tA)).
T classifies an example e ∈ E if e is a positive (negative)
example and e ∈ ET (l) for a positive (negative) leaf l of T .
We say that T classifies E (or T is a DT for E) if T classifies
all examples in E. See Figure 1 for an illustration of a CI and
a DT that classifies E.

We will consider the following optimization problems.

E f1 f2 f3 f4

e1 ∈ E− 0 5 1 -2
e2 ∈ E− 1 -1 3 0
e3 ∈ E− 1 0 -1 1
e4 ∈ E− 3 1 0 -1
e5 ∈ E+ 4 -2 2 0
e6 ∈ E+ 2 1 1 1

f1 ≤ 1

f4 ≤ −1−

+−

Figure 1: A CI E = E+ ⊎ E− with six examples and four features
(left), a decision tree with 5 nodes that classifies E (right).

MINIMUM DECISION TREE SIZE (DTS)

Input: A CI E and an integer s.
Question: Find a DT of size at most s for E or re-

port correctly that there is no DT for E
of size at most s.

The problem MINIMUM DECISION TREE DEPTH (DTD)
is defined very similarly only that there one is given an integer
d (instead of s) and asks for a DT of depth at most d for E.

For two examples e and e′ in E, we denote by δ(e, e′)
the set of features where e and e′ disagree and we denote
by δmax(E) = maxe+∈E+∧e−∈E− |δ(e+, e−)| the maximum
difference between any non-uniform pair of examples.

Let T be a DT for E and t ∈ V (T ) be an inner node of T .
We denote by Tt the (sub-)DT of T rooted at t. We say that
t is redundant if either: (1) t is the root of T and either Tcℓ
or Tcr is a DT for E, where cℓ and cr are the left and right
children of t in T , or (2) t is the left (right) child of its parent
p and t has a child c such that the tree obtained from T after
removing Tc and t and making the other child of t the left
(right) child of p is a DT for E. Intuitively, t is redundant if it
is not required to distinguish any examples and can therefore
be removed from T . We say that T is non-redundant if it does
not contain any redundant node.

For the complexity analysis we set the input size ∥E∥ of a
CI E to |E| · (|feat(E)| + 1) · logDmax, where Dmax is the
maximum size of dom(f) over all features f of E. We now
give some simple auxiliary lemmas that are required by our
algorithms.

Observation 1 ([Ordyniak and Szeider, 2021, Obs. 1]). Let
T be a DT for a CI E, then feat(T ) is a support set of E.

Lemma 2 ([Ordyniak and Szeider, 2021, Cor. 9]). Let E be
a CI and let k be an integer. Then there is an algorithm
that in time O(δmax(E)k|E|) enumerates all (of the at most
δmax(E)k) minimal support sets of size at most k for E.

Lemma 3 ([Ordyniak and Szeider, 2021, Lem. 5]). Let A be
a set of features of size a. Then the number of DTs without
thresholds of size at most s that use only features in A is at
most a2s+1 and those can be enumerated in O(a2s+1) time.

3 FPT-algorithm
This section is devoted to a proof of our main result provided
in the following theorem.

Theorem 4. DTS and DTD are fixed-parameter tractable
parameterized by the solution size and δmax.

To simplify the presentation and taking into account that
the proof for DTD is almost identically to the proof for DTS,
we will start by showing the result for DTS.

The overall structure of our algorithm is very similar to Al-
gorithms 3 and 4 given in [Ordyniak and Szeider, 2021] and
is illustrated in Algorithms 1 and 2. Namely, Algorithm 1
contains the main routine minDT, which given a CI E and
an integer s outputs a minimum DT, i.e., a DT of minimum
size, for E among all DTs of size at most s. To achieve this,
the routine minDT first iterates over all minimal support sets
of size at most s using Lemma 2. It then calls the routine
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Algorithm 1 Main method for finding a DT of minimum size.
Input: CI E and integer s
Output: DT for E of minimum size (among all DTs of size at most

s) if such a DT exists, otherwise nil
1: function MINDT(E, s)
2: S ← ”set of all minimal support sets for E of size at most s

using Lemma 2”
3: B ← nil
4: for S ∈ S do
5: T ← MINDTS(E, s, S)
6: if (T ̸= nil) and (B = nil or |B| > |T |) then
7: B ← T
8: if B ̸= nil and |B| ≤ s then
9: return B

10: return nil

minDTS, given in Algorithm 2, for every such minimal sup-
port set S to find a minimum DT T for E of size at most s
such that S ⊆ feat(T ). Note that provided the correctness of
minDTS, the correctness of minDT follows from Observa-
tion 1, because every DT for E must contain some minimal
support set. Given E, s and a minimal support S, the routine
minDTS computes a minimum DT T for E of size at most
s such that S ⊆ feat(T ). The starting point (recursion start)
of minDTS is the following lemma that allows to compute a
minimum DT T for E of size at most s such that S = feat(T ).

Lemma 5 ([Ordyniak and Szeider, 2021, Theorem 4]). Let
E be a CI, S ⊆ feat(E) be a support set for E, and let
s be an integer. Then, there is an algorithm that runs in
time 2O(s2)∥E∥1+o(1) log ∥E∥ and computes a minimum DT
among all DTs T with feat(T ) = S and |T | ≤ s if such a DT
exists;otherwise nil is returned.

After applying the above lemma to find a minimum DT T
for E of size at most s such that S = feat(T ), the routine
minDTS tries to find a minimum DT for E of size at most
s that uses at least one feature outside of S. To achieve this
the algorithm first computes a so-called (S, s)-branching set
H , which informally is a “small” set of features such that ev-
ery DT T for E of size at most s with S ⊊ feat(T ) has to
use at least one feature in H (see Subsection 3.1 for a for-
mal definition of (S, s)-branching set). It then branches on
every feature h in H and calls itself recursively for E, s, and
S ∪ {h}. The main ingredient of our algorithm compared to
the algorithm given in [Ordyniak and Szeider, 2021], i.e., the
FPT-algorithm for DTS if one additionally parameterizes by
the maximum domain size of any feature, is the computation
of the (S, s)-branching set, which we describe next.

3.1 Computing Branching Sets
Here, we will show that we can compute a small branching
set, which is the main novel and crucial ingredient for our
FPT-algorithm. Before we formally define branching sets,
we need the following notions.

Let E be a CI. We denote by ■ a new feature, which we call
the unknown feature, i.e., ■ /∈ feat(E). A DT pattern is a DT
T without thresholds that is allowed to use the unknown fea-
ture, i.e., feat(T ) ⊆ feat(E)∪{■}. We say that an inner node
t of T is known if feat(t) ∈ feat(E) and unknown otherwise.

Algorithm 2 Method for finding a DT of minimum size using
at least the features in a given support set S.

Input: CI E, integer s, support set S for E with |S| ≤ s
Output: DT of minimum size among all DTs T for E of size at

most s such that S ⊆ feat(T ); if no such DT exists, nil
1: function MINDTS(E, s, S)
2: B ← “a minimum size DT for E of size at most s that uses

exactly the features in S using Lemma 5”
3: H ← “a (S, s)-branching set B(S, s) using Theorem 6”
4: for f ∈ H do
5: T ← MINDTS(E, s, S ∪ {f})
6: if T ̸= nil and |T | < |B| then
7: B ← T
8: if |B| ≤ s then
9: return B

10: return nil

A DT pattern T ′ is an extension of a DT pattern T if T = T ′

and featT ′(t) = featT (t) for every known node t of T . We
say that T ′ is complete if feat(T ′) ⊆ feat(E). A threshold
assignment for a DT pattern T is a function λ : KN(T ) → Z
that provides a threshold assignment for every node of T in
the set KN(T ) of all known nodes of T .

In the following, let T be a DT pattern for a CI E. Note
that we assume that if t is a node of T with feat(t) = ■, then
any example that ends up in t is sent to both its left and its
right child in T . In particular, we generalize ET (t) to DT
patterns T with a threshold assignment λ by setting ET (t)
to be the set of all examples e ∈ E such that for every left
(right) ancestor tA of t in T , it holds that either feat(tA) = ■
or e(feat(tA)) ≤ λ(tA) (e(feat(tA)) > λ(tA)).

We say that a node t of T is valid for a set E′ ⊆ E of
examples if there is threshold assignment λ : KN(T ) → Z
such that either:

• t is a negative (positive) leaf of T and E′ ⊆ E− (E′ ⊆
E+), or

• t is an unknown node of T and t has a child t′ that is
valid for E′, or

• t is a known node of T with feature f = feat(t) and the
two children cl and cr of t in T are valid for E′[f ≤
λ(t)] and E′[f > λ(t)], respectively.

We also say that T is valid for E′ if the root r of T is valid
for E′. Intuitively, T is valid for E′ if it can be completed to
a DT for E′ that does not use of any of the unknown nodes.

Let E be a CI and let T be an invalid DT pattern for E. We
say that a set B ⊆ feat(E)\feat(T ) is a branching set for T if
B∩ (feat(T ′)\ feat(T )) ̸= ∅ for every proper extension T ′ of
T that is valid for E. Let s be an integer and let S be a support
set for E with |S| ≤ s. We say that a set B ⊆ feat(E) \ S is
an (S, s)-branching set if B∩(feat(T )\S) ̸= ∅ for every non-
redundant DT T for E of size at most s with S ⊊ feat(T ).

The remainder of this subsection is devoted to a proof of
the following theorem, which constitutes the main novel tech-
nical contribution of this paper and we believe is interesting
in its own right.

Theorem 6. Let s be an integer, E be a CI and S be a support
set for E with |S| ≤ s. Then, an (S, s)-branching set of size
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at most (s + 3)2s+1δmax(E) and can be computed in time
O((s+ 1)2s+12s

2/2∥E∥1+o(1) log ∥E∥).
The main ideas behind the proof of Theorem 6 are as fol-

lows. Given s, E, and S as defined in Theorem 6 our aim is
to find a small set B of features, i.e., an (S, s)-branching set,
such that B ∩ (feat(T ) \ S) ̸= ∅ for every non-redundant DT
T for E of size at most s such that S ⊊ feat(T ). Let T be any
such non-redundant DT for E, then replacing every feature in
feat(T )\S with the new feature ■ and ignoring the threshold
function gives rise to an invalid DT pattern T ′ for E; T ′ is
invalid because T is non-redundant. The main ingredient be-
hind our algorithm is now a routine that given any invalid DT
pattern T ′ computes a small branching set for T ′. Because
an (S, s)-branching set can be obtained from the union of all
branching sets for every possible invalid DT patterns for E of
size at most s that uses only features in S ∪ {■}, this now
allows us to compute an (S, s)-branching set as follows. First
we use the following corollary of Lemma 3 to enumerate all
possible DT patterns T ′ for E of size at most s using only
features in S ∪ {■}.

Corollary 7. Let A be a set of features of size a with ■ ∈ A.
The number of DTs patterns of size at most s that use only
features in A is at most a2s+1 and those can be enumerated
in O(a2s+1) time.

We then use Lemma 9 to decide whether T ′ is valid for E.
Finally, if this not the case we use our routine to compute a
branching set for T ′. The (S, s)-branching set is then ob-
tained as the union of all branching sets computed in this
manner. Therefore, our main task now is to compute a
branching set for a given invalid DT pattern for E.

Let E be a CI and let T be an invalid DT pattern for E.
Our algorithm to compute a branching set for T proceeds in
two main steps. First we compute a set EXPt of expected
examples for every node t of T , which intuitively contains
all examples that: (1) will end up at t if no unknown node
is replaced with a real feature and (2) is the smallest set of
examples showing that T is invalid. Second, given EXPt

we compute an even smaller subset of examples, i.e., a so
called pool set P (r) for the root r of T , satisfying (1) and (2).
We then show that any valid extension of T has to replace
at least one unknown feature with a feature that distinguishes
between two examples in the pool set. This then allows us to
show that the set of all features

⋃
e,e′∈P (r) δ(e, e

′) is a branch-
ing set for T . We start by showing how we compute the set
of expected examples.

Computing the Set of Expected Examples
Let E be a CI and T be an invalid DT pattern for E. For
every t ∈ V (T ), we define the set of expected examples EXPt

together with the left and right thresholds, denoted by λL(t)
and λR(t), respectively, recursively as follows:

• if t is the root of T , then EXPt = E;

• if t is the left child of a known node p, then EXPt =
EXPp[f ≤ λL(p) + 1], where f = feat(p) and λL(p) is
the maximum value in dom(f) such that Tt is valid for
EXPt[f ≤ λL(p)];

• if t is the right child of a known node p, then EXPt =
EXPp[f > λR(p)− 1] where f = feat(p) and λR(p) is
the minimum value in dom(f) such that Tt is valid for
EXPt[f > λR(p)];

• if t is a child of an unknown node p, then EXPt =
EXPp.

Before proving in Theorem 10 that we can efficiently com-
pute EXPt, λL(t), and λR(t) for every (fixed) node t of T ,
we need to show a simple but crucial property.

Lemma 8. Let T be an invalid DT pattern for E. For every
node t of T it holds that Tt is not valid for EXPt.

Algorithm 3
Input: CI E, DT pattern T for E
Output: TRUE if T is valid for E, FALSE otherwise
1: function ISVALID(E, T )
2: r ← “root of T ”
3: if r is a leaf then
4: if r is negative (positive) and E ⊆ E− (E ⊆ E+) then
5: return TRUE
6: return FALSE
7: cℓ, cr ← “left child and right child of r”
8: if r is unknown then
9: if ISVALID(E, Tcℓ ) or ISVALID(E, Tcr ) then

10: return TRUE
11: return FALSE
12: f ← feat(r)
13: (λL, λR)← BINARYSEARCH(E, T , f , cℓ, cr)
14: if λL ≥ λR then
15: return TRUE
16: return FALSE

Algorithm 4 Algorithm to compute the pair (λL(r), λR(r))
for the root r of T
Input: CI E, DT pattern T , feature f of the root of T , left child cℓ

of the root of T , right child cr of the root of T
Output: the pair (λL(r), λR(r))
1: function BINARYSEARCH(E, T , f , cℓ, cr)
2: D ← “array containing all elements in domE(f) in

ascending order”
3: L← 0; R← |D| − 1;
4: while L ≤ R do
5: m← ⌊(L+R)/2⌋
6: if ISVALID(E[f ≤ D[m]], Tcℓ ) then
7: L← m+ 1;
8: else
9: R← m− 1;

10: λL ← D[m− 1] ▷ where D[−1] = D[0]− 1
11: L← 0; R← |D| − 1;
12: while L ≤ R do
13: m← ⌊(L+R)/2⌋
14: if ISVALID(E[f > D[m]], Tcr ) then
15: R← m− 1;
16: else
17: L← m+ 1;
18: λR ← D[m+ 1] ▷ where D[|D|] = D[|D| − 1] + 1
19: return (λL, λR)
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Algorithm 5 Algorithm to compute the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ).
Input: CI E, DT pattern T
Output: the triple (EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ).
1: function FINDLR(E, T )
2: r ← “root of T ”
3: if r is a leaf then
4: return (E,nil,nil)

5: cℓ, cr ← “left child and right child of r”
6: if r is an unknown node then
7: Oℓ ← FINDLR(E, Tcℓ )
8: Or ← FINDLR(E, Tcr )
9: return (E,nil,nil) ∪Oℓ ∪Or

10: f ← feat(r)
11: (λL, λR)← BINARYSEARCH(E, T , f , cℓ, cr)
12: Oℓ ← FINDLR(E[f ≤ λL + 1], Tcℓ )
13: Or ← FINDLR(E[f > λR − 1], Tcr )
14: return (E, λL, λR) ∪Oℓ ∪Or

The following lemma, which is a precursor for the com-
putation of the expected examples in Theorem 10, is a rel-
atively straightforward extension of [Ordyniak and Szeider,
2021, Lemma 6]; the algorithm behind the lemma is also il-
lustrated in Algorithms 3 and 4.
Lemma 9. Let E be a CI and T be a DT pattern of
depth at most d. There is an algorithm with run-time
O(2d

2/2∥E∥1+o(1) log ∥E∥) deciding whether T is valid
for E.

Now we are finally ready to prove that we can efficiently
compute EXPt, λL(t) and λR(t) for every node t ∈ V (T ).
Theorem 10. Let E be a CI, let T be a DT pattern of depth
at most d. Then there is an algorithm that runs in time
O(2d

2/2∥E∥1+o(1) log ∥E∥) and computes the set EXPt and
thresholds λL(t) and λR(t) for every node t ∈ V (T ).

Computing the Pool and Branching Set
Let E be a CI and T a DT pattern for E that is invalid
for E and suppose that we have already computed the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ). We say that
T ′ is a proper extension of T if T ′ is an extension of T and
featT ′(t) /∈ feat(T ) for every unknown node t ∈ V (T ) with
featT ′(t) ̸= ■, i.e., unknown nodes of T that are known in T ′

are assigned to features not in feat(T ).
A pool set for T is a set P of examples such that for every

proper extension of T that is valid for E there is a feature
f ∈ feat(T ′)\feat(T ) such that f distinguishes two examples
in P . Let P (t) be the set of examples defined recursively for
every node t of T as follows: If t is a negative (positive) leaf
node of T , then P (t) contains any example in E+ ∩ EXPt

(E− ∩ EXPt). Note that such an example does always exists
because of Lemma 8 and our assumption that T is invalid for
E. Otherwise, t has a left child cℓ and a right child cr and we
set P (t) = P (cℓ)∪ P (cr). Note that P (t) ⊆ EXPt for every
t ∈ V (T ). We show next that P (T ) = P (r) for the root r of
T is a pool set for T .
Lemma 11. Let E be a CI and T be an invalid DT pattern
for E. Then, P (T ) is a pool set for T .

Proof. Assume for a contradiction that this is not the case.
Then, there is a proper extension T ′ of T that is valid for E
such that no feature in feat(T ′) \ feat(T ) distinguishes be-
tween any two examples in P (T ). Let λ : KN(T ′) → Z be
a threshold assignment for T ′ showing the validity of T ′. We
start by showing the following claim:

Claim 12. Let t be an inner node of T such that P (t) ⊆
ET ′(t), then t has a child c in T such that P (c) ⊆ ET ′(c).

Because the conditions of Claim 12 apply to the root r
of T , it follows that T must have a leaf l with P (l) ⊆ ET ′(l).
But this implies that T ′

l is not valid for ET ′(l) a contradiction
to our assumption that T ′ is valid for E.

The next lemma shows that P (T ) is indeed small and can
be computed efficiently.

Lemma 13. Let E be a CI and T be an invalid DT pattern
for E of height at most d. Then, P (T ) ≤ 2d and P (T ) can
be computed in time O(2d

2/2∥E∥1+o(1) log ∥E∥).

Proof. P (T ) ≤ 2d follows because |P (l)| = 1 for ev-
ery leaf of T and |P (t)| = |P (cℓ)| + |P (cr)| = 2|P (cℓ)|
for every inner node t with children cℓ and cr. To com-
pute P (T ), we first use Theorem 10 to compute the triple
(EXPt, λ

L(t), λR(t)) for every node t ∈ V (T ) in time
O(2d

2/2∥E∥1+o(1) log ∥E∥). We then compute P (T ) in a
leaf-to-root manner in time

(
|V (T )|).

The next lemma now show that the set B(T ) =⋃
e,e′∈P (T ) δ(e, e

′) is a branching set for T , i.e., we can easily
compute a branching set from a pool set.

Lemma 14. Let E be a CI and T be an invalid DT pattern
for E of height at most d. Then, B(T ) is a branching set for
T of size at most 22dδmax(E) and can be computed in time
O(2d

2/2∥E∥1+o(1) log ∥E∥).

Proof. B(T ) is a branching set because P (T ) is a pool
set for T due to Lemma 11. Moreover, because of
Lemma 13, we have that |B| ≤ |P (T )|2δmax(E) ≤
22dδmax(E) and the time required to compute P (T ) is
O(2d

2/2∥E∥1+o(1) log ∥E∥), which dominates the time to
compute B(T ).

We are now ready to show Theorem 6.

Proof Sketch for Theorem 6. Here we only show that B(S, s)
is an (S, s)-branching set; the remainder of the proof can
be found in the supplementary material. Let T be any non-
redundant DT for E of size at most s such that S ⊊ feat(T )
and let T ′ be the DT pattern for E obtained from T after set-
ting featT ′(t) = ■ for every t ∈ V (T ) with featT (t) /∈ S
and ignoring all thresholds. Because T ′ has at least one
unknown node and T is non-redundant, it follows that T ′

is invalid for E. Therefore, T ′ ∈ T , which shows that
B(T ′) ⊆ B(S, s). Because B(T ′) is a branching set for T ′

and T is a proper extension of T ′ that is valid for E, we ob-
tain that B(T ′) ∩ (feat(T ) \ S) ̸= ∅ and therefore B(S, s) is
an (S, s)-branching set, as required.
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We are now ready to show Theorem 4, i.e., that DTS is
fixed-parameter tractable parameterized by size and δmax.

Proof Sketch of Theorem 4. Our algorithm for DTS is illus-
trated in Algorithm 1 and Algorithm 2. In this proof sketch,
we only show the correctness of the algorithm. So suppose
that there is a DT for E of size at most s that uses all fea-
tures in S and let T be any such DT of minimum size. Be-
cause the algorithm returns a DT of minimum size among
all the DTs that it considers, it suffices to show that the al-
gorithm considers T . Even stronger we will show that the
algorithm considers all DTs T ′ for E of size at most s such
that feat(T ′) = feat(T ).

Towards showing the correctness of Algorithm 1, consider
the case that E has a DT of size at most s and let T be such
a DT of minimum size. Because of Observation 1, feat(T ) is
a support set for E and therefore feat(T ) contains a minimal
support set S of size at most s. Because the algorithm (Line 4
of Algorithm 1) iterates over all minimal support sets of size
at most s for E, it follows that Algorithm 2 is called with
parameters E, s, and S.

If feat(T ) = S, then the algorithm finds a DT for E of size
at most |T | in Line 2 of Algorithm 2 because of Lemma 5. If,
on the other hand, feat(T ) \ S ̸= ∅, then H ∩ feat(T ) ̸= ∅,
where H is the (S, s)-branching set computed in Line 3 of
Algorithm 2; this is because H is an (S, s)-branching set and
T is a non-redundant (since minimal) DT for E of size at most
s such that S ⊊ feat(T ). Therefore, the function minDTS is
called recursively for parameters E, s, and S ∪ {f}, where
f is an arbitrary feature in feat(T ) ∩ H . From now onward
the argument repeats and eventually the function minDTS is
called with parameters E, s, and feat(T ) at which point the
algorithm finds a DT for E of size at most |T | in Line 2 of
Algorithm 2. Finally, it is easy to see that if Algorithm 1
outputs a DT T , then it is a valid solution. This is because
T must have been computed in Line 2 of Algorithm 2, which
implies that T is a DT for E. Moreover, T has size at most s,
because of Line 8 in Algorithm 1.

4 Approximation Using Support Sets
Given Observation 1 it is tempting to think that it sufficies
to consider only DTs that use the features from some min-
imal support set. Indeed, if this were the case, then our
FPT-algorithm from the previous section could be signifi-
cantly simplified, i.e., it would no longer be necessary to find
branching sets as it would suffice to enumerate all minimal
support sets with the help of Lemma 2. Unfortunately, Ordy-
niak and Szeider [2021] showed that this is not the case and
the difference between an optimal DT and an optimal DT that
is only allowed to employ features from some minimal sup-
port set can be arbitrarily high at least in absolute terms even
for binary CIs. Nevertheless, it was left open whether and
how well the simple approach using only minimal support
sets can be exploited to obtain good approximate solutions for
DTS and DTD and this is what we will explore in this sec-
tion. In particular, let opts(E) and optd(E) be the minimum
size respectively depth of a DT for a CI E and let optsSS(E)

and optdSS(E) the minimum size respectively depth of a DT

for E that is only allowed to use the features from some min-
imal support set. Because optsSS(E) and optdSS(E) can be
computed using a much simpler algorithm that requires only
Lemma 2 and Lemma 5, we want to explore whether they can
be used to approximate opts(E) and optd(E).

As a starting point consider the case of binary CIs. In par-
ticular, let E be a binary CI and let S be a minimum support
set for E. Then, because of Observation 1 any DT for E has
size at least |S| and depth at least log |S|. Moreover, E has
a DT of size at most 2|S|+1 and depth at most |S| + 1, i.e.,
the complete DT using only the features in S. Therefore, we
obtain the following theorem showing that optsSS and optdSS
approximate opts and optd, respectively.

Theorem 15. Let E be a binary CI. Then, optsSS(E) ≤
2opts(E) and optdSS(E) ≤ 2optd(E).

As our main novel result in this section (for binary CIs),
we show next that the ratios obtained in Theorem 15 are in-
deed best possible and therefore no better approximation for
DTS and DTD can be obtained by considering only DTs that
merely use the features of some minimal support set.

Theorem 16. For every integer k ≥ 1, there is a binary CI
Lk such that opts(Lk) ≤ 2k + 5 and optsSS(Lk) ≥ 2k+1 −
1. Similarly, there is a binary CI Ld

k such that optd(Ld
k) ≤

log(k) + 2 and optdSS(L
d
k) ≥ k + 1.

Finally, we consider the case of non-binary CIs and show
the following theorem, which essentially rules out any ap-
proximation algorithm based solely on minimal support sets.

Theorem 17. For every integer n ≥ 1, there are a
CIs Ln and Ld

n such that opts(Ln), optd(Ld
n) ≤ 5 and

optsSS(Ln), optdSS(L
d
n) ≥ n.

5 Conclusion
We have established novel results that contribute to the foun-
dations of learning interpretable machine learning models.
Our main result is algorithmic. We have devised a parame-
terized algorithm that allows us to efficiently learn an optimal
DT (with the smallest number of nodes or lowest depth). This
answers an open question by Ordyniak and Szeider [2021],
who had to include the maximum domain size for their FPT
result and completes their complexity classification for DT
learning. As pointed out in the introduction, our result stands
out because for similar problems (like the CSP), the inclusion
of domain size is inevitable.

Our second result deals with the question of what one loses
when working with a smallest set of features (a minimum
support set) when learning a DT of a small size or depth.
It turns out that this question strongly depends on whether
the domain size is bounded or not. We show that the gap be-
tween the optimal solution and one that depends on the small-
est set of features can be arbitrarily large for the unbounded
domain case. For the bounded domain case, the gap can be
bounded by an exponential function, and that this bound is
tight. This result is of interest to practitioners as it is a natural
approach for heuristics to perform feature reduction before
learning the DT.
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