
Explaining Answer-Set Programs with Abstract Constraint Atoms

Thomas Eiter and Tobias Geibinger
Knowledge-based Systems Group, Institute of Logic and Computation, TU Wien, Austria

{thomas.eiter, tobias.geibinger}@tuwien.ac.at

Abstract
Answer-Set Programming (ASP) is a popular declar-
ative reasoning and problem solving formalism. Due
to the increasing interest in explainability, several ex-
planation approaches have been developed for ASP.
However, support for commonly used advanced lan-
guage features of ASP, as for example aggregates or
choice rules, is still mostly lacking. We deal with
explaining ASP programs containing Abstract Con-
straint Atoms, which encompass the above features
and others. We provide justifications for the pres-
ence, or absence, of an atom in a given answer-set.
To this end, we introduce several formal notions of
justification in this setting based on the one hand on
a semantic characterisation utilising minimal partial
models, and on the other hand on a more ruled-
guided approach. We provide complexity results
for checking and computing such justifications, and
discuss how the semantic and syntactic approaches
relate and can be jointly used to offer more insight.
Our results contribute to a basis for explaining com-
monly used language features and thus increase ac-
cessibility and usability of ASP as an AI tool.

1 Introduction
The growing pervasiveness of artificial intelligence (AI) in
everyday life has led to concerns about the transparency of AI
systems, and regulations against using “black-box” systems
for sensitive tasks are under development.

Answer-Set Programming (ASP) is a symbolic, rule-based
reasoning formalism that has been employed for various
AI applications in numerous domains [Erdem et al., 2016;
Falkner et al., 2018], among them life sciences [Erdem and
Oztok, 2015], health insurance [Beierle et al., 2005], or psy-
chology [Inclezan, 2015], to mention a few.

ASP allows for a declarative encoding of problems in a
succinct manner. Solutions for them are obtained from answer-
sets, which result from the evaluation of the encoding using an
ASP solver. While ASP is a declarative AI approach, there is
still need for providing concise and interpretable explanations
as to why certain facts are, or are not, in a computed answer-
set. For this reason, a number of explanation approaches
for ASP have been developed; we refer to [Fandinno and

Schulz, 2019] for a comprehensive survey and to the Related
Work section for more discussion. However, most of the
approaches in the literature do not support language extensions
like aggregates [Faber et al., 2004] or choice rules [Gebser et
al., 2012]. As both features are frequently used in practice,
the applicability of explanation approaches is limited and ASP
can not live up to its full potential of a transparent AI tool.

We tackle this shortcoming by introducing several formal
notions of justification based on programs with Abstract Con-
straint atoms (c-atoms) [Marek and Truszczynski, 2004]. The
choice of the latter is motivated by the fact that such programs
embrace many of the common ASP language extensions. Our
main contributions are briefly summarized as follows.

• We introduce formal notions aiming to give reasons as to
why an atom is true, respectively, false in a given answer-
set. To this end, we present both model-based and rule-based
notions of justification to answer these questions, guided by
the basic principles of sufficiency, coherence, and conciseness.

• Specifically, the model-based notion (m-justification) re-
sorts to minimal partial model semantics, and aims to reveal
what parts of the answer-set are responsible for the (non-
)satisfaction of possibly negated c-atoms and, in further gener-
alisation, to the firing or non-firing of single rules.

• The rule-based notion (r-justification) takes the whole pro-
gram into account and shows in a more operational view how
an atom is derived or excluded from the answer-set in terms
of an r-justification chain, which is a suitable sequence of
r-justifications. Different from some other proposals in the
literature, such chains proceed top-down and expand on false
atoms, revealing that their derivation is blocked by missing
support in a non-constructive manner (cf. Section 7).

• We analyse the computational complexity of problems re-
lated to recognising and computing the novel notions of justifi-
cations on an abstract basis for representing c-atoms. The com-
plexity ranges for the recognition problems from NP/coNP to
Σp

2, while computing justifications is feasible in polynomial
time with an NP oracle.

Our notions of justifications provide succinct reasons for
the presence or absence of an atom in an answer-set. They can
serve as building blocks for more comprehensive justifications,
and may be used in tandem to obtain more insight on answer-
sets and make them better understandable. In particular, we

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3193

imagine that our notions can be utilised in an interactive fash-
ion where the user has control over which rules get expanded
and explained. This top-down approach is also more akin to
query answering than the common bottom-up approach and
thus more aligns with the user perspective. This is especially
the case when one considers interactive justification finding,
where the user starts with the atom that should be justified
and proceeds by finding supporting rules (r-justifications) and
looking at what is needed to fire those rules (m-justifications).

Proofs of the results will be included in an extended version.

2 Preliminaries
We consider propositional Answer-Set Programming (ASP),
assuming a denumberable set A of propositional atoms.

In particular, we consider programs consisting of Abstract
Constraint Atoms (c-atoms) [Marek and Truszczynski, 2004],
which are defined as follows. A c-atom is a tuple A = ⟨D,C⟩,
where D ⊆ A is the domain and C ⊆ 2D are the satisfiers
of the c-atom. Note that we require that C is smooth, i.e., for
every S ∈ C there is some S′ ⊆ S such that S′ is ⊆-minimal
in C. For a c-atom A, we will use DA to denote its domain
and CA to denote its satisfiers. A c-literal is either a c-atom
A (positive c-literal) or its (default) negation not A (negative
c-literal). Similar to [Shen et al., 2009], we use ⊥ to denote
⟨D, ∅⟩ for any domain D and ⊤ for ⟨∅, {∅}⟩.

The notion of c-atoms effectively generalises propositional
atoms: any propositional atom a can be expressed by the
c-atom ⟨{a}, {{a}}⟩. We call the latter elementary and when-
ever convenient, we will identify it with a.

We define the complement of a c-atom A = ⟨D,C⟩ as
A = ⟨D,C⟩ where C = 2D \ C are the non-satisfiers of A.
Clearly, A = A holds.

Furthermore, A = ⟨D,C⟩ is called (a) monotone if for
every S ∈ C it holds that S′ ∈ C for every S′ such that
S ⊆ S′ ⊆ D, (b) convex if for every S ∈ C it holds that
for every S′ and S′′ such that S ⊆ S′ ⊆ S′′ ⊆ D, S′′ ∈ C
implies S′ ∈ C, and (c) bi-smooth if C is also smooth. A
c-literal not A is called monotone (respectively convex or bi-
smooth) if A is. This is naturally extended to sets of c-literals.
Clearly, monotonicity implies convexity and any c-atom over
a finite domain is bi-smooth.

Following [Oetsch et al., 2018], we define (disjunctive)
logic programs over c-atoms, which consist of a finite number
of rules of the form

A1 ∨ · · · ∨Al ← Al+1, . . . , Am,not Am+1, . . . , not An, (1)

where A1, . . . , An are c-atoms, l ≥ 1 and m,n ≥ 2. We call a
rule normal if l = 1; a fact if l = 1, m = n = 2 and Am = ⊤,
a constraint if l = 1 and Al = ⊥; positive if n = m; definite
if it is normal and |AC

1 | = 1; basic if it is normal and A1 is
elementary; and convex if every Ai, for l < i ≤ n, is convex.
We call a program normal, (positive, definite, basic, convex) if
all of its rules are. Note that, different to most of the literature,
we do not allow empty rule heads or bodies, because we can
express constraints with ⊥ and facts using ⊤.

For a rule r of the form (1), H(r) := {A0, . . . , Al} is the
head of the rule, whereas B+(r) := {Al+1, . . . , Am} and
B−(r) := {Am+1, . . . , An} are the positive and, respectively,

negative body. Furthermore, B(r) := B+(r) ∪ not B−(r),
where not S := {not A | A ∈ S} for any set of c-atoms S.
The set of all propositional atoms appearing in program P is
denoted by AP .

Sometimes we will also prefix rules with labels, i.e., write
l : r where l is the label and r is a rule as defined above, to
give proper names to rules and ease readability.

The semantics of logic programs is based on interpretations.
Here, we also introduce them as potentially partial. A partial
interpretation is a tuple I = ⟨I+, I−⟩, where I+, I− ⊆ A
and I+ ∩ I− = ∅. A partial interpretation I = ⟨I+, I−⟩ is
total on set S if I+ ∪ I− ⊇ S. Intuitively, this indicates that
no atoms in the set S are undefined by I . When it is clear
from context, we drop the set S and by default, we assume
interpretations are total and identify them by the single set I+.
Furthermore, we say that I is finite if I+ is.

Satisfaction of c-atoms is defined as follows. This definition,
which is mostly based on [Son and Pontelli, 2007], is semanti-
cally equivalent to the one of [Wang et al., 2012]. However,
unlike them, we do not require prefixed powersets and thus
needless auxiliary definitions.

A c-atom A = ⟨D,C⟩ is satisfied by a partial interpretation
I = ⟨I+, I−⟩, denoted I |= A, if S ∈ C, where S = I+ ∩D
and for each U ∈ C s.t. S ⊂ U , it holds that U ∩ I− ̸= ∅.

The partial interpretation I satisfies not A (I |= not A) if
for each S ∈ C, either (a) S∩I− ̸= ∅ or (b) (U \S)∩I+ ̸= ∅
for U =

⋃
{X ∈ C | S ⊆ X}.

Intuitively, a c-atom is satisfied by an interpretation I if one
of its satisfiers, which cannot be extended to an unsatisfier, is
known to be true. In contrast, a c-atom is falsified by I , i.e.,
I |= not A, if for each of its satisfiers at least one of (a) or (b)
hold. Intuitively, (a) L implies that the satisfier is known to be
false, whereas (b) ensures that something is already known to
be true which, in addition with the satisfier, makes I+ ∩D a
non-satisfier. In other words, (b) states that even if the satisfier
would be true, the resulting extension of the interpretation
would not satisfy the c-atom.

For a set of c-literals L, we say a (partial) interpretation
I satisfies L, denoted I |= L , if I |= L for every L ∈ L;
satisfies a rule r, denoted I |= r, if I |= L for some L ∈ H(r)
whenever I |= B(r). A (partial) interpretation is a model of L
if I |= L and a countermodel otherwise.
Example 1. Consider the c-atom A = ⟨D,C⟩, where D =
{a, b} and C = {{a}}, and the partial interpretation J1 =
⟨{a}, ∅⟩. Now, even though a ∈ J+

1 is known to be true, we
have J1 ̸|= A, since {a, b} ∈ C and b ̸∈ J−

1 . Furthermore,
J1 ̸|= not A because neither condition (a) nor (b) of the
definition above holds. The latter does not hold, since for the
only satisfier S = {a}, U = {a, b} and thus (U \S)∩J+ = ∅.

Now, consider the partial interpretation J2 = ⟨{a}, {b}⟩.
Clearly, now J2 |= A as well as J2 ̸|= not A hold, the latter
for the same reason as above.

A seminal concept in ASP is the notion of reduct. The
original GL reduct [Gelfond and Lifschitz, 1988] is the most
known, but it is only defined over propositional programs
without c-atoms. Several reducts have been introduced to
handle them. Here, we use the following, which is a slight
variation of the so called FLP reduct [Faber et al., 2004].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3194

Let P be a program and I be a total interpretation. Then

P I := {HR(H(r), I)← B(r) | r ∈ P, I |= B(r)},

where HR(M, I) := {⟨DA, {I ∩ DA}⟩ | A ∈ M, I |= A}
if I |= H(r) and HR(M, I) := ⊥ otherwise, is the extended
FLP reduct of P with respect to I .

A finite total interpretation I is then an answer-set of P if
I |= P I and there is no total interpretation I ′ ⊂ I such that
I ′ |= P I . The set of all answer-sets of P is denoted by AS (P).
Note that Oetsch et al. 2012 gave a similar definition using
a different version of the FLP reduct. However, their notion
of answer-set seems to coincide with our. The introduced
semantics neatly generalise aggregates and choice atoms as
implemented in the ASP solver DLV [Leone et al., 2006] and,
with restrictions, in the solver clingo [Gebser et al., 2014].

3 Basic Properties of c-Literals
Our definitions allow us to derive some useful properties of
(sets of) c-literals.
Proposition 1. Given a c-atom A, then for every partial inter-
pretation J we have J |= not A iff J |= A.

This proposition, which was used implicitly in [Son and
Pontelli, 2007], allows us to use complements of c-atoms and
their negation interchangeably. Furthermore, it turns out that
a set of c-atoms, and thus c-literals by the above proposition,
can be merged into a single c-atom.
Theorem 1. For every set L = {L1, . . . , Ln} of c-literals
there is a c-atom AL such that for every partial interpretation
J , we have J |= L iff J |= AL. Furthermore, if L is a set of
convex c-literals, then AL is convex as well.

The intuition here is as follows. The domains of the c-atoms
can simply be merged and the satisfiers are then all subsets
of the resulting domain that are satisfiers of all c-atoms in the
original when intersected with the respective domain.

We define the following order over partial interpretations.
Definition 1. Let J1 and J2 be partial interpretations. Then
J1 ≤ J2 if J+

1 ⊆ J+
2 and J−

1 ⊆ J−
2 . Furthermore, J1 < J2

if J1 ≤ J2 and J1 ̸= J2.

We have an intuitive result on the monotonicity of partial
interpretations.
Proposition 2. Let J1 and J2 be partial interpretations s.t.
J1 ≤ J2. Then, for every c-literal L, J1 |= L implies J2 |= L.

4 Model-based Justifications
Inspired by the philosophical study of explanation and justi-
fication, c.f. [Miller, 2019], we argue that a justification for
the inclusion, or non-inclusion, of an atom in an answer-set
should obey the following properties, which are intuitively
described as:
Sufficiency: The justification should give sufficient reason to
why the atom is or is not contained in the answer-set.
Coherence: The justification should be coherent, i.e., the jus-
tification contains nothing which is in contradiction with the
answer-set.
Conciseness: The justification should be concise, meaning

that it contains no superfluous information.
Note that the last property is not the same as the following,
which we do not require.
Necessity: The justification is necessary, i.e., the inclusion, or
non-inclusion, of the atom follows from the knowledge given
in the justification. If the content of the latter were false, then
the atom would not, or would respectively, be contained in the
answer-set.
The reason why we do not demand necessity will become
clear later on. In this section, we will introduce formal notions
of justification for (non)satisfaction of c-atoms w.r.t. a given
answer-set without taking the respective program into account.

4.1 Justifications for c-literals
We now come to our notion of what justifies the satisfaction
of a c-atom.
Definition 2. Let L be a c-literal and I be a total model of
L. Then, a partial interpretation J is called a (positive) m-
justification of I |= L if (i) J ≤ I , (ii) J |= L and (iii) there
is no J ′ < J such that J ′ |= L. The set of all m-justifications
of L w.r.t. I is denoted by J (L, I).

The intuition here is that an m-justification should highlight
the parts of the model that are responsible for the satisfaction
of the c-literal. The condition (i) enforces coherence, (ii)
ensures that the m-justification is sufficient and (iii) describes
conciseness. Furthermore, we have the following property.
Definition 3. Let L be a c-literal and J be an m-justification
of I |= L. Then we call J definite if J (L, I) = {J}.

Generally, c-atoms will not have a definite m-justification,
which is why we do not require this property in Definition 2.

In the case of a definite m-justification, we also have an
important theorem, which shows that definite m-justifications
satisfy our informal notion of “necessity”.
Theorem 2. Suppose J = ⟨J+, J−⟩ is a definite m-
justification of I |= L. Then, for every X ̸= ∅, (i) I \X ̸|= L
if X ⊆ J+, and (i) I ∪X ̸|= L if X ⊆ J−.

Definition 2 can be readily extended to non-satisfaction.
Definition 4. Let L be a c-literal and I be a total counter-
model of L. Then J is a (negative) m-justification of I ̸|= L if
J is an m-justification of I |= L.

As stated, m-justifications are not unique, but there is always
at least one as we are going to show now. First, we establish
the following result.
Proposition 3. Let I be a total interpretation. Then for every
c-atom A, either I |= A or I |= not A.

Intuitively, the proposition states that for a total interpreta-
tion, the truth value of a c-literal cannot be undefined.
Proposition 4. Let L be a bi-smooth c-literal and I be a total
interpretation. Then there exists some J ≤ I such that J is an
m-justification either for I |= L or for I ̸|= L.
Example 2. Consider the c-atom A1 = ⟨D1, C1⟩where D1 =
{a, b, c} and C1 = {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}},
which represents the aggregate #sum{2 : a, 1 : b, 1 : c} > 1.
Suppose we have I1 = {a, b, c} and S1 = I ∩ D1. Clearly,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3195

S1 ∈ C1 and thus I1 |= A1. Furthermore, ⟨{a}, ∅⟩ and
⟨{b, c}, ∅⟩ are valid m-justifications. The former can be read
as follows: the c-atom A1 is satisfied by I because a is true.
Consider I2 = {b}. Since I2 ̸|= A1, we may look for m-
justifications of A = ⟨D1, {∅, {b}, {c}}⟩. The partial inter-
pretation ⟨∅, {a, c}⟩ is the only m-justification. The intuition
here is that I2 ̸|= A1 holds because neither a nor c are sat-
isfied by I2, which, since b cannot be false in I2, would be a
requirement for A to be satisfied.

Example 3. Consider the aggregate atom #max{1 : a,
1 : b, 2 : c} < 2 and let A2 = ⟨D2, C2⟩ be the corresponding
c-atom, i.e., D2 = {a, b, c} and C2 = {∅, {a}, {b}, {a, b}}.
Suppose we have model I3 = {a, b}. Then, ⟨∅, {c}⟩ is a
definite m-justification.

Example 4. Consider the aggregate atom #sum{1 : a,
1 : b, 1 : c} = 1 and let A3 = ⟨D3, C3⟩ be the corresponding
c-atom, i.e., D3 = {a, b, c} and C3 = {{a}, {b}, {c}}. Sup-
pose we have a model I4 = {a}. The only valid m-justification
is ⟨{a}, {b, c}⟩, which intuitively says that I4 |= A3 holds, i.e.,
the sum is exactly 1, because a is true and b and c are false.

4.2 Justifications for Sets of c-literals
We extend our notion of justifications from c-literals to sets of
c-literals in the following way.

Definition 5. Let L = {L1, . . . , Ln} be a set of c-literals and
I be a total model of L. Then, a partial model J of L is called

(i) a locally concise (positive) m-justification if there is a
sequence of m-justifications J1, . . . , Jn such that Ji ∈
J (Li, I) and J = ⟨

⋃
1≤i≤n J

+
i ,

⋃
1≤i≤n J

−
i ⟩, and

(ii) a globally concise (positive) m-justification if there is no
partial interpretation J ′ < J such that J ′ |= L.

Clearly, every m-justification for a set is sufficient and co-
herent. Notably, according to our definition, an m-justification
for a set of c-literals is only the ≤-minimal partial model
if it is globally concise. The basic idea is that global con-
ciseness might be too strong in some cases, since it prefers
m-justifications that are concise and sufficient for multiple
c-literals. In contrast, local conciseness only requires the m-
justification to be the union of m-justifications for all c-literals.

Example 5. Consider the set of c-literals L1 = {A4, A5},
where A4 represents the #sum{2 : a, 1 : b, 1 : c} > 1 and
A5 represents #max{2 : a, 1 : b} > 1. Furthermore, let
I5 = {a, b, c} an interpretation. We know from previous
examples that J (A4, I5) = {⟨{a}, ∅⟩, ⟨{b, c}, ∅⟩} and we
clearly have J (A5, I5) = {⟨{a}, ∅⟩}. We have one glob-
ally concise m-justification for L1, ⟨{a}, ∅⟩, while there are
two locally concise m-justifications, namely, ⟨{a}, ∅⟩ and
⟨{a, b, c}, ∅⟩. Global conciseness would ignore one of the
two m-justifications for A4. Of course, it can be argued
that ⟨{a}, ∅⟩ is in fact a stronger m-justification for L1 than
⟨{a, b, c}, ∅⟩ as it is non-redundant. However, depending on
the context, the additional m-justifications obtained through lo-
cal conciseness provide broader, more inclusive explanations
and more diversity.

We can again easily adopt our notions to non-satisfaction.

Definition 6. Let L be a set of c-literals and I be a total
countermodel of L. Then, a partial interpretation J is a
locally concise (negative) m-justification of I ̸|= L if J is
an m-justification of L for some L ∈ L. Furthermore, J is
globally concise if there is no partial interpretation J ′ < J
such that J ′ is an m-justification of I |= L for some L ∈ L.

For convenience, given a total interpretation I , a set L of
c-literals and a partial interpretation J , we say that J is an
m-justification for L if it is an m-justification for I |= L or
I ̸|= L. Similarly, for single c-literals.

5 Rule-based Justifications
We now come to giving rule-based justifications, i.e., we aim
to explain why atoms are in a given answer-set, but in addition
to the previous section, we take the program into account as
well. First, we give the following definitions.

Definition 7 (Presumptuous Entailment). Let P be a program,
J be a partial interpretation and A be a c-atom. Then we
define P |=J A if for every total model I of P s.t. I ≥ J , it
holds that I |= A.

The idea behind Presumptuous entailment is that we want
to define inferences under certain preconditions; viz., when
we have some information about what is, or is not, true.

The next definition is based the known concept of support
in answer-set semantics [Lifschitz, 2010].

Definition 8. Let r be a rule and I be a total model of r. Then,
r is a failed support for atom a w.r.t. I if I ̸|= B(r) and for
every I ′, I ′ |= a if I ′ |= r and I ′ |= B(r).

The intuition behind failed supports is that they are rules
whose body is not satisfied, but if they would be active, then
the respective atom would also have to be true.

We now come to the main notions of this section.

Definition 9. Let P be a program, I ∈ AS (P) be an answer-
set and a be an atom. Then, a triple (a◦, Q, J), where ◦ ∈
{+,−}, Q ⊆ P is a set of rules, and J ≤ I is a partial
interpretation, is an r-justification for a w.r.t. P and I if the
following conditions hold:

(a) If a ∈ I , then ◦ = +, QI |=J a and there is no R ⊂ Q
such that RI |=J a.

(b) If a ̸∈ I , then ◦ = −, Q = {r ∈ P | r is a failed support
of a w.r.t. I}, and for every r ∈ Q, J |= A for some
A ∈ B(r).

We say that the r-justification is concise if J is ≤-minimal.

An r-justification is essentially composed of three things: (1)
An annoted atom indicating what is justified, (2) the set of rules
needed to do so, and (3) a partial interpretation explaining why
the rules do, or respectively do not, yield the atom. Recalling
our informal notions of what properties a justification should
have, we see that “sufficiency” and “coherence” are defined by
reflection. Furthermore, both conditions (a) and (b) ensure that
the set of rules Q is minimal and thus contains no redundant
rules.

Example 6. Consider the program P1 = {r1 : d ←
⟨{a, b, c}, {∅, {a}, {b}, {a, b}}⟩, r2 : a ← not c, r3 : c ←

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3196

not a } and one of its answer-sets {a, d}. Intuitively, the
body of rule r1 is true whenever c is false and the other en-
code a choice between a and c. The concise r-justifications
for a, b, c and d are then (a+, {r2}, ⟨∅, {c}⟩), (b−, ∅, ⟨∅, ∅⟩),
(c−, {r3}, ⟨{a}, ∅⟩) and (d+, {r1}, ⟨∅, {c}⟩).

The next theorem shows that r-justifications always exist.
Theorem 3. Let P be a program and I ∈ AS (P) be an
answer-set of P . Then for every atom a, there is an r-
justification (a◦, Q, J) w.r.t. P and I .

We want to utilise this notion to justify atoms step by step.
We do this by chaining r-justifications providing something
akin to rule derivation, but with negative atoms mixed in.
Definition 10. We call a sequence of r-justifications w.r.t. P
and I , J = (a◦1, Q1, J1), . . . , (a

◦
n, Qn, Jn) an r-justification

chain for a1 if for every (a◦i , Qi, Ji) ∈ J , it holds that
(a) for each a ∈ J+

i some (a+j , Qj , Jj) exists such that aj =
a and either j > i or aj = a1 and there is no subsequence
(a+k1

, Qk1 , Jk1), . . . , (a
+
kℓ
, Qkℓ

, Jkℓ
) of J where k1 = 1,

kℓ = i, and akh+1
∈ J+

kh
, for all 1 < h < ℓ;

(b) for each a ∈ J−
i some (a−j , Qj , Jj) exists s.t. aj = a;

(c) if i > 1, then there is some (a◦j , Qj , Jj) such that ai ∈ J◦
j

and j < i; and
(d) ai = aj for 1 ≤ j ≤ n implies i = j.

The intuition here is that positive information must be justi-
fied recursively, which eventually bottoms out, while negative
information can be cyclic. Condition (a) ensures that each
positive premise of a positive r-justification has some posi-
tive r-justification that comes later, with an exception for the
case when the premise in question is the starting atom a1 to
be positively justified: if there is no chain as described, the
r-justification (a+i , Qi, Ji) is definitely not needed to derive
the atom a1, but only to “block” the derivation of some other
atom. Example 9 shows such a case. Condition (b) enforces
that negative premises are justified somewhere in the chain, but
not necessarily after their usage. Condition (c) merely ensures
that the chain does not contain unnecessary r-justifications,
whereas (d) enforces that each atom appears at most once.
Example 7. Consider P2 = {r4 : ⟨{a, b}, {{a}, {b}}⟩ ← a}.
Clearly, the only answer-set of P2 is ∅ and the r-justifications
for a and b not being true are (a−, {r4}, ⟨∅, {a}⟩) and
(b−, ∅, ⟨∅, {a}⟩). In fact the former is also an r-justification
chain, since a not being true is justified by itself and the non-
firing of rule r4.

Note that for negative r-justifications, we do not require that
the assumptions are justified by further r-justification to the
right, but rather that they appear somewhere in the chain.
Example 8. Let us consider P3 = {r5 : a ← ⟨{b}, ∅⟩, r6 :
b ← ⟨{a}, ∅⟩}. Now, P3 has two answer-sets {a}
and {b}. The justification chain for a w.r.t {a} is then
(a+, {r5}, ⟨∅, {b}⟩), (b−, {r6}, ⟨{a}, ∅⟩).

The intuition here is that negative atoms have no construc-
tive role in the answer-set and thus do not have to be built
“bottom-up”. There can be situations where a positive r-
justification requires a positive atom that has already been
justified.

Example 9. Consider the program P4 = {r7 : a ← not b,
r8 : b ← not c, r9 : c ← a}. Now, P4 has answer-set
{a, c} and an r-justification chain for a is (a+, {r7}, ⟨∅, {b}⟩),
(b−, {r8}, ⟨{c}, ∅⟩), (c+, {r9}, ⟨{a}, ∅⟩).

In the last element of the chain c depends on a being true
which has already been justified in the beginning.

For an answer-set, r-justification chains can always be found
for every atom.
Theorem 4. Let P be a program and I ∈ AS (P) be an
answer-set of P . Then for every atom a, there is an r-
justification chain J for a w.r.t. P and I .

However, not all r-justification chains will offer the most
insight.
Example 10. For the program P5 = {r10 : a ← b, r11 :
b← not c, r12 : ⊥ ← c}, the set {a, b} is the unique answer-
set and J = (a+, {r10, r11}, ⟨∅, {c}⟩), (c−, ∅, ⟨∅, ∅⟩) is an
r-justification chain for a.

In the above example, the derivation of b through r11 is
hidden in the first element of the chain. Ideally we want to
decompose such an r-justification and put an r-justification for
b before the one for a. This idea motivates the next definition.
Definition 11. Given an r-justification (a+, Q, J) we call r-
justifications (a+1 , Q1, J1), (a

+
2 , Q2, J2) an elaboration of it

if a = a1, Q1, Q2 ⊂ Q, J+
1 = J+ ∪ {a2}, J+

2 = J+ and
J−
1 , J−

2 ⊆ J−. We call an r-justification elaborated if there is
no elaboration for it, and an r-justification chain elaborated if
all its elements are elaborated.
Example 11. Reconsider program P5 from Example 10.
Then J in the example can be elaborated through
the first element yielding (a+, {r10}, ⟨{b}, ∅⟩), (b+, {r11},
⟨∅, {c}⟩), (c−, ∅, ⟨∅, ∅⟩) as a (concise) chain.
Example 12. We have the program P6 = {r13 : a ∨ b ←
⊤, r14 : c← a, r15 : c← b, r16 : ⟨{a, b}, {{a, b}}⟩ ← c}.

Now, an r-justification for a is (a+, P6, ⟨∅, ∅⟩) which
is not elaborated. It might be tempting to try to elabo-
rate it using b, but (a+, {r15, r16}, ⟨{b}, ∅⟩), (b+, P6, ⟨∅, ∅⟩)
is not a valid elaboration since P6 ̸⊂ P6 and b
can only be derived using the whole program. How-
ever, (a+, {r15, r16}, ⟨{c}, ∅⟩), (c+, {r13, r14, r15}, ⟨∅, ∅⟩) is
in fact an elaboration for a. This can be motivated by high-
lighting that while both b and c can be used to derive a, the
latter atom requires less rules to do so.

It is of course interesting to consider how m-justification
from the previous section and r-justification relate. For a
subclass of programs, namely normal and convex programs,
we have the following result showing a strong correspondence.
Theorem 5. Let P be a normal, convex program and
I ∈ AS (P). For each elaborated, concise r-justification
(a+, Q, J), it holds that Q = {r} is a singleton set and J is a
globally concise m-justification for I |= B(r) w.r.t. P and I .

The reason for this result is that for such programs we can
define an immediate consequence operator for definite pro-
grams. Now, the restriction to normal programs is necessary
because otherwise the reduct defined in Section 2 would not
yield a definite program. In contrast convexity is required to

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3197

ensure that the fixpoint of the consequence operator is indeed
an answer-set. The next examples also show that we do not
have such elaborate r-justifications in general.

Example 13. Suppose we have the program Q = {r17 : p←
q, r18 : q ← p} which we use to define P7 = Q ∪ {r19 :
p∨ q ← ⊤} and P8 = Q∪{r20 : p← ⟨{p, q}, {∅, {p, q}}⟩}.
The former is clearly convex but disjunctive, whereas the latter
is normal but not convex. Now, {p, q} is the sole answer-
set for both programs but the elaborated r-justification for p
w.r.t. P7 is (p+, {r17, r19}, ⟨∅, ∅⟩}) and the one w.r.t. P8 is
(p+, {r17, r20}, ⟨∅, {q}⟩}). In both cases it is not possible to
use a single rule to derive p.

In the final part of this section, we will show how m-
justification and r-justification can be jointly used.

Example 14. Consider the program

P9 = {r21 : a← #sum{1 : b, 2 : d}> 2,

#sum{3 : d, 2 : c}< 5,

r22 : d← b, r23 : {b; c} ← ⊤}

where {b; c} represents a choice between some subset
of b and c. Given the answer-set {a, b, d}, a possi-
ble r-justification chain for a is (a+, {r21}, ⟨{b, d}, {c}⟩}),
(d+, {r22}, ⟨{b}, ∅⟩}), (b+, {r23}, ⟨∅, {c}⟩}), (c−, ∅, ⟨∅, ∅⟩).
Looking at the first element of the chain, we see that
rule r21 derives a based on ⟨{b, d}, {c}⟩. If we now
look at the m-justifications for the body atoms of r21, i.e.,
#sum{1 : b, 2 : d} > 2 and #sum{3 : d, 2 : c} < 5, we ob-
tain ⟨{b, d}, ∅⟩ and ⟨∅, {c}⟩. In other words, the truth of b and
d satisfies the first aggregate, whereas the second aggregate is
true because c is false in the answer-set.

The interplay between m-justifications and r-justifications
is can especially be beneficial in an interactive setting as the
next example shows.

Example 15. Assume we have the following in the common
ASP-Core-2 syntax [Calimeri et al., 2020]:

P10 = {r24 : top(1)← emp(1),

#max{V ,M : sold(1,M ,V)}> 10,

#sum{V ,M : sold(1,M ,V)}≥ 20,

r25 : emp(1), r26 : sold(1, 1, 12),

r27 : sold(1, 2, 8), r28 : sold(1, 3, 1)}

Intuitively, the program contains facts about an employee
and their sales for the last three months. Rule r24 states
that employee 1 is a top earner if she sold more than 10
units in at least one month and the total units she sold is
at least 20. The single answer-set of P10 contains the atom
top(1) indicating that employee 1 is a top earner. Suppose
now the user has access to an interactive explanation sys-
tem and asks why employee 1 is a top earner. The system
can start the explanation process by giving an r-justification
for top(1), for instance (top(1), {r24, r25, r26, r27}, ⟨∅, ∅⟩).
Elaboration of this r-justification would not really yield ad-
ditional insight, but the user can instead opt to view an m-
justification for the body of r24. The unique m-justification
is ⟨{emp(1), sold(1, 1, 12), sold(1, 2, 8)}, ∅⟩ indicating that

employee 1 was designated as a top earner because she sold
12 units in the first month and 8 in the second. The process can
even be further fine-grained – if the user wishes – by giving the
m-justifications of the individual body literals. For example,
the first aggregate has the m-justification ⟨{sold(1, 1, 12)}, ∅⟩,
which tells the user that the sales in the first month were nec-
essary to satisfy this part of the body of the rule.

6 Complexity
We now consider complexity and assume basic familiarity
with complexity theory, cf. [Papadimitriou, 1994].

6.1 Computational Basis
Before we present our study of the complexity of the problems
emerging from what we have discussed so far, we first have
to give some assumptions on the underlying representation
and evaluation of c-atoms. We do not commit to a specific
formalism, but rather request that any representation R(A) =
(D,R(C)) of a c-atom A satisfies the following property.

Definition 12. Let A = ⟨D,C⟩ be a c-atom and J be a partial
interpretation. Then AJ = ⟨D,CJ) where CJ = {S ∈ C |
S ⊇ J+, S ∩ J− = ∅}⟩ is the fixing of J in A; it is total, if J
is total on D.

Assertion 1. Given a c-atom A = ⟨D,C⟩ (i.e., R(A)) and a
total fixing I of A, deciding whether CI ̸= ∅ is in P.

In other words, checking whether a set S is a satisfier (seen
as a total fixing) of a c-atom A can be done in polynomial
time. For example, using for the representation R(A) of A
simply C as an explicit collection, a Boolean formula, some
(perhaps restricted) CNF/DNF, a BDD etc. would fulfill this
elementary property. We then easily obtain

Lemma 1. Given a set L of c-literals and a partial interpre-
tation J , deciding J |= L is coNP-complete resp. J ̸|= L is
NP-complete. Both tests are in P, if J is a total fixing of each
c-literal in L (in particular, if J is a total interpretation).

Both deciding I |= L and I |= L are in P, if R(·) fulfills
stronger properties; e.g., if deciding C ̸= ∅ (satisfiability) from
R(A) is in P and R(·) is polynomially closed under fixing, i.e.,
some representation R(AI) in the formalism is computable in
polynomial time from R(A) and I . E.g., DNFs, Horn CNFs,
and many other representations have this property.

Furthermore, if R(·) is polynomially closed under conjunc-
tions, i.e., from R(Li) of c-literals Li (remember that neg-
ative c-literals can be replaced by complemented c-atoms),
i = 1, . . . , n, some R(A) in the formalism is computable
in polynomial time for A = AL as in Theorem 1, we can
merge all c-literals into a single c-atom without an exponential
blowup. This extends to merging of c-literals if R(·) is also
polynomially closed under negation, i.e., R(A) is computable
in polynomial time from R(A). Clearly, Boolean formulas
have these properties.

6.2 Complexity Results
We now come to our complexity results for m-justification as
introduced in Section 4. We start with the problem dealing
with the recognition of m-justifications.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3198

Theorem 6. Given a c-literal L, a total interpretation I , and
a partial interpretation J ≤ I , deciding whether J is an
m-justification is DP-complete.

The class DP informally contains the problems amounting
to the ”conjunction” of a problem in NP and a problem in
coNP; the canonical DP-complete problem is SAT-UNSAT,
i.e., to decide, given Boolean formulas F,G whether F is sat-
isfiable and G is unsatisfiable. In Theorem 6, the coNP-check
is required by condition (i) of Definition 2 as partial model
checking is coNP-complete. The NP-check stems from condi-
tion (ii) which requires minimality of the partial interpretation.

Now, by the computational assumptions in the previous
subsection (yielding Lemma 1), we can readily obtain:

Corollary 1. Given a set L of c-literals, a total interpretation
I , and a partial interpretation J ≤ I , deciding whether J is a
globally concise m-justification for L is DP-complete.

However, under local conciseness, the complexity of recog-
nizing positive and negative m-justifications diverges.

Theorem 7. Given a set L of c-literals, a total interpretation
I of L, and a partial interpretation J ≤ I , deciding whether
J is a locally concise m-justification for L is (a) ΣP

2 -complete
if I |= L and (b) ΘP

2 -complete otherwise.

The case (a) can be solved by guessing a sequence of po-
tential m-justifications whose union is J and then checking
whether each candidate is in fact an m-justification for the
corresponding c-literal in L. As this check is in DP, we obtain
that the problem is in PNP = ΣP

2 . In case (b), deciding neg-
ative m-justification amounts to checking whether the given
partial interpretation J is a model of the complement of some
c-literal in L. This can be done with parallel DP-checks thus
NP checks, which puts the problem into PNP

|| = ΘP
2 ;matching

hardness is by a reduction from evaluating a disjunction of DP
instances. This means lower complexity than ΣP

2 but higher
than DP (under common complexity hypotheses).

If we restrict ourselves to convex c-literals, most of the
problems we have discussed so far become tractable.

Theorem 8. Given a set L of convex c-literals, a total inter-
pretation I of L and a partial interpretation J ≤ I , deciding
whether (a) J is a locally concise m-justification for L is NP-
complete if I |= L and (b) J is a globally, respectively locally,
concise m-justification is in P otherwise.

This result is due to Theorem 1, which allows us to merge
a set of convex c-literals semantically into a single convex
c-atom. Recognising locally concise positive m-justifications
is still intractable, as the guess as in Theorem 8.(a) is needed.
In fact, the NP-hardness holds even for monotone c-literals.

Now we turn to the complexity of computing justifications.

Theorem 9. Given a set L of c-literals and a total interpre-
tation I , computing an m-justification for L is in FPNP and
FPNP

|| -hard even if L is a singleton set.

Indeed, with an NP oracle, we can just minimize I atom
by atom. This result is not very surprising, as m-justifications
resemble prime implicants sharing this complexity (cf. Sec. 7).

Our final complexity results for m-justifications concern
definite m-justifications.

Theorem 10. Given a c-literal L and a total interpretation
I , deciding whether a definite m-justification for L exists is
coNP-complete, and computing the latter FPNP[1]-complete.

Note that FPNP[1] is the class of function problems com-
putable in polynomial time having access to exactly one NP-
oracle call. Here, coNP membership holds as we only need to
check for each atom in, respectively not in, the interpretation,
whether it is required for the truth of L. This can be done in
polynomial time and yields a partial interpretation J . If J is
an m-justification, which can be verified in coNP, then it is
also definite. Otherwise, there is no definite m-justification.

We now turn to r-justifications as introduced in Section 5.

Theorem 11. Given a program P and an answer-set I ∈
AS (P). Then deciding whether a triple (a◦, Q, J) is an r-
justification w.r.t. P and I is (a) DP-complete if ◦ = +, and
(b) coNP-complete if ◦ = −. Deciding whether the triple is a
concise r-justification is DP-complete.

Essentially, the complexity in (a) stems from checking pre-
sumptuous entailment, which is coNP-complete, and minimal-
ity of the rules, which requires an NP-complete check. In case
(b), the complexity is slightly lower. The underlying reason
is that we simply have to check whether the set Q contains
exactly the failed support w.r.t. P and I . This amounts to
checking for each rule in Q whether it is a failed support. As
all checks are in coNP, so is their conjunction. Conciseness
requires an additional NP-check.

Finally, we consider problems for r-justification chains.

Theorem 12. Given a program P , an answer-set I ∈ AS (P)
and an r-justification chain J , deciding whether J is elabo-
rated is NP-complete.

Informally, we can check for an atom b in coNP whether it
can be used for some elaboration. By combining the checks
for all b into a single coNP-check, deciding whether some
elaboration exists is in coNP, and thus the negation is in NP.

Theorem 13. Given a program P , I ∈ AS (P), and an atom
a, computing an elaborated r-justification chain for a is in
FPNP and FPNP

|| -hard even if P is normal and convex. If P is
normal and all c-atoms are elementary, the problem is in P.

Informally, we can set up an r-justification chain with pos-
itive and negative justifications of the form (b+, Qb, ⟨∅, I−⟩)
and (b−, Qb, ⟨I+b , I−⟩), resp., and repeatedly replace non-
elaborated r-justifications with some elaboration. The number
of repetitions is polynomial, hence this is feasible in FPNP.
The FPNP

|| -hardness is by a reduction from computing some
m-justification (cf. Theorem 9).

The complexity results given in this section are of course for
the worst case. Since we already have an answer-set, related
work [Wang et al., 2022] suggests that finding r-justification
chains should be practically feasible. However, such investiga-
tions are subject to future work.

7 Related Work
Our m-justifications naturally link to prime implicants, cf.
[Umans et al., 2006], which are smallest formulas (in the con-
text of propositional logic, a non-redundant conjunction of

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3199

literals) that imply a given formula. and they were used to offer
explanations for machine learning classifiers [Shih et al., 2018;
Ignatiev et al., 2019]. Our m-justifications J of c-atoms
A = ⟨D,C⟩ amount to prime implicants of a Boolean formula
F (A) associated with A, while negative and locally concise
m-justifications of (sets of) c-literals have no immediate coun-
terpart. Nonetheless, the link may be fruitfully exploited for
efficient computation of m-justifications [Jackson, 1992].

While there are many works on explainability in ASP
[Fandinno and Schulz, 2019], few address programs with
c-atoms. Notable ones are stepping [Oetsch et al., 2018],
which is a debugging approach, and computations [Liu et al.,
2010], which is a definition of answer-set semantics through
constructive computation. However, the goals of these works
differ from ours. Namely, stepping aims for debugging at
discrepancies between the actual and an expected answer-set,
considering counterfactual situations; Liu et al.’s computa-
tions aim to generalise answer-set semantics to programs with
c-atoms. Both works essentially pursue a bottom-up construc-
tion of answer-sets, while our r-justification chains proceed
top-down and are thus more goal oriented and leaner. Further-
more, Liu et al.’s computations give no justifications for atoms
not in an answer-set, do not support disjunction, and they have
slightly different semantics. E.g., program P8 in Example 13
(which is not convex) would have the unique answer-set ∅,
which differs from ASP solvers like DLV [Leone et al., 2006]
and clingo [Gebser et al., 2014] that also yield {p, q} as the
only answer-set.

The notions for programs most similar to our r-justification
chains are β-witnesses [Wang et al., 2022] and offline justifi-
cation graphs [Pontelli et al., 2009], which recently were ex-
tended to programs with choice rules and constraints [Trieu et
al., 2021], respectively with variables [Trieu et al., 2022]. The
main difference between our approach and theirs on choice
is that offline justification graphs can designate an atom to be
true by the choice rule and the other atoms in the choice do
not appear in the justification at all. In an r-justification, those
atoms always appear as negative prerequisites. This has the
benefit that in an r-justification chain, such atoms can also be
constructively falsified. Furthermore, justification graphs cur-
rently neither handle disjunction nor aggregates. In contrast to
justification graphs and r-justification chains, β-witnesses only
encompass positive information about what is in an answer-set.
The main similarity between our r-justification chains and β-
witnesses is that they also use sets of rules to iteratively justify
atoms, but bottom-up. Offline justification graphs do incorpo-
rate information about the atoms absent from an answer-set.
Intuitively, they aim at a constructive proof of an atom using
the well-founded model of the program. Atoms not contained
in that model can be assumed to be false, and thus cycles in the
graph prevented. This is in stark contrast to our r-justification
chains, which do not require such constructive proofs for false
atoms, but confine to blocked support. Furthermore, while
well-founded semantics for disjunctive programs is available,
cf. [Wang et al., 2012], generalising justification graphs from
normal propositional to disjunctive programs with c-atoms is
non-trivial.

Another related notion is the formal theory of justifica-
tion [Denecker et al., 2015; Marynissen et al., 2022], which

aims to characterise different semantics of logic programs in
terms of “justifications”. Intuitively, different semantics can be
formalised by which justifications are accepted. In contrast to
our work, the justifications of the formal theory are potentially
infinite and describe dependencies between atoms containing
no direct information about rules. Furthermore, disjunction
and c-atoms in the rule heads are not supported.

8 Conclusion & Future Work
We introduced and studied complementary notions of justifi-
cation for ASP programs built over Abstract Constraint atoms,
which encompass various ASP language extensions, among
them aggregates and choice rules. Our m-justifications use a
semantic approach based on minimal partial models, while r-
justification chains are a more syntactically minded, rule-based
notion. We have provided several examples and showed how
the notions can be jointly used. Besides some basic properties
of justifications, we provided complexity results for emerg-
ing computational tasks. While they are often intractable in
general, we identified relevant tractable cases.

Our ongoing and future work aims to extend this theoret-
ical study of justification, and to utilise it in a fully-fledged
and interactive explanatory system. Specifically, a user may
opt in a session for the model- or the rule-based approach at
the current stage to obtain more insight, control which rules
get expanded, and drive possible elaboration of justifications.
Investigating how our justifications can be used or extended
to offer contrastive justifications, which inform about changes
to flip the membership of atoms in an answer-set, is another
worthwhile endeavour.

Acknowledgments
Tobias Geibinger is a recipient of a DOC Fellowship of the
Austrian Academy of Sciences at the Institute of Logic and
Computation at the TU Wien. Furthermore, this work has
benefited from Humane AI Net ICT-48-2020-RIA / 952026.

References
[Beierle et al., 2005] Christoph Beierle, Oliver Dusso, and

Gabriele Kern-Isberner. Using answer set programming
for a decision support system. In Proceedings of the 8th
International Conference (LPNMR 2005), volume 3662 of
LNCS, pages 374–378. Springer, 2005.

[Calimeri et al., 2020] Francesco Calimeri, Wolfgang Faber,
Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. Asp-core-2 input
language format. Theory Practice of Logic Programming,
20(2):294–309, 2020.

[Denecker et al., 2015] Marc Denecker, Gerhard Brewka,
and Hannes Strass. A formal theory of justifications. In Pro-
ceedings of the 13th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2015),
volume 9345 of LNCS, pages 250–264. Springer, 2015.

[Erdem and Oztok, 2015] Esra Erdem and Umut Oztok. Gen-
erating explanations for biomedical queries. Theory and
Practice of Logic Programming, 15(1):35–78, 2015.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3200

[Erdem et al., 2016] Esra Erdem, Michael Gelfond, and
Nicola Leone. Applications of answer set programming.
AI Magazine, 37(3):53–68, 2016.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Ger-
ald Pfeifer. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of the
9th European Conference on Logics in Artificial Intelli-
gence (JELIA 2004), volume 3229 of LNCS, pages 200–212.
Springer, 2004.

[Falkner et al., 2018] Andreas Falkner, Gerhard Friedrich,
Konstantin Schekotihin, Richard Taupe, and Erich C. Tep-
pan. Industrial applications of answer set programming. KI
- Künstliche Intelligenz, 32(2):165–176, 2018.

[Fandinno and Schulz, 2019] Jorge Fandinno and Claudia
Schulz. Answering the ”why” in answer set programming -
A survey of explanation approaches. Theory and Practice
of Logic Programming, 19(2):114–203, 2019.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers,
2012.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir
Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference
and Symposium on Logic Programming (ICLP 2012), pages
1070–1080. MIT Press, 1988.

[Ignatiev et al., 2019] Alexey Ignatiev, Nina Narodytska, and
João Marques-Silva. Abduction-based explanations for
machine learning models. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI 2019), pages
1511–1519. AAAI Press, 2019.

[Inclezan, 2015] Daniela Inclezan. An application of answer
set programming to the field of second language acquisition.
Theory and Practice of Logic Programming, 15(1):1–17,
2015.

[Jackson, 1992] Peter Jackson. Computing prime implicates.
In Proceedings of the 20th ACM Annual Conference on
Computer Science (CSC 1992), pages 65–72. ACM, 1992.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV system for knowledge rep-
resentation and reasoning. ACM Transactions on Computa-
tional Logic, 7(3):499–562, 2006.

[Lifschitz, 2010] Vladimir Lifschitz. Thirteen definitions of
a stable model. In Fields of Logic and Computation, Essays
Dedicated to Yuri Gurevich on the Occasion of His 70th
Birthday, volume 6300 of LNCS, pages 488–503. Springer,
2010.

[Liu et al., 2010] Lengning Liu, Enrico Pontelli, Tran Cao
Son, and Miroslaw Truszczyński. Logic programs with ab-

stract constraint atoms: The role of computations. Artificial
Intelligence, 174(3):295–315, 2010.

[Marek and Truszczynski, 2004] Victor W. Marek and
Miroslaw Truszczynski. Logic programs with abstract
constraint atoms. In Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI 2004), pages
86–91. AAAI Press / The MIT Press, 2004.

[Marynissen et al., 2022] Simon Marynissen, Jesse Heyn-
inck, Bart Bogaerts, and Marc Denecker. On nested justi-
fication systems. Theory Practice of Logic Programming,
22(5):641–657, 2022.

[Miller, 2019] Tim Miller. Explanation in artificial intelli-
gence: Insights from the social sciences. Artificial Intelli-
gence, 267:1–38, 2019.

[Oetsch et al., 2012] Johannes Oetsch, Jörg Pührer, and Hans
Tompits. An FLP-style answer-set semantics for abstract-
constraint programs with disjunctions. In Technical Com-
munications of the 28th International Conference on Logic
Programming (ICLP 2012), volume 17 of LIPIcs, pages
222–234. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2012.

[Oetsch et al., 2018] Johannes Oetsch, Jörg Pührer, and Hans
Tompits. Stepwise debugging of answer-set programs.
Theory and Practice of Logic Programming, 18(1):30–80,
2018.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional Complexity. Addison-Wesley, 1994.

[Pontelli et al., 2009] Enrico Pontelli, Tran Cao Son, and
Omar Elkhatib. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Pro-
gramming, 9(1):1–56, 2009.

[Shen et al., 2009] Yi-Dong Shen, Jia-Huai You, and Li-Yan
Yuan. Characterizations of stable model semantics for
logic programs with arbitrary constraint atoms. Theory and
Practice of Logic Programming, 9(4):529–564, 2009.

[Shih et al., 2018] Andy Shih, Arthur Choi, and Adnan Dar-
wiche. A symbolic approach to explaining bayesian net-
work classifiers. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018),
pages 5103–5111. ijcai.org, 2018.

[Son and Pontelli, 2007] Tran Cao Son and Enrico Pontelli.
A constructive semantic characterization of aggregates in
answer set programming. Theory Practice of Logic Pro-
gramming, 7(3):355–375, 2007.

[Trieu et al., 2021] Ly Ly T. Trieu, Tran Cao Son, and Mar-
cello Balduccini. exp(aspc) : Explaining ASP programs
with choice atoms and constraint rules. In Technical Com-
munications of the 37th International Conference on Logic
Programming (ICLP 2021), volume 345 of EPTCS, pages
155–161, 2021.

[Trieu et al., 2022] Ly Ly T. Trieu, Tran Cao Son, and Mar-
cello Balduccini. xasp: An explanation generation system
for answer set programming. In Proceddings of the 16th

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3201

International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2022), volume 13416 of
LNCS, pages 363–369. Springer, 2022.

[Umans et al., 2006] Christopher Umans, Tiziano Villa, and
Alberto L. Sangiovanni-Vincentelli. Complexity of
two-level logic minimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
25(7):1230–1246, 2006.

[Wang et al., 2012] Yisong Wang, Fangzhen Lin, Mingyi
Zhang, and Jia-Huai You. A well-founded semantics for ba-
sic logic programs with arbitrary abstract constraint atoms.
In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI 2012). AAAI Press, 2012.

[Wang et al., 2022] Yisong Wang, Thomas Eiter, Yuanlin
Zhang, and Fangzhen Lin. Witnesses for answer sets
of logic programs. ACM Transactions on Computational
Logic, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3202

	Introduction
	Preliminaries
	Basic Properties of c-Literals
	Model-based Justifications
	Justifications for c-literals
	Justifications for Sets of c-literals

	Rule-based Justifications
	Complexity
	Computational Basis
	Complexity Results

	Related Work
	Conclusion & Future Work

