
Treewidth-Aware Complexity for Evaluating Epistemic Logic Programs

Jorge Fandinno1 , Markus Hecher2
1University of Nebraska Omaha, NE, USA

2Massachusetts Institute of Technology, MA, USA
jfandinno@unomaha.edu, hecher@mit.edu

Abstract
Logic programs are a popular formalism for encod-
ing many problems relevant to knowledge repre-
sentation and reasoning as well as artificial intel-
ligence. However, for modeling rational behavior
it is oftentimes required to represent the concepts
of knowledge and possibility. Epistemic logic pro-
grams (ELPs) is such an extension that enables both
concepts, which correspond to being true in all or
some possible worlds or stable models. For these
programs, the parameter treewidth has recently re-
gained popularity. We present complexity results for
the evaluation of key ELP fragments for treewidth,
which are exponentially better than known results
for full ELPs. Unfortunately, we prove that obtained
runtimes can not be significantly improved, assum-
ing the exponential time hypothesis. Our approach
defines treewidth-aware reductions between quanti-
fied Boolean formulas and ELPs. We also establish
that the completion of a program, as used in mod-
ern solvers, can be turned treewidth-aware, thereby
linearly preserving treewidth.

1 Introduction
The language of epistemic specifications [Gelfond, 1991;
Gelfond and Przymusinska, 1993; Gelfond, 1994] (a.k.a. epis-
temic logic programs), proposed by Gelfond in 1991, extends
disjunctive logic programs (under the stable model seman-
tics; [Gelfond and Lifschitz, 1988; Gelfond and Lifschitz,
1991]) with modal constructs called subjective literals. The
introduction of this extension was originally motivated by
the need to correctly represent incomplete information in pro-
grams that have several stable models. Using subjective lit-
erals, it is possible to check whether a regular literal is true
in every or some stable model of the program, those models
are being collected in a set called world view. This allows for
representing, within the language, whether some proposition
should be understood accordingly to the open or the closed
world assumption. See the work by [Fandinno et al., 2021] for
a recent survey about epistemic logic programs (ELPs).

In general, deciding whether an epistemic logic program has
a world view is ΣP

3-complete [Truszczyński, 2011]. However,
for the head-cycle-free fragment, it complexity is reduced

to ΣP
2-complete. Though the complexity of this fragment

is the same as disjunctive logic programs under the stable
models semantics, the language of epistemic logic programs
allows us to write more natural representations of several
problems in the polynomial hierarchy than previous logic
programming techniques such as saturation [Eiter and Gottlob,
1995]. Examples of this are (length-bounded) conformant
planning [Kahl et al., 2020; Cabalar et al., 2021] and action
reversibility [Faber et al., 2021].

In this paper, we conduct a more fine-grained complex-
ity analysis of epistemic logic programs in terms of param-
eters of a problem [Cygan et al., 2015]. In particular, we
focus on the influence of the parameter treewidth for solv-
ing objectively tight and head-cycle-free epistemic programs.
An epistemic logic programs is objectively tight if its depen-
dency graph does not have positive cycles that involve ex-
clusively objective atoms. For these classes, we show that
deciding the existence of a world view is 22

O(k) ·poly(|A(Π)|)
and 22

O(k·log(k)) · poly(|A(Π)|), respectively, where k is the
treewidth. That is, we can solve the consistency problem
in polynomial time in the program size while being super-
polynomial only in its treewidth. We also show that, under
the Exponential Time Hypothesis (ETH) [Impagliazzo et al.,
2001], our characterizations are tight, that is, consistency for
these classes cannot be decided in time 22

o(k) · poly(|A(Π)|)
and 22

o(k·log(k)) · poly(|A(Π)|), respectively.
Table 1 shows our results. So far, only the classical complex-

ity [Shen and Eiter, 2016] as well as the parameterized com-
plexity for treewidth on full ELPs are known [Hecher et al.,
2020]. Our fine-grained complexity results on the presented
ELP fragments are not only exponentially better, they utilize
novel reductions via quantified Boolean formulas that ensure
treewidth-guarantees. This allows us to demonstrate treewidth-
awareness of the completion used by modern solvers.

2 Preliminaries
We assume familiarity with complexity [Papadimitriou, 1994],
graph theory [Bondy and Murty, 2008], and logic [Biere et al.,
2009]. We also assume familiarity with logic programs under
the stable model semantics [Gelfond and Lifschitz, 1988].

Epistemic Logic Programs. Let A be a set of atoms. An
objective literal is either an atom a ∈ A (positive literal), an

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3203

Result \ Fragment Non-Negative*+Tight Non-Negative* Tight ι-Tight Normal (HCF) Full ELPs

Complexity NP-complete NP-complete ΣP
2 -complete ΣP

2 -complete ΣP
2 -complete ΣP

3 -complete

TW Upper Bound 2O(w) 2O(w·log(w)) 22O(w)

22O(w·log(ι))
22O(w·log(w))

22
2O(w)

TW Lower Bound 2o(w) 2o(w·log(w)) 22o(w)

22o(w·log(ι))
22o(w·log(w))

22
2o(w)

Table 1: Complexity classification for world view existence over diverse ELP fragments. The first row shows existing completeness results.
The second row gives upper bounds for treewidth w (without polynomial factors) and the third row states corresponding lower bounds (under
ETH). New results are given in bold-face, others are known [Shen and Eiter, 2016; Hecher et al., 2020]. *: Negation in constraints allowed.

atom preceded by negation ¬a (negative literal) or a truth
constant.1 A subjective literal is an expression K a s.t. a ∈ A.

A rule r is an implication of the form
a1 ∨ · · · ∨ an ← L1 ∧ · · · ∧ Lm (1) with n ≥ 1 and
m ≥ 0, where each ai is an atom in A (or constant ⊥) and
each Lj a literal. If n = 1, then rule r is called normal. The
left-hand disjunction of (1) is called the rule head and its set
of atoms is abbreviated by Hr. The right hand side of (1) is
called the rule body and the set of its literals is abbreviated
as Br. We denote by B+

r the set of all positive objective
literals in Br, by B−

r the set of all negative objective literals
in Br, and Bs

r the set of all subjective literals in Br. By abuse
of notation, we also write Br, B+

r , B−
r , and Bs

r to denote the
conjunction of all literals in those sets. Furthermore Bc

r is ⊥
if⊥ occurs in Br and⊤ otherwise. Atoms in A appearing in a
rule r are given by A(r). Further, A(Π) :=A. Rule r is called
objective if its literals are objective; r is non-negative if it is
normal and either all objective literals are atoms or Hr={⊥}.

A program Π is a set of rules and it is said to be objective,
normal, or non-negative if all its rules are objective, normal,
or non-negative, respectively. The (positive) dependency di-
graph DΠ of a program Π is the directed graph defined on the
set of atoms from

⋃
r∈ΠHr ∪ B+

r , where there is a directed
edge from vertex a to vertex b iff there is a rule r ∈ Π with
a ∈ B+

r and b ∈ Hr. Recall that an objective program is
called tight [Lifschitz, 1996] if its positive dependency graph
contains no cycle. We generalize this notion to programs with
subjective literals as follows. A program Π is (objectively)
tight if DΠ contains no cycle. Further, program Π is called
head-cycle-free (HCF) if DΠ contains no cycle consisting of
at least two atoms of the head Hr of a rule r.

Note that according to our definition, the expression
a ← K¬b (2) is not a valid rule. This restriction simplifies
the narrative of the paper and does not limit the expressiveness
of the language, because we can simulate these more general
rules using auxiliary atoms. In our particular example, we
can replace (2) with the set {a ← Knot b, not b ← ¬b},
where not b is a fresh auxiliary atom. Similarly, a ← ¬K b
is not a rule according to our narrow definition, but it can be
encoded by rules a← ¬k b and k b← K b, where k b is an
auxiliary atom not occurring anywhere else in the program.

For a non-empty set of propositional interpretations W , we
write W |= K a if a ∈ I for all I ∈ W . We write W ̸|= K a
otherwise. Given a program Π, by ΠW we denote the objective
program obtained from Π by replacing each subjective literalL
by⊤ if W |= L and by⊥ otherwise. W is called a world view
(WV) of Π if and only if the set of stable models of ΠW is W .

1For brevity, we use constants with their usual meaning.

Tree Decompositions and Treewidth. For a rooted (di-
rected) tree T = (N,A) with root root(T) and a node t ∈ N ,
we let chldr(t) be the set of all nodes t′, which have an
edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree de-
composition (TD) of a graph G is a pair T = (T, χ), where T
is a rooted tree, and χ is a mapping that assigns to each node t
of T a set χ(t) ⊆ V , called a bag, such that:

1. V =
⋃

t of T χ(t) and E ⊆
⋃

t of T {{u, v} | u, v ∈ χ(t)}
2. for each s lying on any r-t-path: χ(r) ∩ χ(t) ⊆ χ(s).

Then, define width(T) := maxt of T |χ(t)|−1. The treewidth
tw(G) of G is the minimum width(T) over all tree decompo-
sitions T of G. Observe that for every vertex v ∈ V , there is a
unique node t∗ with v ∈ χ(t∗) such that either t∗ = root(T)
or there is a node t of T with chldr(t)={t∗} and v /∈ χ(t). We
refer to the node t∗ by last(v). For arbitrary but fixed w ≥ 1,
it is feasible in linear time to decide if a graph has treewidth at
most w and, if so, to compute a TD of width w [Cygan et al.,
2015]. In this work, we assume only TDs (T, χ), where for
every node t of T , |chldr(t)| ≤ 2. Such a TD can be obtained
from any TD in linear time without increasing the width.
Treewidth-Dependent Tightness. The primal graph GΠ of
a program Π has as vertices the atoms A(Π) with an edge
between two vertices, whenever these vertices appear together
in A(r) of a rule r ∈ Π. For an atom a ∈ A(Π) we denote the
strongly-connected component (SCC) of a by scc(a), which
is the ⊆-largest set C ⊆ A(Π) with a ∈ C such that for every
two distinct atoms u, v inC there is a directed path from u to v
in DΠ. Then, the tightness width of a TD T =(T, χ) of GΠ, is
maxt of T maxx∈χ(t) |χ(t) ∩ scc(x)|. The tightness treewidth
ι of Π is the smallest tightness width among every TD of
width O(tw(GΠ)). If Π has tightness treewidth ι, we call Π
“ι-tight” [Fandinno and Hecher, 2021].
Quantified Boolean Formulas. Let ℓ be a positive inte-
ger, which we call (quantifier) rank later, and ⊤ and ⊥
be the constant evaluating to 1 and 0, respectively. For
a Boolean formula F , we abbreviate by var(F) the vari-
ables occurring in F and F (X1, . . . , Xl) to indicate that
X1, . . . , Xl ⊆ var(F). A quantified Boolean formula ϕ
(in prenex normal form), QBF for short, is an expression of
the form ϕ = Q1X1.Q2X2. · · ·QℓXℓ.F (X1, . . . , Xℓ), where
for 1 ≤ i ≤ ℓ, we have Qi ∈ {∀, ∃} and Qi ̸= Qi+1,
the Xi are disjoint, non-empty sets of Boolean variables,
and F is a Boolean formula. We let matrix(ϕ) := F and
we say that ϕ is closed if var(matrix(F)) =

⋃
i∈ℓXi. We

evaluate ϕ by ∃x.ϕ ≡ ϕ[x 7→ 1] ∨ ϕ[x 7→ 0] and ∀x.ϕ ≡
ϕ[x 7→ 1] ∧ ϕ[x 7→ 0] for a variable x. We assume that
matrix(ϕ) = ψCNF∧ψDNF, where ψCNF is in CNF (disjunction

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3204

of conjunctions of literals) and ψDNF is in DNF (conjunction
of disjunctions of literals). Then, depending on Qℓ, either
ψCNF or ψCNF is optional, more precisely, ψCNF might be ⊤, if
Qℓ = ∀, and ψDNF is allowed to be⊤, otherwise. The problem
ℓ-QSAT asks, given a closed QBF ϕ of rank ℓ, whether ϕ ≡ 1.
Treewidth for QBFs. For a given QBF ϕ with matrix(ϕ) =
ψCNF ∧ ψDNF, we define the primal graph Gϕ = Gmatrix(ϕ),
whose vertices are var(matrix(ϕ)). Two vertices of Gϕ are
adjoined by an edge, whenever the corresponding variables
share a clause of ψCNF or a term of ψDNF, respectively.

Let tower(i, p) be tower(i−1, 2p) if i > 0 and p otherwise.
Further, we assume that poly(n) is any polynomial for a given
positive integer n. The following result is known for QSAT.
Proposition 1 ([Chen, 2004]). For any arbitrary QBF ϕ of
quantifier rank ℓ > 0, the problem ℓ-QSAT can be solved in
time tower(ℓ,O(tw(Gφ))) · poly(|var(ϕ)|).

Assuming the exponential time hypothesis (ETH) [Im-
pagliazzo et al., 2001], one cannot significantly improve
this runtime in the worst case. Intuitively, ETH im-
plies that SAT=1-QSAT can not be decided in time better
than 2o(|var(φ)|) for an arbitrary formula φ.
Proposition 2 ([Fichte et al., 2020]). Under ETH, for any
arbitrary QBF φ of quantifier rank ℓ > 0, problem ℓ-QSAT
cannot be solved in time tower(ℓ, o(tw(Gφ))) · poly(|var(φ)|).

The result still holds for QBFs whose treewidth comprises
variables Vℓ of the inner-most quantifier, i.e., we may assume
every TD bag contains constantly many variables not in Vℓ.

3 Epistemic Logic Programs as QBFs
In this section, we show how we can encode ELPs as QBFs.
Programs as formulas. We present a way to compute the
stable models of a program by translating it into a proposi-
tional formula. These translations are straightforward gen-
eralizations of the completion [Clark, 1977] and level map-
pings [Niemelä, 2008] to programs with subjective literals.

Let us denote by K := {ka | a ∈ A(Π)} a set of fresh new
atoms that do not occur in program Π, that isK∩A = ∅, where
we refer to A(Π) by A. Given any expression E (program, set,
formula, etc.), by k(E) we denote the result of replacing each
occurrence of a subjective literal of the form K a by atom ka.

Given a program Π, by COMP[Π] we refer to the comple-
tion, denoting the conjunction of the following formulas:
ar ↔ B+

r ∧B−
r ∧Bc

r ∧ k(Bs
r) ∧Hr(a) for every r ∈ Π,

a ∈ Hr (3)
a↔

∨
a∈H(r)

ar for every a∈A(Π) (4)

where Hr(a) :=
∧

h∈Hr\{a} ¬h. Note that COMP[Π] is
analogous to the completion used by ASP solvers [Geb-
ser et al., 2012; Alviano et al., 2019; Lin and Zhao, 2004;
Lierler and Maratea, 2004], but with the extra atoms in k(Bs

r)
to represent the subjective literals. These atoms behave as
“externals” that can be fixed in order to compute the world
views of the program. We formalize now this intuition.

Recall that for objective programs that are tight [Lifschitz,
1996], its stable models coincide with the classical models of
its completion. We extend this to our notion of objectively tight

programs below. Note that objective tightness only considers
positive objective literals and is different from the notion of
epistemically tight programs defined by [Cabalar et al., 2020],
so positive dependencies among subjective literals are allowed.
Proposition 3. Let W be a non-empty set of propositional
interpretations and Π be a program such that Π is objectively
tight. Then, W is a world view of Π iff W is the set of all
classical models of COMP[ΠW].
Proof. If Π is objectively tight, then ΠW is tight. The result
follows immediately from Fages’ theorem [Fages, 1994].

Definition of SM[Π]. We extend this to normal (HCF)
programs as follows. If Π is tight, we define SM[Π]
to be COMP[Π]. Otherwise, SM[Π] is the conjunction
of COMP[Π], where Formulas (3) are replaced as follows,
using a strict partial ordering ≺2 among atoms [Lin and Zhao,
2003; Janhunen, 2006].
ar ↔ B+

r ∧B−
r ∧Bc

r ∧ k(Bs
r)∧Hr(a)∧ for every r ∈ Π,∧

b∈B+
r

(b ≺ a) a ∈ Hr (5)

Proposition 4. Let W be a non-empty set of propositional
interpretations and Π be a program. Then, W is a world view
of Π iff W is the set of classical models of SM[ΠW].
Proof. If Π is objectively tight, the result follows from Propo-
sition 3. Otherwise, it holds by [Niemelä, 2008, Thm. 1].

We can also rewrite the right hand side of the equivalence of
this proposition in terms of the auxiliary atoms inK as follows.
If W is a non-empty set of propositional interpretations, then
by k(W) we denote k(W) := {ka | a ∈ I for all I ∈W}.

Furthermore, if L is a subset of K, by FL, we denote the
formula obtained from F by replacing each occurrences of
atom ka by ⊤ if ka is in L and by ⊥ otherwise. Intuitively,
FL formalizes the epistemic reduct applied to the formula
corresponding to a program.
Corollary 5. Let W be a non-empty set of propositional in-
terpretations and Π be a program. Then, W is a world view
of Π iff W is the set of classical models of SM[Π]k(W).
Proof. Note that SM[ΠW] is equivalent to SM[Π]k(W).

World views as QBFs. We now show how we can charac-
terize the world views of a program Π as a QBF formula. Our
characterization is similar to the characterization of Autoepis-
temic Logic given by [Egly et al., 2000], but makes use of
three modules that use the SM[Π] formula.

Fc [Π] = ∃A. SM[Π]

Fk [Π] = ∀A.
(

SM[Π]→
∧
a∈A

(ka → a)
)

Fp [Π] =
∧
a∈A

(
¬ka → (∃A.(SM[Π] ∧ ¬a))

)
Proposition 6. Let L be a subset of K. The following holds:

1. L satisfies Fc [Π] iff SM[Π]L has a stable model;
2. L satisfies Fk [Π] iff, for all ka ∈ L, every stable model

of SM[Π]L satisfies a;

2Ordering ≺ has to be irreflexive, asymmetric, and transitive.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3205

3. L satisfies Fp [Π] iff, for all ka ∈ K \ L, some stable
model of SM[Π]L does not satisfy a.

The following formula characterizes world views:

F [Π] = Fc [Π] ∧ Fk [Π] ∧ Fp [Π]

Proposition 7. If W is a world view of Π, then k(W) sat-
isfies F [Π]. Conversely, if L satisfies F [Π], then the set of
classical models of SM[Π]L is a world view of Π.
Proof. Assume that W is a world view of Π. Then, from
Corollary 5, W is the set of classical models of SM[Π]k(W)

and it is non-empty. From Proposition 6, this implies
that k(W) satisfies the three conjuncts of F [Π] and,
thus, F [Π]. Conversely, assume that L satisfies F [Π] and
let W be the set of classical models of SM[Π]L. Then, from
Corollary 5, W is non-empty and k(W) = L. That is, W is
the set of classical models of SM[Π]k(W). From Corollary 5,
this implies that W is a world view of Π.

FormulaF [Π] can be transformed to a closed QBF in prenex
normal form as follows, where K and A, as used in Fc[Π],
are existentially quantified. Since the existentially quantified
variables A in Fp[Π] depend on the variable a ∈ A of the
outer-most conjunction, each conjunct has to be over fresh
variables. Thereby every b ∈ A with b ̸= a appearing in the
conjunct is replaced by a fresh variable ba, resulting in fresh
sets Aa of existentially quantified variables. Finally, every
universally quantified variable a ∈ A appearing in Fk[Π] has
to be replaced by a fresh copy a′, resulting in a formula F ′

k[Π]
over variables K and A′ (universally quantified).

4 Decomposition-Guided Reductions for ELPs
Inspired by related work [Hecher, 2022], a decomposition-
guided (DG) reductionR is a function that takes both a pro-
gram Π and a TD T = (T, χ) of GΠ, and returns a QBF φ.

The way a DG reduction is constructed for Π, it yields
a TD T ′ = (T, χ′) of Gφ of the resulting QBF φ. So, the
idea of such a DG reduction is to construct φ from a TD
node’s point of view. Thereby, for each node t of T , the
constructed bag χ′(t) depends on the original bag χ(t), but
also on the constructed bags of its child nodes. This gives
rise to a function fR that takes a TD node t, its bag χ(t)
and a set χ′(chldr(t)) := {χ′(ti) | ti ∈ chldr(t)} of con-
structed bags for the child nodes of t. Figure 1 illustrates
such a function fR taking node t, its original bag χ(t), as
well as χ′(chldr(t)), to construct each bag χ′(t), which then
corresponds to f(t, χ(t), χ′(chldr(t))).

Then, since width(T) is bounded by O(maxt of T (|χ(t)|)),
also the treewidth of the resulting QBF is at
most O(maxt of T (|f(t, χ(t), χ′(chldr(t))|)). So, these
DG reductions are TD-guided; their construction adheres to
dynamic programming, thereby giving treewidth guarantees.
Decomposition-Guided Program Completion. As an ex-
ample of DG reductions, we establish that Clark’s comple-
tion [Clark, 1977], as created by ASP solvers, e.g., [Geb-
ser et al., 2012; Alviano et al., 2019; Lin and Zhao, 2004;
Lierler and Maratea, 2004] can be turned treewidth-aware.
The completion ensures that rules are not only satisfied, but
we have justifications for every atom in a stable model. For

χ(t3)t3

χ(t1)

t1

χ(t2) t2

χ(t4)

t4
χ(t5)t5T :

fR(t3, χ(t3), {χ′(t1), χ
′(t2)})

fR(t1, χ(t1), ∅) fR(t2, χ(t2), ∅)

fR(t4, χ(t4), ∅)

T ′: fR(t5, χ(t5), {χ′(t3), χ
′(t4)})

Figure 1: Illustration of a DG reduction R taking a program Π and
a TD T = (T, χ) of GΠ, to construct a QBF φ. The DG reduction
immediately yields a TD T ′ = (T, χ′) of Gφ. Each bag χ′(t) of a
node t of T functionally depends on t, χ(t), and χ′(chldr(t)).

tight programs this suffices to characterize stable models. So,
let Π be a tight program and recall the completion COMP[Π].

In terms of treewidth overhead, Formulas (3) are not an
issue and can be easily converted into CNF without auxiliary
variables. However, in case there are many rules containing a,
Formulas (4) might be problematic. We resolve this issue by
means of auxiliary variables introduced in the decomposition-
guided reduction. To this end, let T = (T, χ) be a TD of GΠ.
We use auxiliary variables of the form a≤t for every atom a ∈
A(Π) and node t of T with a ∈ χ(t), and we guide evaluations
along TD T . By definition of TDs, for every rule r ∈ Π there
is a node t of T with A(r) ⊆ χ(t). For every node t, we refer
by Πt to a subset of those rules at t, i.e., Πt⊆{r∈Π |A(r) ⊆
χ(t)}. Then, instead of Formulas (4), we create the following.

a≤t′ ← a for every t in T, t′ ∈ chldr(t),
a ∈ χ(t′) \ χ(t) (6)∨

r∈Πt

ar ∨
∨

t′∈chldr(t),
a∈χ(t′)

a≤t′ ← a≤t for every t in T, a ∈ χ(t) (7)

Intuitively, Formulas (6) ensure that whenever a holds, a≤t′

holds as well for a node t′ of T whose bag contains a such that
the parent bags do not contain a. Then, Formulas (7) take care
that whenever a≤t holds for a node t, either some ar holds
with r ∈ Πt or a≤t′ holds for t′ ∈ chldr(t) below t. We refer
to this version of the completion, comprising Formulas (3),
(6), and (7), by COMP[Π, T], which can be converted to CNF
without additional auxiliary variables.

This slightly adapted construction of Clark’s completion as
used by ASP solvers indeed linearly preserves the treewidth.

Proposition 8 (TW-Aware Completion). Let Π be a program
and T = (T, χ) be a TD of GΠ. Then, the completion Π′ =
C(Π, T) linearly preserves the (tree)width, i.e., there is a
TD T of GΠ′ with |width(T ′)| ≤ |width(T)|.

Proof. Without loss of generality, we assume that |Πt| ≤ 1
for every node t of T and that for every rule r there is a unique
node t with r ∈ Πt, which can be established by adding
intermediate auxiliary TD nodes. Further, we assume for every
node t of T that |chldr(t)| ≤ 2, which can be also obtained via
constructing auxiliary TD nodes. Since Π′ was constructed by
means of a DG reduction, it easily gives rise to a TD T ′ :=
(T, χ′) of GΠ′ . Precisely, we define χ′(t) := χ(t)∪ {ar | r ∈
Πt, a ∈ Hr} ∪ {a≤t | a ∈ χ(t)} ∪ {a≤t′ | t′ ∈ chldr(t), a ∈
χ(t′) ∩ χ(t)} for every node t of T . Indeed T ′ is a well-
defined TD of GΠ′ . Further, since |Πt| ≤ 1 and |chldr(t)| ≤

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3206

2, we have |χ(t′)| ≤ 4 |χ(t)| + 1. Consequently, also for
width(T) = tw(GΠ), we have tw(GΠ′) ∈ O(tw(GΠ)).

Note that while treewidth-aware variants of the comple-
tion has been presented before [Fandinno and Hecher, 2021;
Eiter et al., 2021], here we provide a different viewpoint, show-
ing that the existing built-in reduction used by ASP solvers
is almost treewidth-aware, i.e., only additional auxiliary vari-
ables are required to break-up long clauses. As above, one
could extend our technique to HCF programs using a strict
partial ordering ≺t among bag atoms [Fandinno and Hecher,
2021] for a TD node t. Below we pursue a different approach.

Definition of SM[Π, T]. If Π is a tight program, we de-
fine SM[Π, T] to be COMP[Π, T]. Otherwise, i.e., for HCF
programs Π, we first create a tight program Π′ in a treewidth-
aware way, which will be discussed afterwards in Section 5.4.

5 Treewidth-Aware QBF Encodings for ELPs
In order to design treewidth-aware encodings, we fol-
low the basic modules from Section 3, thereby utilizing
decomposition-guided reductions of the previous section.
Let Π be a tight program over atoms A = A(Π) and K be
the set of fresh atoms for Π as defined in the previous section.
Then, we solve the world view existence problem by ∃K.F [Π]
using the QBF defined above. However, there is no guarantee
on the treewidth of the primal graph of this formula.

In the following, we provide for each of the formulas Fc [Π],
Fk [Π], Fp [Π] a decomposition-guided variant. To this end,
let T = (T, χ) be a TD of GΠ in order to define three DG
reductions constructing QBFs for solving WV existence on Π
with the help of T . This will allow us then to evaluate prob-
lem parts locally for each node of T , thereby ensuring that
the (tree)width is not increased arbitrarily. Precisely, we
let F [Π, T] := ∃K.Fc [Π, T] ∧ Fk [Π, T] ∧ Fp [Π, T] and
we define the three conjuncts in the following.

For the consistency part, i.e., in order to encode Fc [Π] in
a way that is decomposition-guided, we define Fc [Π, T] :=
∃A. SM[Π, T]. Indeed, Fc [Π, T] linearly preserves treewidth.

Lemma 9. Given a tight program Π and a TD T = (T, χ)
of GΠ. Then, the treewidth of GFc [Π,T] is in O(width(T)).

Proof. We define a TD T ′ = (T, χ′) of GFc [Π,T], where for
every t in T we let χ′(t) := χ(t) ∪ {ar | r ∈ Πt, a ∈
Hr} ∪ {a≤t | a ∈ χ(t)} ∪ {a≤t′ | t′ ∈ chldr(t), a ∈ χ(t) ∩
χ(t′)} ∪ {ka | ka ∈ k(Bs

r), r ∈ Πt}. Observe that T ′ is
well-defined; indeed all rules of SM[Π, T] are covered, i.e.,
the variables of every clause of COMP[k(Π), T] appear in at
least one common bag of T ′.

The definition of the remaining formulas Fk [Π, T] and
Fp [Π, T] is more involved. Intuitively, in order to locally eval-
uate both formulas for each node of T , we require additional
information that is guided along T , which we develop next.

5.1 Encoding Knowledge
Observe that in Fk [Π], the formula uses the result of SM[Π],
which, when solving parts locally along the tree decomposi-
tion T (bottom-up), is not available until the root of T has

been processed. Consequently, we require auxiliary variables
that store and maintain this information.

To this end, we use auxiliary variables usat≤t for every
node t of T , that intuitively holds the information whether
up to t, those parts of Π that have been encountered so far,
are inconsistent. We define U := {usat≤t | t in T} and we
construct Fk [Π, T] := ∀(A ∪ U).Fup [Π, T] ∧ Fu [Π, T],
where Fup [Π, T] is defined by means of Formulas (8)–(11),
resulting in a DNF.
usat≤t ∧

∧
t′∈chldr(t)

¬usat≤t′ for every t in T,Πt = ∅ (8)

usat≤t∧
∧

t′∈chldr(t)

¬usat≤t′∧ l for every t in T, {r} = Πt,
l ∈ B+

r ∪ k(Bs
r) ∪B−

r ∪Hr (9)∧
l∈B+

r ∪ k(Bs
r)∪

B−
r ∪Hr

l ∧ ¬usat≤t for every t in T, {r} = Πt (10)

usat≤t′ ∧ ¬usat≤t for every t in T, t′ ∈ chldr(t) (11)

Intuitively, Formulas (8) ignore cases for nodes t with Πt,
where the inconsistency is not properly propagated from a
node to its child nodes. Then, Formulas (9) do the same for
nodes t with Πt ̸= ∅, i.e., inconsistency for a node t requires
inconsistency below t or in t. Formulas (10) and (11) encode
the other direction, where inconsistency is underclaimed, i.e.,
not set in a node or not propagated from a node to its parent.

Further, we encode Fu [Π, T] in CNF, comprising a
conjunction of Formulas (12).

usat≤root(T) ∨ ¬ka ∨ a for every a ∈ A(Π) (12)

Formulas (12) ensure that either the current assignment
proves inconsistency or whenever an atom a ∈ A(Π) is known,
it has to be set to true.

Theorem 10 (Correctness). Let Π be a tight ELP and T =
(T, χ) be a TD of GΠ. Then, given any assignment α : K →
{0, 1} we have that Fk [Π][α] is valid iff Fk [Π, T][α] is valid.

Proof (Sketch). =⇒: Assume that Fk [Π][α] is valid. Then for
any assignment β : A → {0, 1}, we have that Fk [Π][α][β]
evaluates to true. From this we show that for any assign-
ment β′ : U → {0, 1} we have Fk [Π, T][α][β][β′] evaluates
to true as well. Assume towards a contradiction that this is
not the case. However, Formulas (8) and (9) ensure that as-
signments β′ are valid, where β′(usat≤t) = 1 for a node t
but neither β′(usat≤t′) = 1 for any node t′ ∈ chldr(t), nor
a rule in Πt is dissatisfied. Further, Formulas (10) and (11)
ensure that whenever despite inconsistency up to a node t,
β′(usat≤t) = 0. Consequently, we only need to consider re-
maining cases, where usat≤t is maintained properly for every
node t of T . Then, assuming that any Formula (12) is dissatis-
fied due to β′, we have Fk [Π][β] is dissatisfied, contradicting
our assumption.⇐=: The other direction works similarly.

Further, we show that it is treewidth-aware and that the
reduction causes at most a linear overhead.

Lemma 11 (Linear TW-Awareness). Let Π be a tight ELP
and T = (T, χ) be a TD of GΠ. Then, the treewidth
of GFk [Π,T] is in O(width(T)).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3207

Proof. We construct a TD T ′ = (T, χ′), where we define χ′

as follows. For every node t of T , we let χ′(t) := χ(t) ∪
k(χ(t))∪{usat≤t, usat≤root(T)}∪{usat≤t′ | t′ ∈ chldr(t)}.
Observe that T ′ is well-defined and that since |chldr(t)| ≤ 2,
we have width(T ′) ∈ O(width(T)).

5.2 Encoding Possibility
In order to check whether an assumption on known atoms
in K is fulfilled, it suffices to find counterexamples among
all these modal atoms. This is different from the assump-
tions that are not known, since one has to find an individual
witness model, over dedicated variables, as seen in the “possi-
bility” part Fp [Π]. However, this is problematic for treewidth,
since these (linearly) many models are not bounded by the
treewidth. To resolve this issue, we are going to guide these
witness models along the tree decomposition. In other words,
in the following we are utilizing synergies between all witness
models, restricted to the bags of a node.

Again, we focus on the easier case assuming that Π is
tight. Towards defining Fp [Π, T], we use auxiliary vari-
ables of the form It for every node t of T and every in-
terpretation I ⊆ 2χ(t) restricted to χ(t), which we address
by I⋆ := {It | t in T, I ⊆ 2χ(t)}. Observe that therefore the
number of variables in I⋆ is exponential in the bag size |χ(t)|.
However, since we do not use these variables under an inner-
most universal quantifier block, our approach therefore does
not the complexity, as we will see later. Precisely, we con-
struct Fp [Π, T] := ∃I⋆.Fs [Π, T], where Fs [Π, T] is defined
by means of Formulas (13)–(17) below.

¬It for every t in T, I ∈ 2χ(t),
I ̸|= k(Πt) (13)∨

ka∈k(Bc
r)

¬ka ← It for every t in T, I ∈ 2χ(t),Πt={r},
(I ∪ k(Bc

r)) ̸|= k(Πt) (14)∨
I′∈2χ(t′),

I′∩χ(t)=I∩χ(t′)

I ′t′ ← It for every t in T, t′ ∈ chldr(t),
I ∈ 2χ(t) (15)

I ′t′ →
∨

I∈2χ(t),
I∩χ(t′)=I′∩χ(t)

It for every t in T, t′ ∈ chldr(t),
I ′ ∈ 2χ(t

′) (16)

∨
I∈2χ(t),a/∈I

It ∨ ka for every t in T, a ∈ χ(t)
(17)

Intuitively, our approach is to not maintain an individual
assignment for every variable in K, which might increase the
treewidth due to many copies. Instead, using I⋆, we store
all potential assignments restricted to a bag, which indicates
assignments that satisfy the program up to t. Then, Formu-
las (13) ensure that assignments not satisfying Πt cannot be
claimed stable models. Formulas (14) additionally handles the
case where the assignment of specific atoms in K is needed in
order to reach satisfiability. Formulas (15) and (16) ensure that
whenever an assignment I is claimed to hold, there is a corre-
sponding matching assignment in every child node as well as
parent node (if exist). Thereby, Formulas (15) propagate from
a node t to compatible predecessor interpretations, and Formu-
las (16) propagate to the parent node. Finally, Formulas (17)

model the requirement that whenever ¬ka holds, some stable
model that does not contain a is ultimately forced to hold.

Theorem 12 (Correctness). Let Π be a tight ELP and T =
(T, χ) be a TD of GΠ. Then, given any assignment α : K →
{0, 1} we have that Fp [Π][α] is valid iff Fp [Π, T][α] is valid.

Proof (Sketch). =⇒: Assume that Fp [Π][α] is valid. Then,
for every ka with α(ka) = 0, there is an assignment βa :
A(Π) → {0, 1} such that SM[Π][α][βa] = COMP[Π][α][βa]
evaluates to true. From this we construct an assignment β′

such that Fp [α][β
′] evaluates to true. For every node t and a ∈

A(Π), we set β′(It) := 1, whenever I = χ(t) ∩ β−1
a (1)

and β′(It) := 0 otherwise. Then, by construction of β′,
we have that Fp [Π, T][α][β′] evaluates to true. ⇐=: The
other direction works as follows. We assume an assign-
ment β′ such that Fp [Π, T][α][β′] evaluates to true and for
every ka ∈ K with α(ka) = 0, we construct an assignment βa
such that SM[Π][α][βa] = COMP[Π][α][βa] evaluates to true.
To this end, we construct an assignment I , consisting of the
union over one assignment It for every node t of T such
that β′(Itt) = 1 and It ∩ χ(t′) ∩ It′ ∩ χ(t) for every child
node t′ ∈ chldr(t). Since Fp [Π, T][α][β′] evaluates to true,
such an assignment I with a /∈ I has to exist by construc-
tion of this formula. Consequently, one can show that then
SM[Π][α][βa] = COMP[Π][α][βa] evaluates to true.

The reduction is treewidth-aware, i.e., while it causes an
overhead in terms of treewidth, this is bounded by 2O(w).

Lemma 13 (TW-Awareness (single exponential)). Let Π be a
tight ELP and T = (T, χ) be a TD of GΠ. Then, the treewidth
of GFp [Π,T] is in 2O(width(T)).

Proof. We construct a TD T ′ = (T, χ′), where we de-
fine χ′ as follows. For every node t of T , we let χ′(t) :=
χ(t) ∪ k(χ(t)) ∪ {It | I ∈ 2χ(t)} ∪ {I ′t′ | t′ ∈ chldr(t), I ′ ∈
2χ(t

′), I ∈ 2χ(t), I ∩ χ(t′) = I ′ ∩ χ(t)}. It is easy to see
that T ′ is well-defined and that indeed since |chldr(t)| ≤ 2,
we have that width(T ′) ∈ 2O(width(T)).

5.3 Merging Consistency, Knowledge & Possibility
Overall, we obtain the following runtime result.

Lemma 14 (Runtime). Let Π be any tight program and T =
(T, χ) be a TD of GΠ of width w. Then, the formula F [Π, T]
can be computed in time 2O(w) · poly(|A(Π)|).

Proof. The runtime is due to the 2w many different variables
of the form It in the construction of formula Fp[Π, T].

The formula F [Π, T] can then be used to solve world view
existence and to obtain the following upper bound result.

Theorem 15 (Upper Bound for tight ELPs). Let Π be any tight
program, whose treewidth of primal graph GΠ is w. Then, WV
existence for Π can be decided in time 22

O(w) · poly(|A(Π)|).

Proof. We construct both a TD T of GΠ of width 5 · w [Bod-
laender et al., 2016] as well as the formula F [Π, T], in
time 2O(w) · poly(|A(Π)|). The constructed formula is an
instance of 2-QSAT can be solved in the desired runtime,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3208

namely 2(2
O(w)) +2(2

O(w)) · 22O(w) · poly(|A(Π)|), see Propo-
sition 1, since by Lemma 11 the treewidth over the inner-most
(universally) quantified variables is linear in w.

However, for tight programs it is not expected that we can
significantly improve this result, which we show below.

Theorem 16 (Lower Bound for tight ELPs). Let Π be any
tight program, whose treewidth of the primal graph GΠ is w.
Then, unless ETH fails, WV existence for Π cannot be decided
in time 22

o(w) · poly(|A(Π)|).

Proof. Let ∃X.∀Y.φ be any QBF with φ being in DNF
and var(φ) = X ∪ Y . From this we construct an ELP Π
over the set {sat, x, x̃ | x ∈ var(φ)} of atoms as follows.
For every variable x ∈ X , we construct the rules x ← Kx,
x̃ ← K x̃, ⊥ ← x, x̃, and ⊥ ← ¬x,¬x̃. For every y ∈ Y ,
we construct rules y ← ¬ỹ and ỹ ← ¬y. Further, we build
the rule ⊥ ← ¬K sat, which can be easily transformed to
our narrow syntax using K without negation, by means of
auxiliary atoms, as explained in the preliminaries. Then, for
each term d ∈ φ consisting of literals l1, . . . , li, we construct:
sat ← l̂1, . . . l̂i, where for a literal l we let l̂ := ã if l = ¬a
and l̂ := l otherwise. Observe that Π is normal and even tight.
The reduction clearly runs in polynomial time.

Indeed, the reduction is correct. We show that there is a
one-to-one correspondence between satisfying assignments
over X of Q and world views of Π. Let I ∈ 2X be any assign-
ment with Q[I] being valid. Then, we construct a WV W by
defining W := {{sat} ∪ {x̃ | I(x) = 0} ∪ {x | I(x) = 1}∪
{J | J ∈ 2Y }}. Assume towards a contradiction that W is
not a WV of Π. But then, W does not coincide with set W ′ of
stable models of ΠW . Take any J ∈W . Observe that by con-
struction of Π and since Q[I] is valid, we have that J is also
an answer set of ΠW . Further, W ′ ⊆ W since W contains
every subset over variables Y , which yields W =W ′.

Take any WV W of Π. Then, by construction of Π, we
have that sat ∈W ′ for every W ′ ∈W and consequently, for
any stable model N of ΠW , sat ∈ N . From this we construct
an assignment I : X → {0, 1} from some W ′ ∈ W by
I(x) := 1 for every x ∈ X with x ∈ W ′ and I(x) := 0 for
every x ∈ X with x̃ ∈ W ′. Assume towards a contradiction
that Q[I] is invalid. Then, there is an assignment J : Y →
{0, 1} with Q[I][J] = {∅}. As a consequence, we can define
a stable model N ′ of ΠW with N ′ := (W ′ \ {sat}) ∪ {y |
J(y) = 1}∪{ỹ | J(y) = 0}. This contradicts W being a WV.

Further, the reduction is treewidth-aware and it even linearly
preserves the treewidth. To this end, take any TD T = (T, χ)
of GQ. From this we construct a TD T ′ = (T, χ′) of GΠ as
follows. For every node t of T , we define χ′(t) := χ(t) ∪
{sat} ∪ {x̃ | x ∈ χ(t)}. Observe that indeed T ′ is a well-
defined TD of GQ. Obviously, we have that |χ′(t)| ≤ 2 |χ(t)|+
1 and therefore we follow that tw(Π) ∈ O(tw(Q)). Then,
assuming WV existence on Π can be decided in time 22

o(w) ·
poly(|A(Π)|) withw= tw(GΠ) contradicts Proposition 2.

5.4 Normal (HCF) and ι-Tight Programs
For HCF programs Π, we first construct a tight program Π′,
using a treewidth-aware translation R from k(Π) to Π′ =

R(k(Π)) [Fandinno and Hecher, 2021]. Then, the treewidth
of GΠ′ is in O(tw(GΠ) · log(tw(GΠ))), an increase that is in
line with known lower bounds under ETH [Hecher, 2022]. So,
a significant improvement of this increase is unexpected.

After constructing tight program Π′ and obtaining an
adapted TD T ′ of GΠ′ , we apply F [Π′, T ′], as defined in
the previous subsections, but where K = k(A(Π)).
Theorem 17 (Upper Bound for normal ELPs). Let Π be any
normal ELP, whose treewidth of the primal graph GΠ is w. WV
existence can be decided in time 22

O(w·log(w)) · poly(|A(Π)|).
Proof (Sketch). Correctness of our approach follows from
correctness of R and F . R increases treewidth from w
to w · log(w) [Fandinno and Hecher, 2021]; applying The-
orem 15 yields the result.

Theorem 18 (Tight Lower Bound for normal ELPs, ⋆3). Let Π
be any normal program, whose treewidth of the primal graph
GΠ is w. Then, unless ETH fails, WV existence for Π cannot
be decided in time 22

o(w·log(w)) · poly(|A(Π)|).
For ι-tight programs Π, the construction works analogously,

but instead of R, we use an adapted reduction R′ [Hecher,
2023] to construct a tight program Π′. There, the treewidth
of GΠ′ is in O(tw(GΠ) · log(ι)). Consequently, we obtain
results analogously to Theorems 17 and 18.

6 Discussion & Conclusion
We have focused here on the G94 semantics of ELPs by [Gel-
fond, 1994]. This was the original semantics that satisfy in-
teresting properties from a knowledge representation point
of view. Besides, many of our results carry on to the K15
semantics [Kahl et al., 2015] due to the existence of known
translations [Fandinno et al., 2021]. For instance, any ELP
interpreted under the K15 semantics can be understood as a dif-
ferent ELP under G94 semantics, which is obtained by replac-
ing each expression of the form K a by conjunction a ∧K a.

As a result the upper bounds for every non-tight category
carry on to this semantics as well. Note that in general, if a
program is objectively tight under the K15 semantics does not
mean that the corresponding program to be used under the
G94 semantics is also objectively tight. For instance, a← K a
is objectively tight, but its corresponding program a ← a ∧
K a is not. Conversely, an ELP under G94 semantics can be
translated into a new program under the K15 semantics where
expressions K a are replaced by not k not k a and the rules

not k not k a ← ¬k not k a

k not k a ← Knot k a

not k a ← ¬k a

k a ← K a

with not k not k a , k not k a , not k a and k a fresh aux-
iliary atoms. As a result, the lower bounds for every category
not restricting the use of negation, carry on to these semantics.

In the future, we want to focus on implementations carrying
out and comparing the presented QBF encodings. Since there
is a known empirical correspondence between formulas of
small treewidth and fast SAT solving [Atserias et al., 2011],
this raises the question of whether similar observations can
be drawn for such QBF encodings. Also, we expect further
insights from comparisons with existing ELP solvers.

3Proofs of statements marked with “⋆” are given in the appendix.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3209

Acknowledgments
The work has been carried out while Hecher visited the Simons
Institute for the Theory of Computing. It is supported by
Austrian Science Fund (FWF) grants J4656 and P32830, by
the Society for Research Funding Lower Austria (GFF) grant
ExzF-0004, as well as by the Vienna Science and Technology
Fund (WWTF) grant ICT19-065.

References
[Alviano et al., 2019] Mario Alviano, Giovanni Amendola, Carmine

Dodaro, Nicola Leone, Marco Maratea, and Francesco Ricca.
Evaluation of disjunctive programs in WASP. In LPNMR’19,
volume 11481 of LNCS, pages 241–255. Springer, 2019.

[Atserias et al., 2011] Albert Atserias, Johannes Klaus Fichte, and
Marc Thurley. Clause-Learning Algorithms with Many Restarts
and Bounded-Width Resolution. J. Artif. Intell. Res., 40:353–373,
2011.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors. Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications. IOS Press,
February 2009.

[Bodlaender et al., 2016] Hans L. Bodlaender, Pål G. Drange,
Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal
Pilipczuk. A ck n 5-Approximation Algorithm for Treewidth.
SIAM J. Comput., 45(2):317–378, 2016.

[Bondy and Murty, 2008] John A. Bondy and Uppaluri S. R. Murty.
Graph theory, volume 244 of Graduate Texts in Mathematics.
Springer, New York, USA, 2008.

[Cabalar et al., 2020] Pedro Cabalar, Jorge Fandinno, and Luis
Fariñas del Cerro. Autoepistemic answer set programming. Artifi-
cial Intelligence, 289:103382, 2020.

[Cabalar et al., 2021] Pedro Cabalar, Jorge Fandinno, and Luis
Fariñas del Cerro. Splitting epistemic logic programs. Theory and
Practice of Logic Programming, 21:296–316, 2021.

[Chen, 2004] Hubie Chen. Quantified Constraint Satisfaction and
Bounded Treewidth. In 16th European Conference on Artificial
Intelligence (ECAI’04), pages 161–165. IOS Press, 2004.

[Clark, 1977] Keith L. Clark. Negation as failure. In Logic and Data
Bases, Advances in Data Base Theory, pages 293–322. Plemum
Press, 1977.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Łukasz Kowa-
lik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał
Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[Egly et al., 2000] Uwe Egly, Thomas Eiter, Hans Tompits, and Ste-
fan Woltran. Solving advanced reasoning tasks using quantified
boolean formulas. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI’00), pages 417–422.
AAAI/MIT Press, 2000.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. On the
computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence,
15(3-4):289–323, 1995.

[Eiter et al., 2021] Thomas Eiter, Markus Hecher, and Rafael Kiesel.
Treewidth-Aware Cycle Breaking for Algebraic Answer Set Count-
ing. In Proceedings of the Eighteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR’21),
pages 269–279, 2021.

[Faber et al., 2021] Wolfgang Faber, Michael Morak, and Luk
ás Chrpa. Determining action reversibility in STRIPS using an-
swer set and epistemic logic programming. Theory and Practice
of Logic Programming, 21(5):646–662, 2021.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion
and the existence of stable models. Journal of Methods of Logic
in Computer Science, 1:51–60, 1994.

[Fandinno and Hecher, 2021] Jorge Fandinno and Markus Hecher.
Treewidth-aware complexity in ASP: not all positive cycles are
equally hard. In Proceedings of the Thirty-Fifth International
Conference on Artificial Intelligence (AAAI’21), pages 6312–6320.
AAAI Press, 2021.

[Fandinno et al., 2021] Jorge Fandinno, Wolfgang Faber, and
Michael Gelfond. Thirty years of epistemic specifications. Theory
and Practice of Logic Programming, page 1–41, 2021.

[Fichte et al., 2020] Johannes K. Fichte, Markus Hecher, and An-
dreas Pfandler. Lower Bounds for QBFs of Bounded Treewidth.
In Proceedings of the Thirty-Fifth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’20), pages 410–424. Assoc.
Comput. Mach., New York, 2020.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Morgan & Claypool, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifs-
chitz. The stable model semantics for logic programming. In
Robert Kowalski and Kenneth Bowen, editors, Proceedings of the
Fifth International Conference and Symposium of Logic Program-
ming (ICLP’88), pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lif-
schitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[Gelfond and Przymusinska, 1993] Michael Gelfond and Halina
Przymusinska. Reasoning on open domains. In Luı́s M. Pereira
and Anil Nerode, editors, Logic Programming and Non-monotonic
Reasoning, Proceedings of the Second International Workshop,
Lisbon, Portugal, June 1993, pages 397–413. MIT Press, 1993.

[Gelfond, 1991] Michael Gelfond. Strong introspection. In
Thomas L. Dean and Kathleen R. McKeown, editors, Proceedings
of the Ninth National Conference on Artificial Intelligence, pages
386–391. AAAI Press / The MIT Press, 1991.

[Gelfond, 1994] Michael Gelfond. Logic programming and reason-
ing with incomplete information. Annals of Mathematics and
Artificial Intelligence, 12(1-2):89–116, 1994.

[Hecher et al., 2020] Markus Hecher, Michael Morak, and Stefan
Woltran. Structural decompositions of epistemic logic programs.
In V. Conitzer and F. Sha, editors, Proceedings of the Thirty-fourth
National Conference on Artificial Intelligence (AAAI’20), pages
2830–2837. AAAI Press, 2020.

[Hecher, 2022] Markus Hecher. Treewidth-aware reductions of nor-
mal ASP to SAT - is normal ASP harder than SAT after all? Artif.
Intell., 304:103651, 2022.

[Hecher, 2023] Markus Hecher. Characterizing Structural Hardness
of Logic Programs: What makes Cycles and Reachability Hard
for Treewidth? In Proceedings of the Thirty-Seventh Interna-
tional Conference on Artificial Intelligence (AAAI’23). AAAI
Press, 2023. In Press.

[Impagliazzo et al., 2001] Russell Impagliazzo, Ramamohan Paturi,
and Francis Zane. Which problems have strongly exponential
complexity? J. of Computer and System Sciences, 63(4):512–530,
2001.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3210

[Janhunen, 2006] Tomi Janhunen. Some (in)translatability results
for normal logic programs and propositional theories. Journal of
Applied Non-Classical Logics, 16(1-2):35–86, 2006.

[Kahl et al., 2015] Patrick Kahl, Richard Watson, Evgenii Balai,
Michael Gelfond, and Yuanlin Zhang. The language of epistemic
specifications (refined) including a prototype solver. Journal of
Logic and Computation, 09 2015.

[Kahl et al., 2020] Patrick Kahl, Richard Watson, Evgenii Balai,
Michael Gelfond, and Yuanlin Zhang. The language of epistemic
specifications (refined) including a prototype solver. Journal of
Logic and Computation, 30(4):953–989, 2020.

[Lierler and Maratea, 2004] Yuliya Lierler and Marco Maratea.
Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. In Vladimir Lifschitz and Ilkka Niemelä, editors, LP-
NMR’04, volume 2923 of LNCS, pages 346–350. Springer, 2004.

[Lifschitz, 1996] Vladimir Lifschitz. Foundations of logic program-
ming. In Gerhard Brewka, editor, Principles of Knowledge Repre-
sentation, pages 69–127. CSLI Publications, 1996.

[Lin and Zhao, 2003] Fangzhen Lin and Jicheng Zhao. On tight
logic programs and yet another translation from normal logic
programs to propositional logic. In Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelligence (IJCAI’03),
pages 853–858. Morgan Kaufmann, August 2003.

[Lin and Zhao, 2004] Fangzhen Lin and Xishun Zhao. On odd and
even cycles in normal logic programs. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence (AAAI’04),
pages 80–85. AAAI Press / The MIT Press, 2004.

[Niemelä, 2008] Ilkka Niemelä. Stable models and difference logic.
Annals of Mathematics and Artificial Intelligence, 53(1-4):313–
329, 2008.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational
Complexity. Addison-Wesley, 1994.

[Shen and Eiter, 2016] Yi-Dong Shen and Thomas Eiter. Evaluat-
ing epistemic negation in answer set programming. Artificial
Intelligence, 237:115–135, 2016.

[Truszczyński, 2011] Mirosław Truszczyński. Revisiting epistemic
specifications. In Marcello Balduccini and Tran C. Son, editors,
Logic Programming, Knowledge Representation, and Nonmono-
tonic Reasoning: Essays Dedicated to Michael Gelfond on the
Occasion of his 65th Birthday, volume 6565 of LNCS, pages
315–333. Springer, 2011.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3211

	Introduction
	Preliminaries
	Epistemic Logic Programs as QBFs
	Decomposition-Guided Reductions for ELPs
	Treewidth-Aware QBF Encodings for ELPs
	Encoding Knowledge
	Encoding Possibility
	Merging Consistency, Knowledge & Possibility
	Normal (HCF) and -Tight Programs

	Discussion & Conclusion

