
Reverse Engineering of Temporal Queries Mediated by LTL Ontologies
Marie Fortin1 , Boris Konev2 , Vladislav Ryzhikov3 , Yury Savateev4 ,

Frank Wolter2 and Michael Zakharyaschev3

1Université Paris Cité, CNRS, IRIF, France
2Department of Computer Science, University of Liverpool, UK

3Department of Computer Science and Information Systems, Birkbeck, University of London, UK
4School of Electronics and Computer Science, University of Southampton, UK

mfortin@irif.fr, {boris.konev,wolter}@liverpool.ac.uk, {vlad,michael}@dcs.bbk.ac.uk,
y.savateev@soton.ac.uk

Abstract
In reverse engineering of database queries, we aim
to construct a query from a given set of answers
and non-answers; it can then be used to explore
the data further or as an explanation of the answers
and non-answers. We investigate this query-by-
example problem for queries formulated in positive
fragments of linear temporal logic LTL over times-
tamped data, focusing on the design of suitable
query languages and the combined and data com-
plexity of deciding whether there exists a query in
the given language that separates the given answers
from non-answers. We consider both plain LTL
queries and those mediated by LTL -ontologies.

1 Introduction
Supporting users of databases by constructing a query from
examples of answers and non-answers to the query has been
a major research area since the 2000s [Martins, 2019]. In
the database community, research has focussed on stan-
dard query languages such as SQL, graph query languages,
and SPARQL [Zhang et al., 2013; Weiss and Cohen, 2017;
Kalashnikov et al., 2018; Deutch and Gilad, 2019; Sta-
worko and Wieczorek, 2012; Barceló and Romero, 2017;
Cohen and Weiss, 2016; Arenas et al., 2016]. The KR com-
munity has been concerned with constructing queries from
examples under the open world semantics and with back-
ground knowledge given by an ontology [Gutiérrez-Basulto
et al., 2018; Ortiz, 2019; Cima et al., 2021; Jung et al., 2021;
Jung et al., 2022]. A fundamental problem that has been in-
vestigated by both communities is known as separability or
query-by-example (QBE), a term coined by Zloof [1977]:

Given: sets E+ and E− of pairs (D,d) with a database in-
stance D and a tuple d in D, a (possibly empty) ontology
O, and a query language Q.

Problem: decide whether there exists a query q ∈ Q sepa-
rating (E+, E−) in the sense that O,D |= q(d) for all
(D,d) ∈ E+ and O,D ̸|= q(d) for all (D,d) ∈ E−.

If such a q exists, then (E+, E−) is often called satisfiable
w.r.t. Q under O, and the construction of q is called learning.

In many applications, the input data is timestamped and
queries are naturally formulated in languages with tempo-
ral operators. In this paper, we investigate temporal query-
by-example by focusing on the basic but very useful case
where data D is a set of timestamped atomic propositions.
Our query languages are positive fragments of linear tem-
poral logic LTL with the temporal operators ✸ (eventually),
⃝ (next), and U (until) interpreted under the strict seman-
tics [Demri et al., 2016]. To enforce generalisation, we do
not admit ∨. Our most expressive query language Q[U] is
thus defined as the set of formulas constructed from atoms
using ∧ and U (via which ⃝ and ✸ are expressible); the frag-
ments Q[✸] and Q[⃝,✸] are defined analogously. Ontolo-
gies can be given in full LTL or its fragments LTL✷✸ (known
as the Prior logic [Prior, 1956]), which only uses the opera-
tors ✷ (always in the future) and ✸, and the Horn fragment
LTL✷⃝

horn containing axioms of the formC1∧· · ·∧Ck → Ck+1,
where the Ci are atoms possibly prefixed by ✷ and ⃝ for
i ≤ k + 1, and also by ✸ for i ≤ k. Ontology axioms
are supposed to hold at all times. In fact, already this ba-
sic ‘one-dimensional’ temporal ontology-mediated querying
formalism provides enough expressive power in those real-
world situations where the interaction among individuals in
the object domain is not important and can be disregarded in
data modelling; see [Artale et al., 2021] and also Example 1
and the references before it.

Within this temporal setting, we take a broad view of the
potential applications of the QBE problem. On the one hand,
there are non-expert users who would like to explore data via
queries but are not familiar with temporal logic. They usually
are, however, capable of providing data examples illustrating
the queries they are after. QBE supports such users in the
construction of those queries. On the other hand, the posi-
tive and negative data examples might come from an appli-
cation, and the user is interested in possible explanations of
the examples. Such an explanation is then provided by a tem-
poral query separating the positive examples from the nega-
tive ones. In this case, our goal is similar to recent work on
learning LTL formulas in explainable planning and program
synthesis [Lemieux et al., 2015; Neider and Gavran, 2018;
Camacho and McIlraith, 2019; Fijalkow and Lagarde, 2021;

Omitted details and proofs are available in [Fortin et al., 2023].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3230

Raha et al., 2022; Fortin et al., 2022].
Example 1. Imagine an engineer whose task is to explain the
behaviour of the monitored equipment (say, why an engine
stops) in terms of qualitative sensor data such as ‘low tem-
perature’ (T), ‘strong vibration’ (V), etc. Suppose the engine
stopped after the runs D+

1 and D+
2 below but did not stop af-

ter the runs D−
1 , D−

2 , D−
3 , where we assume the runs to start

at 0 and measurements to be recorded at moments 0, 1, 2, . . . :

D+
1 = {T (2), V (4)},D+

2 = {T (1), V (4)},
D−

1 = {T (1)},D−
2 = {V (4)},D−

3 = {V (1), T (2)}.

The ✸-query q = ✸(T∧✸✸V) is true at 0 in the D+
i , false in

D−
i , and so gives a possible explanation of what could cause

the engine failure. The example set ({D+
3 ,D

+
4 }, {D

−
4 }) with

D+
3 = {T (1), V (2)}, D+

4 = {T (1), T (2), V (3)},
D−

4 = {T (1), V (3)}

is explained by the U-query T UV . Using background knowl-
edge, we can compensate for sensor failures resulting in in-
complete data. To illustrate, suppose E+

1 = {H(3), V (4)},
where H means ‘heater is on’. If an ontology O has the ax-
iom ⃝H → T saying that a heater can only be triggered by
the low temperature at the previous moment, then the same q
separates {E+

1 ,D
+
2 } from {D−

1 ,D
−
2 ,D

−
3 } under O. ⊣

Query q in Example 1 is of a particular ‘linear’ form, in
which the order of atoms is fixed and not left open as, for
instance, in the ‘branching’ ✸T ∧✸V . More precisely, path
⃝✸-queries in the class Qp[⃝,✸] take the form

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)), (1)

where oi ∈ {⃝,✸} and ρi is a conjunction of atoms; Qp[✸]
restricts oi to {✸}; and path U-queries Qp[U] look like

q = ρ0 ∧ (λ1 U (ρ1 ∧ (λ2 U (. . . (λn U ρn) . . .)))), (2)

where λi is a conjunction of atoms or ⊥. Path queries are
motivated by two observations. First, if a query language
admits conjunctions of queries—unlike our classes of path
queries—then, dually to overfitting for ∨, multiple negative
examples become redundant: if qD separates (E+, {D}), for
each D ∈ E−, then

∧
D∈E− qD separates (E+, E−). Sec-

ond, numerous natural query types known from applications
can be captured by path queries. For example, the existence
of a common subsequence of the positive examples (regarded
as words) that is not a subsequence of any negative one cor-
responds to the existence of a separating Qp[✸]-query with
ρ0 = ⊤ and ρi ̸= ⊤ for i > 0, and the existence of a common
subword of the positive examples that is not a subword of
any negative one corresponds to the existence of a separating
query of the form ✸(ρ1∧⃝(ρ2∧· · ·∧⃝ρn)). These and sim-
ilar queries are the basis of data comparison programs with
numerous applications in computational linguistics, bioinfor-
matics, and revision control systems [Bergroth et al., 2000;
Chowdhury et al., 2010; Blum et al., 2021].

While path queries express the intended separating pattern
of events in many applications, branching queries are needed
if the order of events is irrelevant for separation.

Example 2. In the setting of Example 1, the positive exam-
ples {T (2), V (4)} and {V (1), T (4)} are separated from the
negative {T (1)} and {V (4)} by the branching Q[✸]-query
✸T ∧✸V while no path query is capable of doing this. ⊣

Branching Q[⃝,✸]-queries express transparent existential
conditions and can be regarded as LTL CQs. However,
branching Q[U]-queries with nestings of U on the left-hand
side correspond to complex first-order formulas with multiple
alternations of quantifiers ∃ and ∀, which are hard to compre-
hend. So we also consider the language Q[Us] ⊇ Qp[U] of
‘simple’ Q[U]-queries without such nestings.

In this paper, we take the first steps towards understand-
ing the complexity and especially feasibility of the query-
by-example problems QBE(L,Q) with L an ontology and Q
a query language. We are particularly interested in whether
there is a difference in complexity between path and branch-
ing queries and whether it can be reduced by bounding the
number of positive or negative examples. Our results in
the ontology-free case are summarised in Table 1, where

QBE for b+, b− b+ b− or unbounded
Qp[✸]/Qp[⃝,✸] ≤P =NP =NP
Q[✸]/Q[⃝,✸] ≤P ≤P =NP

Qp[U] =NP
Q[Us] ≤P ≤P ≥NP, ≤PSPACE
Q[U] ≤PSPACE

Table 1: Complexity in the ontology-free case.

b+ / b− indicate that the number of positive / negative exam-
ples is bounded1. Note that path queries are indeed harder
than branching ones when the number of positive examples
is bounded but not in the unbounded case. Our proof tech-
niques range from reductions to common subsequence exis-
tence problems [Maier, 1978; Fraser, 1996] and dynamic pro-
gramming to mimicking separability by path and branching
U-queries in terms of containment and simulation of transi-
tion systems [Kupferman and Vardi, 1996]. The key to NP
upper bounds is the polynomial separation property (PSP) of
the respective languages: any separable example set is sepa-
rated by a polynomial-size query. The complexity for Qp[✸],
Q[✸] can also be obtained from [Fijalkow and Lagarde, 2021]
who studied separability by Q[✸]-queries of bounded size.

In the presence of ontologies, we distinguish between the
combined complexity of QBE(L,Q), when both data and on-
tology are regarded as input, and the data complexity, when
the ontology is deemed fixed or negligibly small compared
with the data. We obtain encouraging results: Qp[✸]- and
Q[✸]-queries mediated by LTL✷✸-ontologies and all of our
queries mediated by LTL✷⃝

horn-ontologies enjoy the same data
complexity as in Table 1. The combined complexity results
for queries with LTL✷⃝

horn-ontologies we have obtained so far
are given in Table 2. Interestingly, QBE for query classes with
✸ and ⃝ only is PSPACE-complete— not harder than satisfi-
ability. The upper bound is proved by establishing the expo-
nential separation property for all of these classes of queries
and using the canonical (aka minimal) model property of

1We do not consider queries with ⃝ only as separability is triv-
ially in P and does not detect any useful patterns.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3231

Q[✸] /Qp[✸] = PSPACEQ[⃝,✸] /Qp[⃝,✸]
Q[Us] ≥ PSPACE, ≤ EXPTIME
Qp[U] ≥ NEXPTIME,≤ EXPSPACE
Q[U] ≥ PSPACE, ≤ 2EXPTIME

Table 2: Combined complexity of QBE(LTL✷⃝
horn ,Q) in both

bounded and unbounded cases.

Horn LTL. The upper bounds for U-queries are by reduction
to the simulation and containment problems for exponential-
size transition systems. For arbitrary LTL -ontologies, this
technique only gives a 2EXPTIME upper bound for Q[Us]
and a 2EXPSPACE one for Qp[U]. Separability by (path) ✸-
queries under LTL✷✸ ontologies turns out to be Σp

2-complete,
where the upper bound is shown by establishing the PSP.

Compared with non-temporal QBE, our results are very en-
couraging: QBE is CONEXPTIME-complete for conjunctive
queries (CQs) over standard relational databases [Willard,
2010; ten Cate and Dalmau, 2015] and even undecidable
for CQs under ELI or ALC ontologies [Funk et al., 2019;
Jung et al., 2020].

2 Further Related Work
We now briefly comment on a few other related research ar-
eas. One of them is concept learning in description logic
(DL), as proposed by [Badea and Nienhuys-Cheng, 2000]
who, inspired by inductive logic programming, used refine-
ment operators to construct a concept separating positive and
negative examples in a DL ABox. There has been signif-
icant interest in this approach [Lehmann and Haase, 2009;
Lehmann and Hitzler, 2010; Lisi and Straccia, 2015; Sarker
and Hitzler, 2019; Lisi, 2012; Rizzo et al., 2020]. Promi-
nent systems include the DL LEARNER [Bühmann et al.,
2016], DL-FOIL [Fanizzi et al., 2018] and its extension DL-
FOCL [Rizzo et al., 2018], SPaCEL [Tran et al., 2017],
YINYANG [Iannone et al., 2007], PFOIL-DL [Straccia and
Mucci, 2015], and EVOLEARNER [Heindorf et al., 2022].
However, this work has not considered the complexity of sep-
arability. Also closely related is the work on the separabil-
ity of two formal (e.g., regular) languages using a weaker
(e.g., FO-definable) language [Place and Zeitoun, 2016;
Hofman and Martens, 2015; Place and Zeitoun, 2022]. When
translated into a logical separability problem, the main differ-
ence to our results is that one demands O,D |= ¬q(d)—and
not just O,D ̸|= q(d)—for all (D,d) ∈ E−.

3 Preliminaries
LTL -formulas are built from atoms Ai, i < ω, using the
Booleans and (future-time) temporal operators ⃝, ✸, ✷, U,
which we interpret under the strict semantics [Gabbay et al.,
2003; Demri et al., 2016]. An LTL -interpretation I identi-
fies those atoms Ai that are true at each time instant n ∈ N,
written I, n |= Ai. The truth-relation for atoms is extended
inductively to LTL -formulas by taking I, n |= φ U ψ iff
I,m |= ψ, for somem > n, and I, k |= φ for all k ∈ (n,m),
and using the standard clauses for the Booleans and equiva-

lences ⃝φ ≡ ⊥ U φ, ✸φ ≡ ⊤ U φ and ✷φ ≡ ¬✸¬φ with
Boolean constants ⊥ and ⊤ for ‘false’ and ‘true’.

An LTL-ontology, O, is any finite set of LTL -formulas,
called the axioms of O. An interpretation I is a model of O if
all axioms of O are true at all times in I. As mentioned in the
introduction, apart from full LTL we consider its Prior ✷✸-
fragment LTL✷✸ and LTL✷⃝

horn whose axioms take the form

C1 ∧ · · · ∧ Ck → Ck+1 (3)

with Ci given by C ::= Ai | ⊥ | ✷C | ⃝C. In fact, we
could allow ✸ on the left-hand side of (3) as ✸C → C ′ can
be replaced by ⃝C → A, ⃝A→ A, A→ C ′ with fresh A.

A data instance is a finite set D of atoms Ai(ℓ) with a
timestamp ℓ ∈ N; maxD is the maximal timestamp in D.
We access data by means of LTL analogues of conjunctive
queries: our queries, κ, are constructed from atoms, ⊥ and
⊤ using ∧, ⃝, ✸ and U. The class of queries that only use
operators from Φ ⊆ {⃝,✸,U} is denoted by Q[Φ]; Qp[Φ] is
its subclass of path-queries, which take the form (1) or (2);
and Q[Us] comprises simple queries in Q[U] that do not con-
tain subqueries κ1 U κ2 with an occurrence of U in κ1. Note
that Qp[U] ⊆ Q[Us]. The temporal depth tdp(κ) of κ is the
maximum number of nested temporal operators in κ.

An interpretation I is a model of a data instance D if
I, ℓ |= Ai for all Ai(ℓ) ∈ D. O and D are consistent if
they have a model. We call k ≤ maxD a (certain) an-
swer to the ontology-mediated query (O,κ) over D and write
O,D |= κ(k) if I, k |= κ in all models I of O and D.

Let L and Q be an ontology and query language defined
above. The query-by-example problem QBE(L,Q) we are
concerned with in this paper is formulated as follows:
given an L-ontology O and an example set E = (E+, E−)

with finite sets E+ and E− of positive and, respectively,
negative data instances,

decide whether E is Q-separable under O in the sense that
there is a Q-query κ with O,D |= κ(0) for all D ∈ E+

and O,D ̸|= κ(0) for all D ∈ E−.
If L = ∅, we shorten QBE(∅,Q) to QBE(Q). We also con-
sider the QBE problems with the input example sets having
a bounded number of positive and/or negative examples, de-
noted QBEb+(L,Q), QBEb–(L,Q), or QBEb+

b- (L,Q). Nota-
tions like QBE2+

1–(L,Q) should be self-explanatory. The size
of O, E, κ, denoted |O, |E|, |κ|, respectively, is the number
of symbols in it with the timestamps given in unary.

The next example illustrates the definitions and relative ex-
pressive power of queries with different temporal operators.
Example 3. (a) Let E = ({D1}, {D2}) with D1 = {A(1)},
D2 = {A(2)}. Then ⃝A separates E but no Q[✸]-query
does. E is not separable under O = {⃝A → A} by any
query κ as O,D1 |= κ(0) implies O,D2 |= κ(0).

(b) Let E = ({D1,D2}, {D3}) with D1 = {A(1), B(2)},
D2 = {A(2), B(3)}, D3 = {A(3), B(5)}. Then the query
✸(A ∧ ⃝B) separates E but no query in Q[✸] does.

(c) AUB separates ({{B(1)}, {A(1), B(2)}}, {{B(2)}})
but no Q[⃝,✸]-query does. ⊣

We now establish a few important polynomial-time reduc-
tions, ≤p, among the QBE-problems for various query

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3232

classes, including Q◦
p[✸]-queries of the form

κ = ρ0 ∧✸(ρ1 ∧✸(ρ2 ∧ · · · ∧✸ρn)), (4)
where each ρi is a Qp[⃝]-query (i.e., ✸-free Qp[⃝,✸]-query).
Theorem 4. The following polynomial-time reductions hold:
(i.1) QBE(L,Q) ≤p QBE1–(L,Q), for any Q closed un-

der ∧, and any L (including L = ∅),

(i.2) QBE(L,Q) ≤p QBE2+(L,Q), for L ∈ {LTL,LTL✷✸},
(i.3) QBE(L,Q[⃝,✸]) ≤p QBE(L,Q◦

p[✸])) and
QBE(L,Q[✸]) ≤p QBE(L,Qp[✸]), for any L,

(ii.1) QBE(Qp[✸]) ≤p QBE(Qp[⃝,✸]) and
QBE(Qp[✸]) ≤p QBE(Qp[U]) ≤p QBE1–(Qp[U]),

(ii.2) QBE(Q[⃝,✸]) =p QBE(Q[✸]) ≤p QBE(Q[Us]).
Reductions (i.1)–(i.3) work for combined complexity; (i.1),
(i.3) also work for data complexity. The reductions preserve
boundedness of the number of positive/negative examples.

Proof. In (i.1), (E+, E−) with E− = {D1, . . . ,Dn} is Q-
separable under O iff each (E+, {Di}) is because if κi sepa-
rates (E+, {Di}), then κ1 ∧ · · · ∧ κn separates (E+, E−).

In (i.2), (E+, E−) with E+ = {D1, . . . ,Dn}, n > 1, is
Q-separable under O iff (E′+, E−) is Q-separable under O′

that extends O with the following axioms simulating E+:
S1 → A1 ∨ · · · ∨ An, S2 → A1 ∨ · · · ∨ An,

Ci ∧✸Aj → X, Di ∧✸Aj → X, for X(i) ∈ Dj ,
where S1, S2, Ak, Cl, Dl, for l ≤ n′ = maxi maxDi, are
fresh and E′+ consists of {C0(0), . . . , Ck(n

′), S1(n
′ + 1)}

and {D0(0), . . . , Dk(n
′), S2(n

′ + 1)}.
(i.3) Using [ρ0∧✸(ρ1∧

∧
i ✸κi)] ≡ [ρ0∧

∧
i ✸(ρ1∧✸κi)],

⃝✸κ ≡ ✸⃝κ and ⃝(κ ∧ κ′) ≡ (⃝κ ∧ ⃝κ′) we convert,
in polytime, each Q[⃝,✸]-query to an equivalent conjunc-
tion of Q◦

p[✸]-queries. Thus, there is q ∈ Q[⃝,✸] separat-
ing (E+, E−) iff there are polysize qD ∈ Q◦

p[✸] separating
(E+, {D}), for each D ∈ E−.

(ii.1) The first two reductions are shown by adding toE+ ∋
D, for some D, the data instance D′ = {A(mn) | A(n) ∈ D}
with m = maxD + 2. Now, if D |= κ(0) and D′ |= κ(0),
for κ ∈ Qp[U], then κ is equivalent to a Qp[✸]-query. The
third reduction, illustrated below for E+ = {D+

1 ,D
+
2 } and

E− = {D−
1 ,D

−
2 }, transforms E into two positive and one

negative example using ‘pads’ of fresh atomsB, C. We show

D′′+
1

D+
1

0

B

1

C

2

. . . C
D′+

2

D+
2

0 1

B

m

C . . . C

D′−

D−
1 D−

2

0 1

B

m

C C

2m

B

3m

C C

4m

that E is Qp[U]-separable iff ({D′′+
1 ,D′+

2 }, {D′−}) is.
(ii.2) The first reduction is established by modifying ev-

ery D in the given E as illustrated below using fresh
atoms Ai and Bj that encode ⃝iA and ⃝jB, respectively:

D
0

A

1 2

B

3

A1,B3

0

A,B2

1

B1

2

B

3
D′

Then E is Q[⃝,✸]-separable iff E′ is Q[✸]-separable. The
converse and the second reduction are similar to (ii.1). ⊣

4 QBE without Ontologies
We start investigating the complexity of the QBE problems
for LTL by considering queries without mediating ontologies.

Theorem 5. The QBE-problems for the classes of queries
defined above (with the empty ontology) belong to the com-
plexity classes shown in Table 1.

We comment on the proof in the remainder of this section.
⃝✸-queries. NP-hardness is established by reduction of
the consistent subsequence existence problems [Fraser, 1996,
Theorems 2.1, 2.2] in tandem with Theorem 4; membership
in NP follows from the fact that separating queries, if any, can
always be taken of polynomial size.

Tractability is shown using dynamic programming. We
explain the idea for QBEb+

b- (Qp[⃝,✸]), E+ = {D+
1 ,D

+
2 }

and E− = {D−
1 ,D

−
2 }. Suppose κ takes the form (1) with

ρn ̸= ⊤. Then D |= κ(0) iff there is a strictly monotone map
f : [0, n] → [0,maxD] with f(0) = 0, f(i+1) = f(i)+1 if
oi = ⃝, and ρi ⊆ tD(f(i)) = {A | A(f(i)) ∈ D}. We call
such an f a satisfying assignment for κ in D. Let Si,j be the
set of tuples (k, ℓ1, ℓ2, n1, n2) such that ℓ1 ≤ i ≤ maxD+

1 ,
ℓ2 ≤ j ≤ maxD+

2 , and there is κ = ρ0∧o1(ρ1∧· · ·∧okρk)
for which (i) there are satisfying assignments f1, f2 in D+

1

and D+
2 with f1(k) = ℓ1 and f2(k) = ℓ2, respectively, and

(ii) n1 is minimal with a satisfying assignment f for κ in D−
1

having f(k) = n1, and n1 = ∞ if there is no such f ; and
similarly for n2, D−

2 . It suffices to compute SmaxD+
1 ,maxD+

2

in polytime. This can be done incrementally by initially ob-
serving that S0,j can only contain (0, 0, 0, 0, 0), which is the
case if there is ρ0 ⊆ tD+

1
(0), ρ0 ⊆ tD+

2
(0) and ρ0 ̸⊆ tD−

1
(0),

ρ0 ̸⊆ tD−
2
(0) (and similarly for Si,0).

U-queries. NP-hardness for Qp[U], Q[Us] follows from The-
orem 4 (ii.1), (ii.2) and NP-hardness for ⃝✸-queries.

The upper bounds are shown by reduction of Qp[U]- and
Q[Us]-separability to the simulation and containment prob-
lems for transition systems [Kupferman and Vardi, 1996]. A
transition system, S, is a digraph each of whose nodes and
edges is labelled by some set of symbols from a node or, re-
spectively, edge alphabet; S also has a designated set S0 of
start nodes. A run of S is a path in digraph S, starting in S0,
together with all of its labels. The computation tree of S is
the tree unravelling TS of S. For systems S and S′ over the
same alphabets, we say that S is contained in S′ if, for every
run r of S, there is a run r′ of S′ such that r and r′ have the
same length and the labels on the states and edges in r are
subsumed by the corresponding labels in r′. S is simulated
by S′ if TS is finitely embeddable into TS′ in the sense that
every finite subtree2 of TS can be homomorphically mapped
into TS′ preserving (subsumption of) node and edge labels.

Now, let E = (E+, E−) with Eσ = {Di | i ∈ Iσ}, for
σ ∈ {+,−} and disjoint I+ and I−, and let Σ be the signa-
ture of E. For each i ∈ I+ ∪ I−, we take a transition system
Si with states 0i, . . . , (maxDi + 1)i, where (maxDi + 1)i

is labelled with ∅ and the remaining ji by {A | A(j) ∈ Di}.
Transitions are ji → ki, for 0 ≤ j < k ≤ maxDi + 1, that

2A subtree is a convex subset of TS’s nodes with some start node.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3233

are labelled by {A ∈ Σ ∪ {⊥} | A(n) ∈ Di, n ∈ (j, k)} and
(maxDi + 1)i → (maxDi + 1)i with label Σ⊥ = Σ∪ {⊥}.
Thus, Di shown on the left below gives rise to Si on the right:

0

A,B

1

B,C

2

∅ {A,B}
Σ⊥

{B,C}
Σ⊥

{A,B}

∅
Σ⊥

{B,C}

{B}

Σ⊥

We form the direct product (synchronous composition) P of
{Si | i ∈ I+}, for I+ = {1, . . . , l}, whose states are vec-
tors (s1, . . . , sl) of states si ∈ Si, which are labelled by
the intersection of the labels of si in Si, with transitions
(s1, . . . , sl) → (p1, . . . , pl), if si → pi in Si for all i, also la-
belled by the intersection of the component transition labels.
On the other hand, we take the disjoint union N of Si, for
i ∈ I−, and establish the following separability criterion:
Theorem 6. (i) E is not Q[Us]-separable iff P is simulated
by N. (ii) E is not Qp[U]-separable iff P is contained in N.
Example 7. For the example set depicted below, in which the
only negative instance is on the right-hand side,

0 1 2 3

A2,B1

4

B2

5 0 1

A1,B2

2

B1

3 0 1

B1

2 3

B2

4

TP contains the subtree

(01, 02) (31, 12)
∅

(41, 32) B1

A1, B2

(51, 21) B2

A2, B1

where only the last P-node of a TP-node (a sequence) is
indicated together with the atoms that are true at nodes and
on edges. Intuitively, TP ‘represents’ all possible Q[Us]-
queries and its paths represent Qp[U]-queries κ such that
O,D |= κ(0) for all D ∈ E+. The Q[Us]-query given by the
subtree above is κ = ✸

(
((A1∧B2)UB1)∧((A2∧B1)UB2)

)
.

The subtree is not embeddable into TN (obtained for the neg-
ative instance), so κ separates E. Observe that every path in
TP (and in the subtree above) is embeddable into TN.

By inspecting the structure of P and N we observe that if
P has a run that is not embeddable into any run of N, then we
can find such a run of length ≤M = min{maxDi | i ∈ I+}
(any longer run has ∅-labels on its states after the M th one).
Thus, we can guess the required run and check in P if it is
correct, establishing the NP upper bound for Qp[U]. To show
the PSPACE upper bound for Q[Us], we notice that if there is
a finite subtree of TP that is not embeddable into TN, then
the full subtree TM

P of depth M is not embeddable into TN,
which can be checked by constructing TM

P branch-by-branch
while checking all possible embeddings of these branches
into TN. Finally, we have the P upper bound for Q[Us] with
a bounded number of positive examples because P is con-
structible in polytime and checking simulation between tran-
sition systems is P-complete [Kupferman and Vardi, 1996].
Interestingly, the smallest separating query we can construct
in this case is of the same size as TM

P , i.e., exponential in
|E+|; however, we can check its existence in polytime.

The PSPACE upper bound for Q[U] requires a more sophis-
ticated notion of simulation between transition systems.
Example 8. The example set below, where only the rightmost
instance is negative, is separated by the Q[U]-query

0 1

B,C

2 0 1

A

2

B

3

B,C

4 0 1

A

2

B

3 4

B,C

5

(A UB) U C but is not Q[Us]-separable by Theorem 6. ⊣
We prove a Q[U]-inseparability criterion using transition

systems whose non-initial/sink states are pairs of sets of
numbers, and transitions are of two types. The picture be-
low shows a data instance and the induced transition system
(where z has incoming arrows labelled by Σ⊥ from all states

0

A

1

B

2

B,C

3

0

∅{1}

A

{1}{2}

B

∅{2}

B

{2}{3}

B,C

∅{3}

B,C

{1, 2}{3}

B,C

∅{2, 3}

B

u

Σ⊥

z

∅

A

∅

B

B

but u, which are all omitted). Each arrow from 0 leads to a
state {1, . . . , n − 1}{n}; it represents a formula φ U ψ that
is true at 0, with the arrow label indicating the non-nested
atoms of φ and the state label indicating the atoms of ψ.
Each black (resp., red) arrow from s1s2 to s′1s

′
2 represents

a U-formula αs2→s′
1s

′
2

(resp., αs1→s′
1s

′
2
) that is true at all

points in s2 (resp., s1). The black and red transitions are ar-
ranged in such a way that a transition from s′′1s

′′
2 to s1s2 with

an arrow label λ and s1s2-label µ represents the U-formula
(λ ∧

∧
αs1→s′

1s
′
2
) U (µ ∧

∧
αs2→s′

1s
′
2
) and similarly for the

transitions from 0. A version of Theorem 6 for Q[U] and a
PSPACE-algorithm are given in the full paper.

5 QBE with LTL✷⃝
horn-Ontologies

Recall from [Artale et al., 2021] that, for any LTL✷⃝
horn-

ontology O and data instance D consistent with O, there is
a canonical model CO,D of O and D such that, for any query
κ and any k ∈ N, we have O,D |= κ(k) iff CO,D |= κ(k).

Let subO be the set of subformulas of the Ci in the ax-
ioms (3) of O and their negations. A type for O is any max-
imal subset tp ⊆ subO consistent with O. Let T be the set
of all types for O. Given an interpretation I, we denote by
tpI(n) the type for O that holds at n ∈ N in I. For O con-
sistent with D, we abbreviate tpCO,D

to tpO,D. The canonical
models have a periodic structure in the following sense:

Proposition 9. For any LTL✷⃝
horn ontology O and any data

instance D consistent with O, there are sO,D ≤ 2|O| and
pO,D ≤ 22|O| such that tpO,D(n) = tpO,D(n + pO,D), for
all n ≥ maxD + sO,D. Deciding CO,D |= ξ(ℓ), for a bi-
nary ℓ and a conjunction of atoms ξ, is in PSPACE / P for
combined / data complexity.

We now show that the combined complexity of QBE with
✸- and ⃝,✸-queries is PSPACE-complete in both bounded
and unbounded cases, i.e., as complex as LTL✷⃝

horn reasoning.

Theorem 10. Let Q ∈ {Q[⃝,✸],Q[✸],Qp[⃝,✸],Qp[✸]}.
Then QBE(LTL✷⃝

horn,Q) and QBEb+
b- (LTL✷⃝

horn,Q) are both
PSPACE-complete for combined complexity.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3234

Proof. PSPACE-hardness is inherited from that of LTL✷⃝
horn.

We briefly sketch the proof of the matching upper bound for
Q[⃝,✸] using the reduction of Theorem 4 (i.3). We can as-
sume that O and D are consistent for any D ∈ E+∪E−. For
if O and D ∈ E− are inconsistent, then E is not Q-separable
under O as O,D |= κ(0) for all κ ∈ Q; if O and D ∈ E+

are inconsistent, then E is separable iff (E+ \ {D}, E−) is.
Checking consistency is known to be PSPACE-complete.

Given an LTL✷⃝
horn-ontology O and an example set E, let

k = max
D∈E+∪E−

(maxD + sO,D), m =
∏

D∈E+∪E− pO,D,

where sO,D and pO,D in CO,D are from Proposition 9. We
show that if E is Q[⃝,✸]-separable under O, then it is sepa-
rated by a conjunction of |E−|-many κ ∈ Q◦

p[✸] of ✸-depth
≤ k + 1 and ⃝-depth ≤ k + m in (4). Indeed, in this case
any (E+, {D}), for D ∈ E−, is separated under O by some
κ of the form (4) with the ρl of ⃝-depth ≤ k + m because
ρl =

∧ℓ
i=0

⃝iλi with ℓ > k +m can be replaced by∧k
i=0

⃝iλi ∧
∧m

j=1
⃝k+j

∧
i≤ℓ,j=(i−k) mod m λi.

In addition, if n > k in (4), then (E+, {D−}) is separated by

ρ0 ∧✸(ρ1 ∧✸(ρ2 ∧ · · · ∧✸ρk)) ∧
∧n

i=k+1 ✸
k+1ρi,

and so by some ρ0 ∧ ✸(ρ1 ∧ · · · ∧ ✸(ρk ∧ ✸ρj)) with
k < j ≤ n. Our nondeterministic PSPACE-algorithm incre-
mentally guesses the ρl and checks if they are satisfiable in
the relevant part of the relevant CO,D bounded by k+m. ⊣

The situation is quite different for queries with U:

Theorem 11. QBE(LTL✷⃝
horn,Q[Us]) is in EXPTIME for com-

bined complexity, QBE(LTL✷⃝
horn,Qp[U]) is in EXPSPACE,

and QBEb+
b- (LTL✷⃝

horn,Qp[U]) is NEXPTIME-hard.

Proof. For the upper bounds, we again assume that O and D
are consistent for all D ∈ E+∪E−. Observe that Theorem 6
continues to hold in the presence of LTL✷⃝

horn ontologies O
but we need a different construction of transition systems Si

that represent all Q[Us]-queries mediated by O over Di. We
illustrate it for O = {A→ C ∧⃝B, B → ⃝2B, B → ⃝C}
and Di = {A(0)} below, where the picture on the left shows
the canonical model of O,Di (see Proposition 9) and next to
it is Si (the omitted labels on transitions are Σ⊥).

A, C

0

B

1

C

2

B

3

0

A,C

1

B

2

C
3

B

B

∅

B B

C∅

B,C

∅

In general, the size of Si is |Di|+O(2|O|) and the product
of Si, Di ∈ E+ is of size O(2|O|+|E+|). The upper bounds
now follow from P and PSPACE completeness of checking
simulation and containment for transition systems.

Now we sketch the proof of the lower bound. Let M
be a non-deterministic Turing machine that accepts Σ-words
x = x1 . . . xn inN = 2poly(|x|) steps and erases the tape after
a successful computation. We represent configurations c of a

computation of M on x by an N − 1-long word (with suffi-
ciently many blanks at the end), in which y in the active cell
is replaced by (q, y) with the current state q ∈ Q. An accept-
ing computation of M on x is encoded by the N2-long word
w = ♯c1 ♯ c2 ♯ . . . ♯ cN−1 ♯ cN over Ξ = Σ ∪ (Q × Σ) ∪ {♯}.
Thus, a word w of length N2 encodes an accepting compu-
tation iff it starts with the initial configuration c1 preceded
by ♯, ends with the accepting configuration cacc , and every
two length 3 subwords at distance N apart form a legal tu-
ple [Sipser, 1997, Theorem 7.37].

We define O and E = ({D+
1 ,D

+
2 }, {D−}) so that their

canonical models look as follows, for Ξ = {a1, . . . , ak}:

CO,D+
1

c1 cacc

0

♯

1 N

Ξ

N + 1

Ξ

N2 − N + 1 N2

CO,D+
2

0 1

a1,C

N2 + 1

C a2,C C ak,C C

N2 + 2|Σ′|

a1,C C ak,C C

N2 + 2|Σ′|N2

CO,D−
Dti

0 1

Ξ

2

Ξ

N2

ΞC

N2 + 2

C ΞC C

3N2 (2i + 1)N2

where Dti=
0

ΞC

1

ΞC a b c Ξ

N2 − N

Ξ d e f

N2

Ξ Ξ

2N2 − N − 3

and ti = (a, b, c, d, e, f) is the lexicographically i-th illegal
tuple. The parts of the canonical models shown above are of
exponential size; however, due to their repetitive nature, they
can be described by a polynomial-size LTL✷⃝

horn ontology O as
in [Ryzhikov et al., 2021]. We show that the Qp[U]-query

κ = ✸(ρ1 ∧C U (ρ2 ∧C U (. . . (ρN2−1 ∧ (C UρN2)) . . .))),

where ρ1 . . . ρN2 encodes an accepting computation of M on
x, is the only type of query that can separate E under O. ⊣

As for data complexity, we show that LTL✷⃝
horn-ontologies

come essentially for free:

Theorem 12. The results of Theorem 5 continue to hold for
queries mediated by a fixed LTL✷⃝

horn-ontology.

Intuitively, the reason is that, given a fixed LTL✷⃝
horn-

ontology O, we can compute the types of the canonical model
CO,D, for consistent O and D, in polynomial time in D by
Proposition 9, with the length M from Section 4 being poly-
nomial in E. Checking consistency of D and fixed O is
known to be in P [Artale et al., 2021].

6 QBE with LTL✷✸-Ontologies
In this section, we investigate separability by ✸-queries un-
der LTL✷✸-ontologies. Remarkably, we show that, for data
complexity, LTL✷✸-ontologies also come for free despite ad-
mitting arbitrary Boolean operators; cf., [Schaerf, 1993].

Theorem 13. Let Q ∈ {Qp[✸],Q[✸]}. If E is Q-separable
under an LTL✷✸-ontology O, then E can be separated under
O by a Q-query of polysize inE and O. QBE(LTL✷✸,Q) and
QBEb+

b- (LTL✷✸,Q) are Σp
2-complete for combined complex-

ity. The presence of LTL✷✸-ontologies has no effect on the
data complexity, which remains the same as in Theorem 5.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3235

We comment on the proof of this theorem for Qp[✸]. Tak-
ing into account NP-completeness of checking if O is consis-
tent with D and tractability of this problem for a fixed O [Ar-
tale et al., 2021], we can assume, as in Theorem 10, that O
and D are consistent for each D ∈ E+ ∪ E−. Observe first
that if E is separated by κ ∈ Qp[✸] of the form (1) under
an LTL✷✸-ontology O, then, as follows from [Ono and Naka-
mura, 1980], for any D ∈ E−, there is a model JD ̸|= κ(0)
of O and D whose types form a sequence

tp0, . . . , tpk, tpk+1, . . . , tpk+l, . . . , tpk+1, . . . , tpk+l, . . . (5)

with maxD ≤ k ≤ maxD + |O| and l ≤ |O|. This allows
us to find a separating κ of polysize in E, O. Indeed, let
K be the maximal k in (5) over all D ∈ E−. If the depth
n of κ is ≤ K, we are done. If n > K, we shorten κ as
follows. Consider the prefix κ′ of κ formed by ρ0, . . . , ρK .
If JD ̸|= κ′(0) for all D ∈ E−, we are done. Otherwise, for
each D ∈ E−, we pick a ρi, i > K, with ρi ̸⊆ tpk+j for any
j ≤ l; it must exist as JD ̸|= κ(0). Then we construct κ′′ by
omitting from κ all ρl that are different from those in κ′ and
the chosen ρi with i > K. Clearly, κ′′ is as required.

A Σp
2-algorithm guesses κ and JD, for D ∈ E−, and

checks in polytime that JD |= O,D and JD ̸|= κ(0) and in
CONP [Ono and Nakamura, 1980] that O,D |= κ(0) for all
D ∈ E+. The lower bound is shown by reduction of the va-
lidity problem for fully quantified Boolean formulas ∃p ∀q ψ,
where p = p1, . . . , pk and q = q1, . . . , qm are all proposi-
tional variables in ψ. We can assume that ψ is not a tautology
and ¬ψ ̸|= x for x ∈ {pi,¬pi, qj ,¬qj | i ≤ k, j ≤ m}. Let
E = (E+, E−) with E+ = {D1,D2}, E− = {D3}, where

D1 = {B1(0)}, D2 = {B2(0)}, D3 = {q1(0), . . . , qm(0)},
and let O contain the following axioms with fresh atoms
B1, B2, Ai, Āi, for i = 1, . . . , k:

B1 ∨B2 → ¬ψ, pi → ✸
(
Āi ∧

∧
j ̸=i(Aj ∧ Āj)

)
,

¬pi → ✸
(
Ai ∧

∧
j ̸=i(Aj ∧ Āj)

)
.

Then ∃p ∀q ψ is valid iff E is Qp[✸]-separable under O.
We obtain the NP upper bounds in data complexity using

the same argument as for the Σp
2-upper bound and observ-

ing that checking O,D |= κ(0) is in P in data complex-
ity. The NP lower bounds are inherited from the ontology-
free case. The proof of the P upper bounds is more in-
volved. We illustrate the idea for O with arbitrary Boolean
but without temporal operators. In this case, one can show
(which is non-trivial) that O,D |= κ(0) iff IO,D |= κ(0),
where IO,D is the completion of D: it contains A(ℓ) iff
O∪{B | B(ℓ) ∈ D} |= A. For example, if O = {A∨B} and
D = {A(1), B(1), A(3), B(3)}, the completion IO,D is just
D regarded as an interpretation (so IO,D does not have to be a
model of O). It can be constructed in polytime in D and, due
to the equivalence above, used to prove the P upper bounds
using dynamic programming. That equivalence does not hold
for LTL✷✸, but the technique can be extended by applying it
to data sets enriched by certain types.

Note that the completion technique does not work for ⃝,✸-
queries. For example, O,D |= ✸(A ∧ ⃝B) for D and O
defined above, and so the equivalence does not hold. In fact,
the complexity of separability by ⃝✸-queries remains open.

7 QBE with LTL -Ontologies

For ontologies with arbitrary LTL -axioms, we obtain:

Theorem 14. (i) QBE(LTL,Q) is in 2EXPTIME, for any
Q ∈ {Q[✸],Q[⃝,✸],Q[Us] }. (ii) QBE(LTL,Q) is in
2EXPSPACE, for any Q ∈ {Qp[✸],Qp[⃝,✸],Qp[U] }.

The proof requires a further modification of the transition
systems Si in Theorem 6. We illustrate it by an example. Let
O = {A → ✸B, ⊤ → A ∨ B, A ∧ B → ⊥} with the set of
O-types TO = {tp1, tp2, tp3}, where tp1 = {A,¬B,✸B},
tp2 = {¬A,B,¬✸B}, tp3 = {A,¬B,¬✸B}, and tp4 =
{¬A,B,✸B}, from which we omitted subformulas such as
A ∨ B that are true or false in all types. For non-empty sets
T 1,T 2 ⊆ TO and Γ ⊆ Σ⊥, we take the relation T 1 →Γ T 2,
which, intuitively, says that if there are instants nI in all mod-
els I of O,D such that {tpI(nI) | I |= O,D} = T 1, then
there exist mI > nI with {tpI(mI) | I |= O,D} = T 2 and
Γ = {A ∈ Σ⊥ | I,m |= A for all I and nI < m < mI}.
In our example, we have {tp1, tp3} →Σ⊥ {tp1, tp2, tp3, tp4}
and {tp1, tp3} →{B} {tp1, tp3, tp4} (among others). Then
we construct the following transition system Si for, say,
Di = {A(0)}, which reflects all Q[Us]-queries over O,Di

using T ′ ⊆ TO as states (the initial state is {tp1, tp3} since
A(0) ∈ Di):

{t1, t3}

A

{t1, t3, t4}

∅

{t1, t2, t3, t4}

∅B

B

The Si can be constructed in 2EXPTIME in |Di| + |O|
(checking T 1 →Γ T 2, for given T 1, T 2 and Γ, can be done
in EXPSPACE). Also, the product of the Si, for Di ∈ E+,
can be constructed in 2EXPTIME in |Di|+ |E+|.

8 Conclusions

We have started an investigation of the computational com-
plexity of query-by-example for principal classes of LTL -
queries, both with and without mediating ontologies. Our re-
sults are encouraging as we exhibit important cases that are
tractable for data complexity and not harder than satisfiability
for combined complexity. Many interesting and technically
challenging problems remain open. Especially intriguing are
queries with U. For example, we still need to pinpoint the
size of minimal separating Q[Us]- and Qp[U]-queries under a
Horn ontology. The tight complexity of QBE for unrestricted
U-queries is also open. In general, such queries could be too
perplexing for applications; however, they can express useful
disjunctive patterns such as ‘in at most n moments of time’.

Our results and techniques provide a good starting point for
studying QBE with (ontology-mediated) queries over tempo-
ral databases with a full relational component [Chomicki et
al., 2001; Chomicki and Toman, 2018; Artale et al., 2022]
and also for the construction of separating queries satisfying
additional conditions such as being a longest/shortest separa-
tor [Blum et al., 2021; Fijalkow and Lagarde, 2021] or a most
specific/general one [ten Cate et al., 2022].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3236

Acknowledgements
This work was supported by EPSRC UK grants EP/S032207,
EP/S032282, and EP/W025868.

References
[Arenas et al., 2016] M. Arenas, G. I. Diaz, and E. Kostylev.

Reverse engineering SPARQL queries. In Proc. of WWW,
pages 239–249, 2016.

[Artale et al., 2021] A. Artale, R. Kontchakov, A. Kov-
tunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev.
First-order rewritability of ontology-mediated queries in
linear temporal logic. Artif. Intell., 299:103536, 2021.

[Artale et al., 2022] A. Artale, R. Kontchakov, A. Kov-
tunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev.
First-order rewritability and complexity of two-
dimensional temporal ontology-mediated queries. J.
Artif. Intell. Res., 75:1223–1291, 2022.

[Badea and Nienhuys-Cheng, 2000] L. Badea and S. Nien-
huys-Cheng. A refinement operator for description logics.
In Proc. of ILP, pages 40–59, 2000.

[Barceló and Romero, 2017] P. Barceló and M. Romero. The
complexity of reverse engineering problems for conjunc-
tive queries. In Proc. of ICDT, pages 7:1–7:17, 2017.

[Bergroth et al., 2000] L. Bergroth, H. Hakonen, and
T. Raita. A survey of longest common subsequence
algorithms. In Proc. of SPIRE, pages 39–48, 2000.

[Blum et al., 2021] C. Blum, M. Djukanovic, A. Santini,
H. Jiang, C. Li, F. Manyà, and G. Raidl. Solving
longest common subsequence problems via a transforma-
tion to the maximum clique problem. Comput. Oper. Res.,
125:105089, 2021.

[Bühmann et al., 2016] L. Bühmann, J. Lehmann, and P.
Westphal. DL-learner - A framework for inductive learn-
ing on the semantic web. J. Web Sem., 39:15–24, 2016.

[Camacho and McIlraith, 2019] A. Camacho and S. McIl-
raith. Learning interpretable models expressed in linear
temporal logic. In Proc. of ICAPS, pages 621–630, 2019.

[Chen and Lin, 1994] C.-C. Chen and I-Peng Lin. The com-
putational complexity of the satisfiability of modal Horn
clauses for modal propositional logics. Theor. Comp. Sci.,
129(1):95–121, 1994.

[Chomicki and Toman, 2018] J. Chomicki and D. Toman.
Temporal logic in database query languages. In Encyclo-
pedia of Database Systems. Springer, 2018.

[Chomicki et al., 2001] J. Chomicki, D. Toman, and M.
Böhlen. Querying ATSQL databases with temporal logic.
ACM Trans. Database Syst., 26(2):145–178, 2001.

[Chowdhury et al., 2010] R. Chowdhury, H.-S. Le, and V.
Ramachandran. Cache-oblivious dynamic programming
for bioinformatics. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 7(3):495–510, 2010.

[Cima et al., 2021] G. Cima, F. Croce, and M. Lenzerini.
Query definability and its approximations in ontology-
based data management. In Proc. of CIKM, pages 271–
280. ACM, 2021.

[Cohen and Weiss, 2016] S. Cohen and Y. Weiss. The com-
plexity of learning tree patterns from example graphs.
ACM Trans. Database Syst., 41(2):14:1–14:44, 2016.

[Demri et al., 2016] S. Demri, V. Goranko, and M. Lange.
Temporal Logics in Computer Science. Cambridge Uni-
versity Press, 2016.

[Deutch and Gilad, 2019] D. Deutch and A. Gilad. Reverse-
engineering conjunctive queries from provenance exam-
ples. In Proc. of EDBT, pages 277–288, 2019.

[Fanizzi et al., 2018] N. Fanizzi, G. Rizzo, C. d’Amato, and
F. Esposito. DLFoil: Class expression learning revisited.
In Proc. of EKAW, pages 98–113, 2018.

[Fijalkow and Lagarde, 2021] N. Fijalkow and G. Lagarde.
The complexity of learning linear temporal formulas from
examples. In Proc. of 15th Int. Conf. on Grammatical In-
ference, volume 153 of PMLR, pages 237–250, 2021.

[Fortin et al., 2022] M. Fortin, B. Konev, V. Ryzhikov, Y. Sa-
vateev, F. Wolter, and M. Zakharyaschev. Unique charac-
terisability and learnability of temporal instance queries.
In Proc. of KR, 2022.

[Fortin et al., 2023] M. Fortin, B. Konev, V. Ryzhikov, Y. Sa-
vateev, F. Wolter, and M. Zakharyaschev. Reverse engi-
neering of temporal queries mediated by LTL ontologies.
CoRR, abs/2303.04598, 2023.

[Fraser, 1996] C. Fraser. Consistent subsequences and super-
sequences. Theor. Comput. Sci., 165(2):233–246, 1996.

[Funk et al., 2019] M. Funk, J. C. Jung, C. Lutz, H. Pulcini,
and F. Wolter. Learning description logic concepts: When
can positive and negative examples be separated? In Proc.
of IJCAI, pages 1682–1688, 2019.

[Gabbay et al., 2003] D. Gabbay, A. Kurucz, F. Wolter, and
M. Zakharyaschev. Many-Dimensional Modal Logics:
Theory and Applications, volume 148 of Studies in Logic.
Elsevier, 2003.

[Gutiérrez-Basulto et al., 2018] V. Gutiérrez-Basulto, J. Ch.
Jung, and L. Sabellek. Reverse engineering queries in
ontology-enriched systems: The case of expressive Horn
description logic ontologies. In Proc. of IJCAI, 2018.

[Heindorf et al., 2022] S. Heindorf, L. Blübaum, N.
Düsterhus, T. Werner, V. N. Golani, C. Demir, and
A.-C. Ngonga Ngomo. Evolearner: Learning description
logics with evolutionary algorithms. In Proc. of WWW,
pages 818–828. ACM, 2022.

[Hofman and Martens, 2015] P. Hofman and W. Martens.
Separability by short subsequences and subwords. In Proc.
of ICDT, volume 31 of LIPIcs, pages 230–246, 2015.

[Iannone et al., 2007] L. Iannone, I. Palmisano, and N.
Fanizzi. An algorithm based on counterfactuals for
concept learning in the Semantic Web. Appl. Intell.,
26(2):139–159, 2007.

[Jung et al., 2020] J. Ch. Jung, C. Lutz, and F. Wolter. Least
General Generalizations in Description Logic: Verification
and Existence. In Proc. of AAAI, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3237

[Jung et al., 2021] J. Ch. Jung, C. Lutz, H. Pulcini, and F.
Wolter. Separating data examples by description logic con-
cepts with restricted signatures. In Proc. of KR, 2021.

[Jung et al., 2022] J. Ch. Jung, C. Lutz, H. Pulcini, and F.
Wolter. Logical separability of labeled data examples un-
der ontologies. Artif. Intell., 313 (2022).

[Kalashnikov et al., 2018] D. Kalashnikov, L. Lakshmanan,
and D. Srivastava. Fastqre: Fast query reverse engineering.
In Proc. of SIGMOD, pages 337–350, 2018.

[Kupferman and Vardi, 1996] O. Kupferman and M. Vardi.
Verification of fair transisiton systems. In Proc. of CAV,
volume 1102 of LNCS, pages 372–382. Springer, 1996.

[Kurtonina and de Rijke, 1997] N. Kurtonina and M. de Ri-
jke. Bisimulations for temporal logic. J. Log. Lang. Inf.,
6(4):403–425, 1997.

[Lehmann and Haase, 2009] J. Lehmann and Ch. Haase.
Ideal downward refinement in the EL description logic.
In Proc. of ILP, pages 73–87, 2009.

[Lehmann and Hitzler, 2010] J. Lehmann and P. Hitzler.
Concept learning in description logics using refinement
operators. Machine Learning, 78:203–250, 2010.

[Lemieux et al., 2015] C. Lemieux, D. Park, and I. Beschast-
nikh. General LTL specification mining (T). In Proc. of
ASE, pages 81–92. IEEE, 2015.

[Lisi and Straccia, 2015] F. Lisi and U. Straccia. Learning in
description logics with fuzzy concrete domains. Funda-
menta Informaticae, 140(3-4):373–391, 2015.

[Lisi, 2012] F. Lisi. A formal characterization of concept
learning in description logics. In Proc. of DL, 2012.

[Maier, 1978] D. Maier. The complexity of some problems
on subsequences and supersequences. J. ACM, 25(2):322–
336, 1978.

[Martins, 2019] D. Martins. Reverse engineering database
queries from examples: State-of-the-art, challenges, and
research opportunities. Inf. Syst., 83:89–100, 2019.

[Neider and Gavran, 2018] D. Neider and I. Gavran. Learn-
ing linear temporal properties. In Proc. of FMCAD, pages
1–10. IEEE, 2018.

[Ono and Nakamura, 1980] H. Ono and A. Nakamura. On
the size of refutation Kripke models for some linear modal
and tense logics. Studia Logica, pages 325–333, 1980.

[Ortiz, 2019] M. Ortiz. Ontology-mediated queries from ex-
amples: a glimpse at the DL-Lite case. In Proc. of GCAI,
pages 1–14, 2019.

[Place and Zeitoun, 2016] T. Place and M. Zeitoun. Separat-
ing regular languages with first-order logic. Log. Methods
Comput. Sci., 12(1), 2016.

[Place and Zeitoun, 2022] T. Place and M. Zeitoun. A
generic polynomial time approach to separation by first-
order logic without quantifier alternation. In Proc. of
FSTTCS, volume 250 of LIPIcs, pages 43:1–43:22, 2022.

[Prior, 1956] A. Prior. Time and Modality. OUP, 1956.

[Raha et al., 2022] R. Raha, R. Roy, N. Fijalkow, and D. Nei-
der. Scalable anytime algorithms for learning fragments of
linear temporal logic. In Proc. of TACAS, volume 13243
of LNCS, pages 263–280. Springer, 2022.

[Rizzo et al., 2018] G. Rizzo, N. Fanizzi, C. d’Amato, and
F. Esposito. A framework for tackling myopia in concept
learning on the web of data. In Proc. of EKAW, pages 338–
354. Springer, 2018.

[Rizzo et al., 2020] G. Rizzo, N. Fanizzi, and C. d’Amato.
Class expression induction as concept space exploration:
From DL-FOIL to DL-FOCL. Future Gener. Comput.
Syst., 108:256–272, 2020.

[Ryzhikov et al., 2021] V. Ryzhikov, Y. Savateev, and M.
Zakharyaschev. Deciding FO-rewritability of ontology-
mediated queries in linear temporal logic. In Proc. of
TIME, volume 206 of LIPIcs, pages 10:1–10:15, 2021.

[Sarker and Hitzler, 2019] Md. K. Sarker and P. Hitzler. Ef-
ficient concept induction for description logics. In Proc. of
AAAI, pages 3036–3043, 2019.

[Schaerf, 1993] A. Schaerf. On the complexity of the in-
stance checking problem in concept languages with exis-
tential quantification. J. Intel. Inf. Sys., 2:265–278, 1993.

[Sipser, 1997] M. Sipser. Introduction to the theory of com-
putation. PWS Publishing Company, 1997.

[Staworko and Wieczorek, 2012] S. Staworko and P. Wiec-
zorek. Learning twig and path queries. In Proc. of ICDT,
pages 140–154, 2012.

[Straccia and Mucci, 2015] U. Straccia and M. Mucci.
pFOIL-DL: Learning (fuzzy) EL concept descriptions
from crisp OWL data using a probabilistic ensemble es-
timation. In Proc. of SAC, pages 345–352, 2015.

[ten Cate and Dalmau, 2015] B. ten Cate and V. Dalmau.
The product homomorphism problem and applications. In
Proc. of ICDT, pages 161–176, 2015.

[ten Cate et al., 2022] B. ten Cate, V. Dalmau, M. Funk, and
C. Lutz. Extremal fitting problems for conjunctive queries.
CoRR, abs/2206.05080, 2022.

[Tran et al., 2017] An C. Tran, J. Dietrich, H. W. Guesgen,
and S. Marsland. Parallel symmetric class expression
learning. J. Mach. Learn. Res., 18:64:1–64:34, 2017.

[Vardi, 2007] M. Vardi. Automata-theoretic techniques for
temporal reasoning. In Handbook of Modal Logic, pages
971–989. North-Holland, 2007.

[Weiss and Cohen, 2017] Y. Weiss and S. Cohen. Reverse
engineering SPJ-queries from examples. In Proc. of
PODS, pages 151–166, 2017.

[Willard, 2010] R. Willard. Testing expressibility is hard. In
Proc. of CP, vol. 6308 of LNCS, pp. 9–23. Springer, 2010.

[Zhang et al., 2013] M. Zhang, H. Elmeleegy, C. Procopiuc,
and D. Srivastava. Reverse engineering complex join
queries. In Proc. of SIGMOD, pages 809–820, 2013.

[Zloof, 1977] M. Zloof. Query-by-example: A data base lan-
guage. IBM Syst. J., 16(4):324–343, 1977.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3238

	Introduction
	Further Related Work
	Preliminaries
	QBE without Ontologies
	QBE with LTLhorn-Ontologies
	QBE with LTL-Ontologies
	QBE with LTL-Ontologies
	Conclusions

