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Abstract
The tractability of the lightweight description logic
EL has allowed for the construction of large and
widely used ontologies that support semantic inter-
operability. However, comprehensive domains with
a broad user base are often at odds with strong axio-
matisations otherwise useful for inferencing, since
these are usually context dependent and subject to
diverging perspectives.
In this paper we introduce Standpoint EL, a multi-
modal extension of EL that allows for the integ-
rated representation of domain knowledge relative
to diverse, possibly conflicting standpoints (or con-
texts), which can be hierarchically organised and
put in relation to each other. We establish that
Standpoint EL still exhibits EL’s favourable PTIME
standard reasoning, whereas introducing additional
features like empty standpoints, rigid roles, and no-
minals makes standard reasoning tasks intractable.

1 Introduction
In many subfields of artificial intelligence, ontologies are
used to provide a formal representation of a shared vocab-
ulary, give meaning to its terms, and describe the relations
between them. To this end, one of the most prominent
and successful class of logic-based knowledge representation
formalisms are description logics (DLs) [Baader et al., 2017;
Rudolph, 2011], which provide the formal basis for the most
recent version of the Web Ontology Language OWL 2 [Bao
et al., 2009].

Among the most prominent families of DLs used today
is EL [Baader et al., 2005], which is the formal basis of
OWL 2 EL [Motik et al., 2009a], a popular tractable profile
of OWL 2. One of the main appeals of EL is that basic reas-
oning tasks can be performed in polynomial time with respect
to the size of the ontology, enabling reasoning-supported cre-
ation and maintenance of very large ontologies. An example
of this is the healthcare ontology SNOMED CT [Donnelly,
2006], with worldwide adoption and a broad user base com-
prising clinicians, patients, and researchers among others.

However, when modelling comprehensive ontologies like
SNOMED CT, one is usually facing issues related to context

or perspective-dependent knowledge as well as ambiguity of
language [Schulz et al., 2017]. For instance, the concept
Tumour might denote a process or a piece of tissue; Allergy
may denote an allergic reaction or just an allergic disposition.

In a similar vein, the decentralised nature of the Semantic
Web has led to the generation of various ontologies of over-
lapping knowledge that inevitably reflect different points of
view. For instance, an initiative has attempted to integrate the
FMA1140 (Foundational Model of Anatomy), SNOMED-
CT, and the NCIt (National Cancer Institute Thesaurus) into
a single combined version called LargeBio and reported en-
suing challenges [Osman et al., 2021]. In this context, frame-
works supporting the integrated representation of multiple
perspectives seem preferable to recording the distinct views
in a detached way, but also to entirely merging them at the
risk of causing inconsistencies or unintended consequences.

To this end, Gómez Álvarez and Rudolph [2021] proposed
standpoint logic, a formalism inspired by the theory of super-
valuationism [Fine, 1975] and rooted in modal logic, which
allows for the simultaneous representation of multiple, poten-
tially contradictory, viewpoints in a unified way and the es-
tablishment of alignments between them. This is achieved by
extending the base language with labelled modal operators,
where propositions □Sϕ and ♢Sϕ express information relat-
ive to the standpoint S and read, respectively: “according to
S, it is unequivocal/conceivable that ϕ”. Semantically, stand-
points are represented by sets of precisifications,1 such that
□Sϕ and ♢Sϕ hold if ϕ is true in all/some of the precisifica-
tions associated with S. Consider the following example.

Example 1 (Tumour Disambiguation). Two derivatives of
the SNOMED CT ontology (SN) model tumours differently.
According to TP, a Tumour is a process by which abnormal
or damaged cells grow and multiply (1), yet according to TT,
a Tumour is a lump of tissue (2).

□TP[Tumour ⊑ AbnormalGrowthProcess] (1)
□TT[Tumour ⊑ Tissue] (2)

Both interpretations inherit the axioms of the original
SNOMED CT (3) and are such that: if according to SN some-
thing is arguably both a Tumour and a Tissue, then it (un-
equivocally) is a Tumour according to TT (4). The respective

1Precisifications are analogous to the worlds of modal-logic
frameworks with possible-worlds semantics.
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assertion is made for TP (5). But Tissue and Process are
disjoint categories according to SN (6).

(TP ⪯ SN) (TT ⪯ SN) (3)
♢SN[Tumour ⊓ PhysicalObject] ⊑ □TT[Tumour] (4)

♢SN[Tumour ⊓ Process] ⊑ □TP[Tumour] (5)
□SN[Tissue ⊓ Process ⊑ ⊥] (6)

While clearly incompatible, both perspectives are semantic-
ally close and we can establish relations between them. For
instance, we might assert that something is unequivocally the
product of a Tumour (process) according to TP if and only if
it is arguably a Tumour (tissue) according to TT (7). Also,
we may specify a subsumption between the classes of unequi-
vocal instances of Tissue according to TT and to TP (8).

□TP[∃ProductOf.Tumour] ≡ ♢TT[Tumour] (7)
□TT[Tissue] ⊑ □TP[Tissue] (8)

When recording clinical findings, clinicians may use ambigu-
ous language, so an automated knowledge extraction service
may obtain the following from text and annotated scans:

□SN{Patient(p), HasPart(p, a), Colon(a)} (9)
♢SN{HasPart(a, b), Tumour(b), PhysicalObject(b)} (10)

The logical statements (1)–(10), which formalise Ex-
ample 1 by means of a standpoint-enhanced EL description
logic, are not inconsistent, so all axioms can be jointly rep-
resented. Let us now illustrate the use of standpoint logic for
reasoning with and across individual perspectives.
Example 2 (Continued from Example 1). In this case, we
can disambiguate the information given by Axiom (10) us-
ing Axiom (3) and Axiom (4), which entail that according to
TT, b is unequivocally a tumour, □TTTumour(b), and with
Axiom (2) also a tissue, □TTTissue(b). Moreover, we can
use the “bridges” to switch to another perspective. From Ax-
iom (8), it is clear that according to TP, b is also a tissue,
□TPTissue(b), and from Axiom (7) b is the product of a tu-
mour, □TP∃ProductOf.Tumour(b). Then Axiom (1) yields

□TP∃ProductOf.(Tumour ⊓ AbnormalGrowthProcess)(b).

The statement □SN[Tumour ⊓ Process](d), in contrast, will
trigger an inconsistency thanks to Axiom (6), which prevents
the evaluation of Tumour simultaneously as a Tissue and a
Process and Axiom (2), which states that according to some
interpretations, a Tumour is a Tissue. Finally, a user (e.g. a
specific clinic, CL) may inherit the SNOMED CT (CL ⪯ SN)
and establish further axioms, e.g.

□CL[Patient ⊓ ∃HasPart.(Colon ⊓ ♢SN∃HasPart.Tumour)
⊑ ∃AssociatedWith.ColonCancerRisk],

to identify patients with cancer risk. Here, Axiom (9) lets us
infer that □CL∃AssociatedWith.ColonCancerRisk(p). ❑

The need of handling multiple perspectives in the Semantic
Web has led to several (non-modal) logic-based proposals.
The closest regarding goals are multi-viewpoint ontologies
[Hemam and Boufaïda, 2011; Hemam, 2018], which model
the intuition of viewpoints in a tailored extension of OWL
for which no complexity bounds are given. Similar problems

are also addressed in the more extensive work on contex-
tuality (e.g. C-OWL and Distributed ontologies [Bouquet et
al., 2003; Borgida and Serafini, 2003] and the Contextualised
Knowledge Repository (CKR) [Serafini and Homola, 2012]).
These frameworks focus on contextual and distributed reas-
oning and range between different levels of expressivity for
modelling the structure of contexts and the bridges between
them. In the context of scalable reasoning, one should high-
light the implementations that provide support for OWL2-RL
based CKR defeasible reasoning [Bozzato et al., 2018].

As for modal logics, their suitability to model perspect-
ives and contexts in a natural way is obvious [Klarman
and Gutiérrez-Basulto, 2013; Gómez Álvarez and Rudolph,
2021], they are well-known in the community and their se-
mantics is well-understood. Yet, the interplay between DL
constructs and modalities is often not well-behaved and can
easily endanger the decidability of reasoning tasks or in-
crease their complexity [Baader and Ohlbach, 1995; Mos-
urović, 1999; Wolter and Zakharyaschev, 1999]. Notable
examples are NEXPTIME-completeness of the multi-modal
description logic KALC [Lutz et al., 2002] and 2EXPTIME-
completeness of ALCALC [Klarman and Gutiérrez-Basulto,
2013], a modal contextual logic framework in the style pro-
posed by McCarthy [McCarthy and Buvac, 1998].

In this work, we focus on the framework of standpoint lo-
gics [Gómez Álvarez and Rudolph, 2021], which are modal
logics, too, but come with a simplified Kripke semantics. Re-
cently, Gómez Álvarez et al. [2022] introduced First-Order
Standpoint Logic (FOSL) and showed favourable complex-
ity results for its sentential fragments,2 which disallow modal
operators being applied to formulas with free variables. In
particular, adding sentential standpoints does not increase
the complexity for fragments that are NP-hard. Yet, a fine-
grained terminological alignment between different perspect-
ives requires concepts preceded by modal operators, as in Ax-
iom (7), leading to non-sentential fragments of FOSL.

Our paper is structured as follows. After introducing the
syntax and semantics of Standpoint EL (SEL) and a suitable
normal form (Section 2), we establish our main result: satis-
fiability checking in SEL is PTIME-complete. We show this
by providing a worst-case optimal tableau-based algorithm
(Section 3) that takes inspiration from the quasi-model based
methods [Wolter and Zakharyaschev, 1998] as used for KALC
[Lutz et al., 2002], but differs in its specifics. Our approach
builds a quasi-model from a graph of (quasi) domain ele-
ments, which are annotated with various constraints, to then
reconstruct the worlds or, in our case, precisifications. We
also show that introducing additional features such as empty
standpoints, rigid roles, and nominals make standard reason-
ing tasks intractable (Section 4). In Section 5, we conclude
the paper with a discussion of future work, including effi-
cient approaches for reasoner implementations. Altogether,
this paper provides a clear pathway for making scalable mul-
tiperspective ontology management possible.

An extended version of the paper with proofs of all results
is available at https://arxiv.org/abs/2302.13187.

2This includes the sentential standpoint variant of the expressive
DL SROIQbs, a logical basis of OWL 2 DL [Motik et al., 2009b].
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2 Syntax, Semantics, and Normalisation
We now introduce syntax and semantics of Standpoint EL (re-
ferred to as SEL) and propose a normal form that is useful for
subsequent algorithmic considerations.

2.1 Syntax
A Standpoint DL vocabulary is a traditional DL vocabulary
consisting of sets NC of concept names, NR of role names,
and NI of individual names, extended it by an additional set
NS of standpoint names with ∗ ∈ NS. A standpoint operator
is of the form ♢s (“diamond”) or □s (“box”) with s ∈ NS; we
use ⊙s to refer to either. A concept term is defined via

C ::= ⊤ | ⊥ | A | C1 ⊓ C2 | ∃R.C | ⊙s[C]

where A ∈ NC and R ∈ NR. A general concept inclusion
(GCI) is of the form ⊙s[C ⊑ D], where C and D are concept
terms.3 A concept assertion is of of the form ⊙s[C(a)] while
a role assertion is of the form ⊙s[R(a, b)], where a, b ∈ NI,
C is a concept term, and R ∈ NR. A sharpening statement is
of the form s ⪯ s′ where s, s′ ∈ NS.

A SEL knowledge base is a tuple K = ⟨S, T ,A⟩, where T
is a set of GCIs, called TBox; A is a set of (concept or role) as-
sertions, called ABox; and S is a set of sharpening statements,
called SBox. We refer to arbitrary statements from K as ax-
ioms. Since the axiom types in S , T , and A are syntactically
well-distinguished, we sometimes identify K as S ∪ T ∪ A.
Note that all axioms except sharpening statements are pre-
ceded by modal operators (“modalised” for short). In case
the preceding operator happens to be □∗, we may omit it.

2.2 Semantics
The semantics of SEL is defined via standpoint structures. For
a Standpoint DL vocabulary ⟨NC, NR, NI, NS⟩, a description
logic standpoint structure is a tuple D = ⟨∆,Π, σ, γ⟩ where:
• ∆ is a non-empty set, the domain of D;
• Π is a set, called the precisifications of D;
• σ is a function mapping each standpoint name to a non-

empty subset of Π;4

• γ is a function mapping each precisification from Π to an
“ordinary” DL interpretation I = ⟨∆, ·I⟩ over the domain
∆, where the interpretation function ·I maps:
– each concept name A ∈ NC to a set AI ⊆ ∆,
– each role name R∈NR to a binary relation RI ⊆∆×∆,
– each individual name a ∈ NI to an element aI ∈ ∆,
and we require aγ(π) = aγ(π

′) for all π, π′ ∈ Π and a ∈ NI.
Note that by this definition, individual names (also referred to
as constants) are interpreted rigidly, i.e., each individual name
a is assigned the same aγ(π) ∈ ∆ across all precisifications
π ∈ Π. We will refer to this uniform aγ(π) by aD.
For each π ∈ Π, the interpretation function ·I for I = γ(π) is
extended to concept terms via structural induction as follows:

3The square brackets [. . .] indicate the scope of the modality, as
the same modalities may be used inside concept terms.

4As shown in Section 4, allowing for “empty standpoints” imme-
diately incurs intractability, even for an otherwise empty vocabulary.

⊤I := ∆ (♢sC)I :=
⋃

π′∈σ(s) C
γ(π′)

⊥I := ∅ (□sC)I :=
⋂

π′∈σ(s) C
γ(π′)

(C1 ⊓ C2)
I := CI

1 ∩ CI
2

(∃R.C)I :=
{
δ ∈ ∆

∣∣ ⟨δ, ε⟩ ∈ RI for some ε ∈ CI}
We observe that modalised concepts ⊙sC are interpreted uni-
formly across all precisifications π ∈ Π, which allows us to
denote their extensions with (⊙sC)D.

A DL standpoint structure D satisfies a sharpening state-
ment s ⪯ s′, written as D |= s ⪯ s′, iff σ(s) ⊆ σ(s′). For the
other axiom types, satisfaction by D is defined as follows:

D |= □s[C ⊑D] :⇐⇒ Cγ(π) ⊆ Dγ(π) for each π ∈ σ(s)

D |= ♢s[C ⊑D] :⇐⇒ Cγ(π) ⊆ Dγ(π) for some π ∈ σ(s)

D |= □s[C(a)] :⇐⇒ aD ∈
⋂

π∈σ(s) C
γ(π)

(
= (□sC)D

)
D |= ♢s[C(a)] :⇐⇒ aD ∈

⋃
π∈σ(s) C

γ(π)
(
= (♢sC)D

)
D |= □s[R(a,b)] :⇐⇒ ⟨aD, bD⟩ ∈

⋂
π∈σ(s) R

γ(π)

D |= ♢s[R(a,b)] :⇐⇒ ⟨aD, bD⟩ ∈
⋃

π∈σ(s) R
γ(π)

As usual, D is a model of S iff it satisfies every sharpening
statement in S; it is a model of T iff it satisfies every GCI
τ ∈ T ; it is a model of A iff it satisfies every assertion α ∈ A;
it is a model of K = ⟨S, T ,A⟩ (written D |= K) iff it is a
model of S and a model of T and a model of A. Figure 1
illustrates a model of Example 1.

π

π′ 

Π
�홿�횊�횝�횒�횎�횗�횝 �홲�횘�횕�횘�횗

Δ ε3ε2ε1

*
�햲�햭

�홷�횊�횜�홿�횊�횛�횝 �홷�횊�횜�홿�횊�횛�횝 �횃�횞�횖�횘�횛
�홿�횑�횢…�홾�횋�횓�횎�회�횝�햳�햳

, �횃�횒�횜�횜�횞�횎

�햳�햯 �횃�횒�횜�횜�횞�횎
�홿�횛�횘�획�횞�회�횝�홾�횏

ε4

�횃�횞�횖�횘�횛, �홿�횛�횘�회�횎�횜�횜
�홰�횋…�홿�횛�횘�회�횎�횜�횜

p a b

Figure 1: Model of Example 1. The curly brackets represent σ, map-
ping standpoint names to subsets of Π. The dotted lines represent the
DL interpretation at each precisification, with concepts in blue and
roles denoted by arrows. An individual name mapping is indicated
under the element line.

Our investigations regarding reasoning in SEL will focus
on standpoint versions of the well-known standard reasoning
tasks, and we will make use of variations of established tech-
niques to (directly or indirectly) reduce all of them to the first.
Knowledge base satisfiability: Given a knowledge base K,
is there a DL standpoint structure D such that D |= K?
Axiom entailment: Given K and some SBox, TBox, or
ABox axiom ϕ, does K |= ϕ hold, that is, is it the case that
for every model D of K we have D |= ϕ?
To show that axiom entailment can be polynomially reduced
to knowledge base unsatisfiability, we exhibit for every axiom
type ϕ a knowledge base K¬ϕ such that K |= ϕ coincides with
unsatisfiability of K ∪ K¬ϕ.

Ks⪯s′ := {♢s[⊤ ⊑ Ã], □s′ [Ã ⊑ ⊥]}
K⊙s[C⊑D] := {Ã ⊑ C, Ã ⊓D ⊑ ⊥,⊙s

d[⊤ ⊑ ∃R̃.Ã]}
K⊙s[C(a)] := {Ã ⊓ C ⊑ ⊥, ⊙s

d[Ã(a)]}
K⊙s[R(a,b)] := {B̃(b), Ã ⊓ ∃R.B̃ ⊑ ⊥,⊙s

d[Ã(a)]}
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Therein, □s
d := ♢s and ♢s

d := □s are modality duals, and
Ã, B̃ denote fresh concept names and R̃ a fresh role name.
Concept satisfiability (w.r.t. K): Given K and a modalised
concept term C, is there a model D of K with CD ̸= ∅?
This task can be solved by checking the axiom entailment
K |= □∗[C ⊑ ⊥]. If the entailment holds, then C is unsatis-
fiable w.r.t. K, otherwise it is satisfiable.
Instance retrieval: Given K and a modalised concept term
C, obtain all a ∈ NI with aD ∈ CD for every model D of K.
This task can be solved by checking, for all individuals a, if
the entailment K |= □∗[C(a)] holds and returning all such a.

2.3 Normalisation
Before we can describe a PTIME algorithm for checking sat-
isfiability of SEL KBs, we define an appropriate normal form.
Definition 1 (Normal Form of SEL Knowledge Bases). A
TBox T is in normal form iff, for all its GCIs □s[C ⊑ D],
1. C is of the form A, ∃R.A or A ⊓A′ with

A,A′ ∈NC ∪{⊤},
2. D is of the form B, ∃R.B, ♢s′B or □s′B with

B ∈NC ∪{⊥}, and
3. at least one of C,D is from NC ∪ {⊤,⊥};
where R ∈ NR, and s, s′ ∈ NS.
An ABox A is in normal form iff all assertions have the form
□s[A(a)] or □s[R(a, b)] for a, b ∈ NI, A ∈ NC, and R ∈ NR.
K = ⟨S, T ,A⟩ is in normal form whenever T and A are. ❑

For a given SEL knowledge base K = ⟨S, T ,A⟩, we can
compute its normal form by exhaustively applying the fol-
lowing transformation rules (where “rule application” means
that the axiom on the left-hand side is replaced with the set of
axioms on the right-hand side),

♢s[C(a)] → {v ⪯ s,□v[C(a)]} (11)
♢s[R(a, b)] → {v ⪯ s,□v[R(a, b)]} (12)
♢s[C ⊑ D] → {v ⪯ s,□v[C ⊑ D]} (13)

□s[C̄(a)] →
{
□s[A(a)],□s[A ⊑ C̄]

}
(14)

□s[B ⊑ ∃R.C̄] →
{
□s[B ⊑ ∃R.A],□s[A ⊑ C̄]

}
(15)

□s[B ⊑ C ⊓D] → {□s[B ⊑ A],

□s[A ⊑ C],□s[A ⊑ D]} (16)

□s[C ⊑ ⊙uD̄] →
{
□s[C ⊑ ⊙uA],□s[A ⊑ D̄]

}
(17)

□s[C ⊑ ⊤] → ∅ and □s[⊥ ⊑ D] → ∅ (18)

□s[∃R.C̄ ⊑ D] →
{
□s[C̄ ⊑ A],□s[∃R.A ⊑ D]

}
(19)

□s[C̄ ⊓D ⊑ E] →
{
□s[C̄ ⊑ A],□s[A ⊓D ⊑ E]

}
(20)

□s[♢uC ⊑ D] → {□u[C ⊑ □∗A],□s[A ⊑ D]} (21)
□s[□uC ⊑ D] → {v0 ⪯ u, v1 ⪯ u,□u[C ⊑ A],

□s[♢v0A ⊓ ♢v1A ⊑ D]} (22)

Therein, C̄ and D̄ stand for complex concept terms not con-
tained in NC ∪{⊤}, whereas each occurrence of A on a
right-hand side denotes the introduction of a fresh concept
name; likewise, v, v0, and v1 denote the introduction of a
fresh standpoint name. Rule (20) is applied modulo com-
mutativity of ⊓. Most of the transformation rules should be
intuitive (for the first three, keep in mind that standpoints
must be nonempty). A notable exception is Rule (22), which

is crucial to remove boxes occurring with negative polarity.
It draws some high-level inspiration from existing work on
non-vacuous left-hand-side universal quantifiers in Horn DLs
[Carral et al., 2014], yet the argument for its correctness re-
quires a much more intricate model-theoretic construction
and crucially hinges on “Hornness” of K and nonemptiness
of standpoints. A careful analysis yields that the transforma-
tion has the desired semantic and computational properties.

Lemma 1. Every SEL knowledge base K can be transformed
into a SEL knowledge base K′ in normal form such that
• K′ is a SEL-conservative extension of K,
• the size of K′ is at most linear in the size of K, and
• the transformation can be computed in PTIME.

While K′ being a SEL-conservative extension of K brings
about various valuable properties, what matters for our pur-
poses is that this implies equisatisfiability of K and K′, thus
we will not go into details about conservative extensions.

3 A Tableau Algorithm for Standpoint EL
We present a PTIME tableau decision algorithm for SEL.
Complexity-optimal tableau algorithms have been proposed
for description logics with modal operators applied to con-
cepts and axioms such as KALC [Lutz et al., 2002], which is
known to be in NEXPTIME. Our case cannot be treated in the
same way, as we need to take greater care to show tractabil-
ity in the end. Lutz et al. [2002] build a “quasi-model” from
a tree of “quasi-worlds”, which is not as easily applicable in
our case, so we follow a dual approach: we will build a quasi-
model from a completion graph of (quasi) domain elements,
where each of the latter is associated to a constraint system
with assembled information regarding one individual’s spe-
cifics in each precisification. We begin with some definitions.
Given a SEL knowledge base K, denote by
• STK the elements of NS occurring in K together with ∗,
• INK the set of all individual names occurring in K,
• BCK (basic concepts) the concept names used in K, plus⊤,
• CK the set of concept terms used in K (with BCK ⊆ CK),
• SFK the set of subformulas of K, consisting of all axioms

of K with and without their outer standpoint modality.
A constraint for K is of the form (x :C), (x : a), (x : ϕ), or
(x : s),5 where x is a variable, C ∈ CK a concept, a ∈ INK
an individual, ϕ ∈ SFK a formula, and s ∈ STK a standpoint
name. Constraint systems are finite sets of constraints.

Definition 2 ((Initial) Constraint System for K). The ini-
tial constraint system for K, called SK

0 , is the set

{xs : ∗, xs :⊤, xs : ϕ, xs : s | ϕ ∈ K, s ∈ STK}

A constraint system for K is a finite set S of constraints
for K such that SK

0 ⊆ S and {x : ∗, x :⊤} ⊆ S for each x
in S. For a variable x, let stS(x) = {s | (x : s) ∈ S} be the
standpoint signature of x in S. ❑

Intuitively, each constraint system S produced by the al-
gorithm corresponds to a domain element ε ∈ ∆ and each
variable x in S corresponds to some precisification π.

5For better legibility, we will sometimes omit the parentheses.
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Figure 2: For a SEL knowledge base K = {⊤ ⊑ ♢sC,C ⊑ ∃R.D}: completion graph CG produced by the algorithm (left); quasi-model
Q over CG with the runs Γ = {r1, . . . , r4} represented by dotted lines (center); and model D obtained by the construction in the proof of
Theorem 2 (right). Constraints of the form (x : ϕ) in CG and Q are omitted for better readability.

Moreover, each constraint x :X in S encodes information of
ε in π. Namely, X may be an axiom that holds in π, a stand-
point that contains π, or a concept expression of which ε is an
instance in π. Initialising one variable per standpoint in the
initial constraint system guarantees non-empty standpoints.

A constraint system is complete iff it satisfies every local
completion rule from Figure 3. Local completion rules op-
erate on constraint systems, while global rules involve more
than one constraint system and operate on completion graphs.

Definition 3 (Completion Graph). An element label is a set
L of triples of the form (C, s, x), where C ∈ BCK is a con-
cept, s ⊆ STK is a set of standpoints, and x is a variable.
A quasi-role for a set ∆ is a tuple ⟨ε, v, ε′, v′, R⟩ where v and
v′ are variables, ε, ε′ ∈ ∆, and R is a role name in K.
A completion graph for K is a tuple CG = ⟨∆, S,L,R⟩, with
∆ a non-empty set of elements; S a map from ∆ into con-
straint systems; L a map from ∆ into element labels; and R
a set of quasi-roles such that
• for all ⟨ε, v, ε′, v′, R⟩∈R, (v : s) ∈ S(ε) iff (v′ : s) ∈ S(ε′);
• if (C, s, x)∈L(ε), then {x :C}∪{x : s | s ∈ s} ⊆ S(ε). ❑

For convenience of presentation, we use the shortcut stε(v)
for stS(ε)(v) and for any CG = ⟨∆, S,L,R⟩, we will refer to
all ε ∈ ∆ simply as elements of CG.

CG is said to be locally complete iff for every element ε
in CG, S(ε) is complete, and we call CG globally complete
iff it is locally complete and no global completion rule (see
Figure 3) is applicable to CG as a whole.

Intuitively, the next definition poses some global require-
ments for CG to warrant its eligibility as a model-substitute.

Definition 4 (Coherence). Let CG = ⟨∆, S,L,R⟩ be a
completion graph for K. CG is called coherent iff
• for each a ∈ INK there is a unique element εa ∈ ∆ such

that (v : a) ∈ S(εa) for all variables v in S(εa),
• for each ε, ε′ ∈ ∆ and each variable v contained in S(ε),
S(ε′) contains some v′ such that stε(v) = stε′(v

′), and
• if (v : ϕ)∈S(ε) and stε(v)=stε′(v

′), then (v′: ϕ)∈S(ε′). ❑

As usual in tableaux, inconsistencies emerge as clashes.

Definition 5 (Clash). A clash is a constraint of the form
(x :⊥). A completion graph CG is said to contain a clash
iff S(ε) does for some ε in CG. Constraint systems or com-
pletion graphs not containing clashes are called clash-free. ❑

3.1 The Algorithm
To decide whether a given SEL knowledge base K in
normal form is satisfiable, we form the initial com-
pletion graph CGI with R = ∅ and ∆ consisting of
an element ε⊤ with L(ε⊤) = ∅ and S(ε⊤) = SK

0 , and
for every a ∈ INK an element εa with L(εa) = ∅ and
S(εa) = SK

0 ∪ {(xs : a) | (xs :⊤) ∈ SK
0 }.

After that, we repeatedly apply the local and global com-
pletion rules from Figure 3, where LL rules have the highest
priority, followed by LC, GN, and GG rules, in that order.
After each rule application, we check if CG contains a clash
and terminate with answer “unsatisfiable” should this be the
case. If we arrive at a clash-free CG with no more rules ap-
plicable, the algorithm terminates and returns “satisfiable”.
The first table in Figure 2 illustrates the generated tableau for
the SEL knowledge base K = {⊤ ⊑ ♢sC,C ⊑ ∃R.D}.

3.2 Quasi-Models and Quasi-Satisfiability
This section sketches how special structures, called (dual)
quasi-models can serve as proxies for proper SEL models.
Definition 6 (Run, Quasi-model). Let CG= ⟨∆, S,L,R⟩
be a completion graph. A run r in CG is a function mapping
each element ε ∈ ∆ to a variable of S(ε), such that
C1 if (r(ε) : s) ∈ S(ε), then (r(ε′) : s) ∈ S(ε′)

for all ε, ε′ ∈ ∆ and s ∈ STK,
C2 if ⟨ε, v, ε′, v′, R⟩ ∈ R and r(ε) = v, then r(ε′) = v′, and
C3 if (r(ε) : ∃R.C) ∈ S(ε), there exists some ε′ ∈ ∆ with

⟨ε, r(ε), ε′, r(ε′), R⟩ ∈ R and (r(ε′) :C) ∈ S(ε′).
A quasi-model of K is a tuple Q = ⟨∆, S,L,R, Γ⟩ where
⟨∆, S,L,R⟩ is a globally complete, coherent and clash-free
completion graph for K, and Γ a set of runs in ⟨∆, S,L,R⟩
such that for every ε ∈ ∆ and variable v in S(ε), there is a
run r in Γ such that r(ε) = v. K is called quasi-satisfiable iff
K has a quasi-model. ❑

In a nutshell, runs serve the purpose of lining up “compat-
ible” variables, one from each individual constraint system, in
a way that precisifications can be constructed (cf. Figure 2:
in Q, a “compatible” set of runs over CG is displayed using
dotted lines). With these notions in place, we can establish
the desired result.
Theorem 2. A SEL knowledge base K is satisfiable iff it is
quasi-satisfiable.
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Local labelling (LL) rule:
R⪯ If {x : s, x′ : s⪯s′} ⊆ S but (x : s′) /∈ S,

then set S := S ∪ {x : s′}.
Local content (LC) rules:
R⊓ If {x : C, x :D} ⊆ S, (x : C ⊓D) /∈ S and

C ⊓D ∈ CK, then set S := S ∪ {x : C ⊓D}.
R⊑ If {x : C, x : C ⊑ D} ⊆ S but (x :D) /∈ S,

then set S := S ∪ {x :D}.
R□ If {x :□sΦ, x

′ : s} ⊆ S but (x′ : Φ) /∈ S,
then set S := S ∪ {x′ : Φ}.

Rg If (x :G) ∈ S but (x′ :G) /∈ S,
then set S := S ∪ {x′ :G}.

Ra If {x : a, x : C(a)} ⊆ S but (x : C) /∈ S,
then set S := S ∪ {x : C}.

R♢ If (x : ♢sC) ∈ S and {x′ : s, x′ : C} ⊈ S for all
x′ in S, then create a fresh variable x′ and set
S := S ∪ {x′ : C, x′ : s, x′ : ∗, x′ :⊤}.

Global non-generating (GN) rules:
R↓ If (x : C)∈ S(ε), ⟨ε′, x′, ε, x,R⟩ ∈R, and ∃R.C ∈CK, but (x′: ∃R.C) /∈ S(ε′),

then set S(ε′) := S(ε′) ∪ {x′ : ∃R.C}.
Rr If {x : a, x :R(a, b)} ⊆ S(ε) and (x′ : b) ∈ S(ε′), but ⟨ε, x, ε′, x, R⟩ /∈ R, then

set S(ε′) := S(ε′)∪{x :⊤}∪{x : s | s ∈ stε(x)}
and R := R∪{⟨ε, x, ε′, x, R⟩}.

Rr′ If {x : b, x :R(a, b)} ⊆ S(ε) and (x′ : a) ∈ S(ε′), but ⟨ε′, x, ε, x,R⟩ /∈ R, then
set S(ε′) := S(ε′) ∪ {x :⊤} ∪ {x : s | s ∈ stε(x)}

and R := R ∪ {⟨ε′, x, ε, x,R⟩}.
R∃′ If (x : ∃R.C) ∈ S(ε), (C, stε(x), x

′) ∈ L(ε′) with ε ̸= ε′ or x = x′, but
⟨ε, x, ε′′, x′′, R⟩ /∈ R whenever (C, stε(x), x

′′) ∈ L(ε′′) and ε ̸= ε′′ or x=x′′,
then set R := R ∪ {⟨ε, x, ε′, x′, R⟩}.

Global generating (GG) rule:
R∃ If(x : ∃R.C) ∈ S(ε), but

⟨ε, x, ε′′, x′′, R⟩ /∈ R whenever (C, stε(x), x′′) ∈ L(ε′′) and ε ̸= ε′′ or x=x′′,
then create ε′ and a fresh variable x′, and then set L(ε′) := {(C, stε(x), x′)},
S(ε′) :=SK

0 ∪{x′: C, x′:⊤}∪{x′: s | s∈ stε(x)}, R :=R∪{⟨ε, x, ε′, x′, R⟩}.

Figure 3: The tableau completion rules. G can be of the form a, (s ⪯ s′), or □sϕ. Φ may denote any element of SFK ∪ CK.

Proof. (sketch) We prove the correspondence by showing that
every quasi-model gives rise to a model and vice versa.
(⇐) Given a quasi-model Q = ⟨∆, S,L,R, Γ⟩ of K, we ob-
tain a model D = ⟨∆,Π, σ, γ⟩ by letting Π = Γ , σ(s) =
{r | (r(ε) : s) ∈ S(ε)}, Cγ(r) = {ε | (r(ε) :C) ∈ S(ε)} for
C ∈ BCK, Rγ(r) = {(ε, ε′) | ⟨ε, r(ε), ε′, r(ε′), R⟩ ∈ R} and
aγ(r) = εa for all a ∈ INK. (cf. in Figure 2, see D and Q.)
(⇒) Given a model D = ⟨∆,Π, σ, γ⟩ of K, we obtain a quasi-
model Q = ⟨∆, S,L,R, Γ⟩ as follows: Let P := Π ∪ STK
and for p ∈ P , let p̄ denote some arbitrary but fixed π ∈ σ(p)
if p ∈ STK, and otherwise p̄ = p. Finally, let
S(ε) := {vp : ϕ | D, p̄ |= ϕ, ϕ ∈ SFK}

∪{vp :C | ε ∈ Cγ(p̄), p ∈ P}
∪{vp : a | ε = aγ(p̄), p ∈ P} ∪ {vp : s | p̄ ∈ σ(s)}

L(ε) := { (C, {s | p̄∈σ(s)}, vp)
| ∃R.C∈CK, (ε

′, ε)∈Rγ(p̄), ε∈Cγ(p̄)}
R := {⟨ε, vp, ε′, vp, R⟩ | (ε, ε′) ∈ Rγ(p̄)}
Γ := {{ε 7→ vp | ε ∈ ∆} | p ∈ P}. ❑

3.3 Polytime Termination and Correctness
Next, we give an overview of our argument why our al-
gorithm runs in polynomial time with respect to ∥K∥, the size
of its input K. We observe that the number |∆| of domain
elements of any completion graph CG constructed by our al-
gorithm is bounded by 3 ∥K∥2 (†). We also find that the num-
ber of variables used in any single S(ε) is bounded by 2 ∥K∥2

and the number of constraints in S(ε) by 2 ∥K∥3 (‡). Now,
the number of applications of R∃ is bounded by the number
of elements in each completion graph, i.e. at most 3 ∥K∥2 in
view of (†). Since the rules R⪯, R⊓, R⊑, R□, R♢, Rg , Ra,
Rr, Rr′ and R↓ produce one or more new constraints in an
element, the number of applications of such rules per element
is bounded by 2 ∥K∥3 due to (‡). R∃′ can add, for each ε with
(C, s, x) ∈ L(ε), at most one quasi-role from every variable
in every element, thus we have at most 6 ∥K∥4 rule applic-
ations. The total number of rule applications is bounded by

the rule applications per element multiplied by the bound on
elements, together with the bound on R∃, which gives us

(6∥K∥4)(3∥K∥2)+(2∥K∥3)(3∥K∥2)+3∥K∥2 ≤ (27∥K∥6).
Theorem 3. The completion algorithm terminates after at
most c ∥K∥6 steps, where c is a constant.

As every single rule application can be clearly executed in
polynomial time with respect to K, we can conclude that our
algorithm runs in polynomial time.

We are now ready to establish correctness of our decision
algorithm, by showing its soundness and completeness. For
both directions, Theorem 2 will come in handy. As usual, the
soundness part of our argument is the easier one.
Theorem 4 (Soundness). If there is a globally complete, co-
herent and clash-free completion graph CG for a knowledge
base K, then K is satisfiable.
Proof. (sketch) Given CG = ⟨∆, S,L,R⟩, let Γ consist of
all runs on CG. Then we can show that Q = ⟨∆, S,L,R, Γ⟩
constitutes a quasi-model for K, so we can conclude by The-
orem 2 that K is satisfiable. ❑

Proving completeness requires significantly more work.
We make use of a notion that, intuitively, formalizes the idea
that a completion graph CG under development is “in sync”
with a quasi-model Q of the same knowledge base, where Q
can be conceived as a model-theoretic “upper bound” of CG.
Definition 7 (Q-compatibility). Let K be a SEL knowledge
base and Q = ⟨∆q, Sq,Lq,Rq, Γ q⟩ be a quasimodel for K.
A completion graph CG = ⟨∆, S,L,R⟩ for K is called Q-
compatible iff there is a left-total relation µ ⊆ ∆×∆q where
• for all g ∈ ∆ and ε ∈ ∆q , if both L(g) ⊆ Lq(ε) and
{a | (x : a)∈ S(g)}⊆{a | (v : a)∈ Sq(ε)}, then (g,ε)∈µ,

• for each (g, ε) ∈ µ there is a surjective function µg,ε from
the variables in Sq(ε) to the variables in S(g) such that
– (µg,ε(v) : s) ∈ S(g) implies (v : s) ∈ Sq(ε),
– (µg,ε(v) : Φ) ∈ S(g) implies (v : Φ) ∈ Sq(ε),
– if ⟨g, x, g′, x′, R⟩ ∈ R then ⟨ε,y,ε′,y′,R⟩ ∈Rq for some
(g, ε), (g′, ε′) ∈ µ with µg,ε(y)=x and µg′,ε′(y

′)=x′. ❑
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With this definition, we can establish two important insights:
• The tableau algorithm’s initial completion graph CGI is
Q-compatible for any quasimodel Q of K.

• Applications of tableau rules preserve Q-compatiblility.
This entails that the completion graph maintained in the al-
gorithm will be Q-compatible at all times, thus also upon ter-
mination. We exploit this insight to show completeness.
Theorem 5 (Completeness). If a SEL knowledge base K is
satisfiable, the tableau algorithm will construct a globally
complete, coherent, and clash-free completion graph for K.
Proof. If K is satisfiable then by Theorem 2, there is a quasi-
model Q for K. According to Theorem 3, we can obtain a
globally complete completion graph CG after polynomially
many applications of the tableau rules, which, as just dis-
cussed, is Q-compatible. It must thus also be clash-free, be-
cause otherwise there were an element g and variable x, with
(x :⊥) ∈ S(g), and thus there is (g, ε) ∈ µ and µg,ε such that
(µg,ε(x) :⊥) ∈ Sq(ε), which is a contradiction because Q is
a quasi-model. It is not hard to show that CG is also coher-
ent, whence we can conclude that CG is a globally complete,
coherent, and clash-free completion graph for K. ❑

Together with the well-known PTIME-hardness of the sat-
isfiability problem in (standpoint-free) EL, we have there-
fore established PTIME-completeness of SEL and exhibited
a worst-case optimal algorithm for it.

4 Intractable Extensions
While the shown tractability of reasoning in SEL is good
news, one might ask if one could include more modelling fea-
tures or relax certain side conditions and still preserve tract-
ability. This section shows that tractability can be easily lost
(at least under standard complexity-theoretic assumptions).

4.1 Empty Standpoints
While it may make sense on a philosophical level, one might
wonder whether the constraint that σ(s) needs to be nonempty
for every s ∈ STK has an impact on tractability. In fact,
dropping this constraint, obtaining a logic S∅EL with the same
syntax but modified semantics, would increase expressivity
(standpoint non-emptiness could still be enforced in S∅EL by
asserting ⊤ ⊑ ♢s⊤ for every s ∈ STK). However, satisfiab-
ility in S∅EL turns out to be NP-hard, even when disallow-
ing usage of concept and role names entirely. The key in-
sight that both ♢s⊤ and its negation □s⊥ can be expressed
as S∅EL concepts gives rise to the following reduction from
3SAT: Assume an instance ϕ =

∨
C1 ∧ . . . ∧

∨
Cn of 3SAT

containing n clauses (i.e., disjunctions of literals)
∨
Cj over

the propositional variables P = {p1, . . . , pk}. We note that
ϕ is equivalent to (

∧
C1 → false) ∧ . . . ∧ (

∧
Cn → false),

where Cj is obtained from Cj by replacing every literal by its
negated version. Let now {s1, . . . , sk} be a set of standpoint
names and, for any literal ℓ over P , define

Lℓ =

{
♢si⊤ if ℓ = pi,

□si⊥ if ℓ = ¬pi.
Then, ϕ is satisfiable iff the following S∅EL knowledge base is:

Kϕ =
{
Lℓ ⊓ Lℓ′ ⊓ Lℓ′′ ⊑ ⊥ | {ℓ, ℓ′, ℓ′′} = Cj , 1 ≤ j ≤ n

}
.

4.2 Rigid Roles
SEL allows knowledge engineers to globally enforce rigidity
of specific concepts through axioms of the shape A ⊑ □∗A.
(This is in contrast to e.g. KnALC, where rigidity of con-
cepts can only be expressed relative to a given formula.) In
a similar manner, rigidity of roles (i.e., the interpretation of
certain distinguished roles being the same throughout all pre-
cisifications) would represent a desirable modelling feature.
Other modal extensions of DLs have easily been shown to
even become undecidable when this feature is permitted, but
as SEL uses a much simplified semantics on the modal dimen-
sion, these results do not carry over to SEL. Yet, we will show
that just the presence of one distinguished rigid role Ṙ causes
SEL to become intractable as satisfiability turns CONP-hard.
To demonstrate this, we reduce 3SAT to KB unsatisfiability.
As above, assume an instance ϕ =

∨
C1 ∧ . . . ∧

∨
Cn of

3SAT over propositional variables P = {p1, . . . , pk}. Then ϕ
is satisfiable iff the following SEL TBox is unsatisfiable (with
all axioms instantiated for 1 ≤ i ≤ k):

⊤ ⊑ ∃T.L0

Li−1 ⊑ ∃Ṙ.□∗(Li ⊓Tpi
)

Li−1 ⊑ ∃Ṙ.□∗(Li ⊓T¬pi
)

Lk ⊑ ♢∗S

∃Ṙ.(Tpi ⊓S ) ⊑ (Tpi ⊓S )

∃Ṙ.(T¬pi
⊓S ) ⊑ (T¬pi

⊓S )
L0 ⊓Tℓ ⊑ TCj

for all ℓ∈Cj

TC1⊓ ...⊓TCn ⊑ ⊥

The intuition behind this is to construct a “decision tree”
where Ṙ acts as child relation and which (thanks to Ṙ’s ri-
gidity) is synchronized across all precisifications. The leafs
of this tree correspond to all possible truth assignments for
p1, . . . , pk. Then we make sure that for every leaf, there ex-
ists a precisification, where this leaf is “selected” (indicated
by the non-rigid concept S). This “selection marker” S is
propagated from children to parents, taking along information
on the truth assignments. Finally, when all the information on
the path leading to the selected node has been accumulated in
the root node, it is checked if this information corresponds to
an assignment satisfying ϕ. If so, a “global inconsistency” is
triggered. Figure 4 provides a small example.

*

π

π′ 

π′ ′ 

Π
L1

ε7ε6Δ ε5ε4ε3ε2ε1
L1L0 L2L2L2L2 Tp1 T¬p1Tp2 T¬p2T¬p2Tp2

π′ ′ ′ 

S

S

S

S

S

S

S

S

S

S

S

Tp2 Tp2

Tp2Tp2

T¬p2

T¬p2

T¬p2T{¬p2}

T¬p2

Tp1

T¬p1

T¬p1

Tp1

T{¬p1,p2}
T{¬p1,p2}

T{¬p1,p2}T{p1}

T{p1}T{¬p2}

S

Figure 4: Standpoint structure, witnessing the unsatisfiability of the
propositional formula ϕ = (¬p1 ∨ p2) ∧ (p1) ∧ (¬p2). All arrows
indicate Ṙ; role T is omitted for better readability. The concept
names displayed in the top row hold throughout all precisifications.
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4.3 Nominal Concepts
Nominal concepts are a modelling feature widely used in on-
tology languages. For an individual o, the nominal concept
{o} refers to the singleton set {oI}. Let ELO denote EL ex-
tended by nominal concepts. Several formalisms subsuming
ELO, including OWL 2 EL, are known to allow for tractable
reasoning [Baader et al., 2005; Krötzsch, 2010]. However, in
the presence of standpoints, nominals prove to be detrimental
for the reasoning complexity: satisfiability of SELO TBoxes
using just one nominal concept {o} turns out to be EXPTIME-
hard and thus definitely harder than for SEL. This can be
shown by a PTIME reduction of satisfiability for Horn-ALC
TBoxes (which is known to be EXPTIME-complete [Krötzsch
et al., 2013]) to satisfiability of SELO TBoxes with just one
standpoint (the global one) and one nominal concept {o}. To
this end, recall that any Horn-ALC TBox can be normalised
in PTIME to consist of only axioms of the following shapes:

A ⊑ B A⊓B ⊑ C ∃R.A ⊑ B A ⊑ ∃R.B A ⊑ ∀R.B

where A, B, C can be concept names, ⊤, or ⊥. From a norm-
alised Horn-ALC TBox T , we obtain the target SELO TBox
T ′ by (i) declaring every original concept name as rigid via
the axiom A ⊑ □∗A as well as (ii) replacing every axiom of
the shape A ⊑ ∃R.B by the axiom

A ⊑ ♢∗((∃Src.{o}) ⊓ (∃R.(B ⊓ ∃Tgt.{o})))

(introducing two fresh role names Src and Tgt), and repla-
cing every axiom of the shape A ⊑ ∀R.B by the two axioms

A ⊓ ∃R.⊤ ⊑ (∃Src.({o} ⊓ B̃)) and ∃Tgt.B̃ ⊑ B,

introducing a (non-rigid) copy Ã for every original concept
name A. With this polytime translation, satisfiability of the
Horn-ALC TBox T and the SELO TBox T ′ coincide.

The intuition behind this is to emulate the DL-model of
T by a standpoint structure where every role connection gets
assigned its own precisification, wherein the nominal acts as
“witness” for this connection and is linked to source and tar-
get element by dedicated roles. Then the “forward transfer”
of information by axioms of the shape A ⊑ ∀R.B can be
realized using the nominal element as “proxy” (cf. Figure 5).

Src

R
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R
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Figure 5: Top: DL interpretation satisfying the Horn-ALC TBox
T = {D⊑∃R.⊤, E⊑∃R.F,E⊑∃R.G,E⊑∀R.H}. Bottom:
Corresponding standpoint structure satisfying T ′.

5 Conclusion and Future Work
In this paper, we introduced Standpoint EL, a new lightweight
member of the emerging family of standpoint logics. We de-
scribed the new modelling and reasoning capabilities it brings
to large-scale ontology management and established a PTIME
(and thus worst-case optimal) tableau-based decision proced-
ure for standard reasoning tasks. We also demonstrated that
certain extensions of SEL, which would be desirable from an
expressivity point of view, inevitably come with a loss of
tractability (sometimes under the assumption P ̸= NP).

Yet, several modelling features can be accommodated into
SEL without endangering tractability. For instance, from a
practical perspective, it appears very desirable and advant-
ageous modelling-wise, if not just single axioms, but whole
axiom sets (up to whole knowledge bases) could be preceded
by standpoint modalities. By definition, an axiom of the
type □sK can be equivalently rewritten into the axiom set
{□sϕ | ϕ ∈ K}. While something alike is not immediately
possible for axioms of the type ♢sK, our normalization rule
for diamond-preceded axioms can be lifted and thus ♢sK can
be rewritten to □s′K (and further to {□s′ϕ | ϕ ∈ K}) upon
introducing a fresh standpoint name s′ and asserting s′ ⪯ s.
Thus standpoint-modality-annotated knowledge bases come
essentially for free in SEL. In fact, we already made tacit use
of this modelling feature in Axiom 9 and Axiom 10 of our
initial example.

Moreover, we are confident that, as opposed to nominal
concepts, other modelling features of OWL 2 EL can be ad-
ded to SEL without harming tractability. These include com-
plex role inclusions (also called role-chain axioms) such as
FindingSite◦PartOf ⊑ FindingSite, and the self-concept
as in ApoptoticCell ⊑ ∃Destroys.Self.

Beyond exploring the tractability boundaries, potential
next research endeavours include to investigate diverse feas-
ible strategies for developing a SEL reasoner. Options worth
pursuing toward this goal include
• to implement our tableau algorithm from scratch or by

modifying existing open-source tableaux systems,
• to design a deduction calculus over normalised axioms that

can be translated into a datalog program, akin to the ap-
proach of Krötzsch [2010], then utilizing a state-of-the-art
datalog engine like VLog [Urbani et al., 2016], or

• to find a reduction to reasoning in standpoint-free (PTIME
extensions of) EL that is supported by existing reasoners
(such as ELK [Kazakov et al., 2014]).

With reasoners in place, appropriate experiments can be con-
ducted to assess practical feasibility and scalability.

In addition to the EL family, further popular and compu-
tationally lightweight formalisms exist, such as the tractable
profiles OWL 2 RL and OWL 2 QL [Motik et al., 2009a].
It would be interesting to investigate options to extend these
by standpoint reasoning without sacrificing tractability. More
generally, we intend to research the effect of adding stand-
points to KR languages – light- or heavyweight – in terms of
computational properties and expressivity as well as avenues
for implementing efficient reasoners for them. Beyond the
large and versatile family of description logics, a worthwhile
target for these efforts would be existential rule languages.
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