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Abstract
Existential rules, also known as tuple-generating
dependencies (TGDs) or Datalog± rules, are heav-
ily studied in the communities of Knowledge
Representation and Reasoning, Semantic Web,
and Databases, due to their rich modelling ca-
pabilities. In this paper we consider TGDs in
the temporal setting, by introducing and study-
ing DatalogMTL∃—an extension of metric tem-
poral Datalog (DatalogMTL) obtained by allow-
ing for existential rules in programs. We show that
DatalogMTL∃ is undecidable even in the restricted
cases of guarded and weakly-acyclic programs. To
address this issue we introduce uniform semantics
which, on the one hand, is well-suited for mod-
elling temporal knowledge as it prevents from un-
intended value invention and, on the other hand,
provides decidability of reasoning; in particular, it
becomes 2-ExpSpace-complete for weakly-acyclic
programs but remains undecidable for guarded pro-
grams. We provide an implementation for the de-
cidable case and demonstrate its practical feasibil-
ity. Thus we obtain an expressive, yet decidable,
rule-language and a system which is suitable for
complex temporal reasoning with existential rules.

1 Introduction
DatalogMTL [Brandt et al., 2018] is an extension of Data-
log with operators from metric temporal logic MTL [Koy-
mans, 1990], which are interpreted over the rational time-
line. As a result, DatalogMTL provides an expressive rule-
language which is well suited for temporal representation and
reasoning, with applications in stream reasoning [Wałęga et
al., 2019; Wałęga et al., 2023b] and temporal ontology-based
query answering [Artale et al., 2017; Kikot et al., 2018],
among others.

Reasoning in DatalogMTL is decidable; it is ExpSpace-
complete for combined complexity [Brandt et al., 2018]
and PSpace-complete for data complexity [Wałęga et al.,
2019]. Furthermore, a number of syntactical fragments of
DatalogMTL [Brandt et al., 2018; Wałęga et al., 2019;
Wałęga et al., 2020b] as well as modifications of its se-
mantics [Wałęga et al., 2020a; Ryzhikov et al., 2019] have

been established to obtain favourable computational proper-
ties. DatalogMTL has also been extended with stratified nega-
tion [Tena Cucala et al., 2021] and with unrestricted negation
under the stable model semantics [Wałęga et al., 2021], in the
spirit of the recent work on metric temporal answer set pro-
gramming [Cabalar et al., 2020].

Decidability and reasoning techniques devised for
DatalogMTL heavily rely on the ‘deterministic’ char-
acter of its rules, namely rule heads are not allowed to
mention existential quantification over the object domain,
‘non-deterministic’ temporal operators (e.g., | operator
which stands for ‘somewhere in the future’), or disjunc-
tions [Brandt et al., 2018; Wałęga et al., 2023a; 2023c;
Wang et al., 2022]. On the other hand, it is well known
that allowing for such constructs significantly increases
modelling capabilities and application areas of logical
languages.

In particular, logical languages with existential rules—
allowing for existential quantification in heads—constitute
a prominent research topic studied by the communities of
Knowledge Representation and Reasoning (KRR) [Calì et al.,
2010; Leone et al., 2012], Semantic Web [Arenas et al., 2018;
Calì et al., 2012a], and Databases [Gottlob et al., 2014;
Fagin et al., 2005]. Existential rules are used in KRR on-
tology languages to allow for value invention—reasoning
about constants that do not explicitly occur in a problem
specification—to enrich incomplete data with domain knowl-
edge. Such rules play a crucial role in rule-based reasoning
systems like Vadalog [Bellomarini et al., 2018; Berger et al.,
2019], which are successfully applied in industry. The exten-
sion of Datalog with existential rules, Datalog∃ (also known
as Datalog± rules or tuple-generating dependencies TGDs),
is also widely studied in Semantic Web since it covers de-
scription logics from the DL-Lite [Calvanese et al., 2007] and
EL [Baader et al., 2005] families, which underpin the stan-
dard OWL 2 profiles. Moreover, existential rules have been
deeply studied in Databases in the context of constraint lan-
guages and their applications in data exchange as well as in
data integration.

Existential rules are also of high importance for temporal
reasoning; they have been studied in the context of temporal
description logics [Artale and Franconi, 2005] and atempo-
ral languages with linear-order operators, which can simulate
some forms of temporal reasoning [Amarilli et al., 2018]. In
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Full DatalogMTL∃ Guarded programs Weakly acyclic programs

Natural
semantics

OWA
undecidable

CWA

Uniform
semantics

OWA undecidable 2-ExpSpace-co.
CWA ExpSpace-co.

Table 1: Our results on the computational complexity of reasoning in DatalogMTL∃

the case of highly-expressive temporal extensions of Datalog,
however, there is a lack of their extensive study. This is due
to a bad computational behaviour of such languages; decid-
ablity was obtained only in very restrictive cases, for example
when the temporal domain is bounded [Urbani et al., 2022].

In this paper, we address the above challenge. We in-
troduce and study DatalogMTL∃, which is an extension of
DatalogMTL with existential rules. Hence, DatalogMTL∃

can be seen as an extension of both DatalogMTL and
Datalog∃. The combination of temporal and existential rules,
as presented in the example below, yields a very expressive
and natural language for modelling problems with a temporal
dimensions and incomplete data.
Example 1. Consider a system monitoring shipping services
to detect vehicles operating in dangerous conditions, as de-
scribed next. After a vehicle x departs with an order y, until
the order arrives to the destination, there exists a driver z of
this vehicle (1st rule). Time spent on driving a vehicle is con-
sidered as working time (2nd rule). A vehicle is operating in
dangerous conditions if it is driven by a driver who has been
working continuously for at least 8 hours (3rd rule). These
rules are expressed by the following DatalogMTL∃ program
Πex, where U is the ‘until’ operator, whereas x[0,∞) and
⊟[0,8] stand for ‘sometime in the past’, and ‘continuously in
the last 8 hours’, respectively:

∃zDrive(z, x, y)←(x[0,∞]Depart(x, y)) U[0,∞)Arrive(x, y),

Working(z)←Drive(z, x, y),

Dangerous(x)←⊟[0,8]Working(z) ∧ Drive(z, x, y).

Our main contributions in this paper are as follows.

– We introduce DatalogMTL∃ and propose its two seman-
tics: natural, where existential rules are evaluated indi-
vidually at each time point, and uniform, where the eval-
uation is ‘uniform’ along the whole timeline.

– We give decidability and computational complexity re-
sults for the main reasoning tasks in full DatalogMTL∃

as well as in its guarded and weakly-acyclic fragments.
In particular, we show that under the uniform semantics
reasoning is decidable for weakly acyclic programs and
for arbitrary DatalogMTL∃ programs if we consider the
closed world assumption (CWA). In all other cases rea-
soning is undecidable, as depicted in Table 1.

– We implement and describe a reasoning system for
DatalogMTL∃ programs under the uniform semantics.
The system is obtained by combining Skolemisation
with a (temporal) chase procedure.

– We evaluate our implementation using two benchmarks;
the first one is based on a simulator of urban mobil-
ity and the second on the recently introduced iTempo-
ral generator. Our results demonstrate that reasoning in
DatalogMTL∃ can be feasible even for large instances.

We provide preliminary definitions in Section 2. Then, in Sec-
tion 3, we introduce DatalogMTL∃ and show our main theo-
retical results together with proof sketches. In Section 4 we
describe our prototypical implementation and its experimen-
tal evaluation. Finally, we conclude the paper in Section 5.

2 Preliminaries
In this section we show the standard definitions for
DatalogMTL (without existential rules), interpreted over the
rational timeline and under the continuous semantics [Brandt
et al., 2018; Wałęga et al., 2019], as opposed to the alternative
approaches with the integer timeline [Wałęga et al., 2020a] or
the pointwise semantics [Ryzhikov et al., 2019].

Time and Intervals. The (rational) timeline is the set Q
of rational numbers, called also time points. A time point is
a fraction with an integer numerator and a positive integer
denominator, both encoded in binary (a standard assumption
in DatalogMTL). We consider intervals, %, over Q with the
standard notation (i.e., involving round and square brackets
to denote if the interval is open or closed). An interval % is
punctual if it contains exactly one number and it is positive if
it does not contain negative numbers. We will often abbrevi-
ate a punctual interval [t, t] as t.

Syntax. Assume a function-free first-order signature with
a domain Dom consisting of countably infinitely many con-
stants. A relational atom is a first-order atom of the form
P (s), with P a predicate and s a tuple of terms (constants
and variables) of the length matching the arity of P . A metric
atom is an expression given by the following grammar, where
P (s) is a relational atom and % is a positive interval:

M ::= > | ⊥ | P (s) | x%M | |%M |
⊟% M | ⊞%M |MS%M |MU%M.

A (non-existential) rule is an expression of the form

M ′ ←M1 ∧ · · · ∧Mn, for n ≥ 1, (1)

where eachMi is a metric atom, whereasM ′ is a metric atom
not mentioning x, |, S , and U , and hence generated by the
following grammar:

M ′ ::= > | ⊥ | P (s) | ⊟%M ′ | ⊞%M ′.
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The conjunctionM1∧· · ·∧Mn in Expression (1) is the rule’s
body, each Mi is a body atom, and M ′ is the head. A rule is
safe if all its variables occur in the body; a DatalogMTL pro-
gram is a finite set of safe rules. An expression (metric atom,
rule, program, etc.) is ground if it mentions no variables. The
grounding ground(Π) of a program Π is the (usually infinite)
set of all ground rules obtained by assigning constants from
Dom to variables in Π. A dataset is a finite set of relational
facts. The grounding ground(Π,D) of a program Π with re-
spect to a dataset D is the (finite) set of all ground rules that
can be obtained by assigning constants in Π or D to variables
in Π. A metric/relational fact over an interval % isM@%, with
M a ground metric/relational atom.

Semantics. An interpretation I is a function assigning to
each time point t a set of ground relational atoms; if P (s)
belongs to this set, we write I, t |= P (s) and say that P (s) is
satisfied at t in I. This extends to complex metric atoms as
given in Table 2. Interpretation I satisfies a metric factM@%,
written I |= M@%, if I, t |= M for all t ∈ %. Interpretation
I satisfies a ground rule r whenever, if I satisfies each body
atom of r at a time point t, then I also satisfies the head of r
at t. Interpretation I satisfies a rule r if it satisfies each rule
in ground({r}). Interpretation I is a model of a program Π
if it satisfies each rule in Π, and it is a model of a dataset
D if it satisfies all facts in D. A dataset D entails a metric
fact M@% if each model of D is also a model of M@%. A
program Π and a dataset D entail a metric fact M@%, written
(Π,D) |= M@%, if each model of Π and D satisfies M@%.

I, t |= > for each t
I, t |= ⊥ for no t

I, t |= x%M iff I, t′ |= M for some t′ with t− t′ ∈ %
I, t |= |%M iff I, t′ |= M for some t′ with t′ − t ∈ %
I, t |= ⊟%M iff I, t′ |= M for all t′ with t− t′ ∈ %
I, t |= ⊞%M iff I, t′ |= M for all t′ with t′ − t ∈ %
I, t |= M1S%M2 iff I, t′ |= M2 for some t′ with t− t′ ∈ %

and I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1U%M2 iff I, t′ |= M2 for some t′ with t′ − t ∈ %
and I, t′′ |= M1 for all t′′ ∈ (t, t′)

Table 2: Semantics of ground metric atoms

Reasoning. The main reasoning tasks in DatalogMTL are
consistency checking and fact entailment. The former is to
determine if a given program and a dataset have a model and
the latter is to check if a program and a dataset entail a given
relational fact. These problems reduce to the complements of
each other; both of them are PSpace-complete for data com-
plexity, that is, when the size of a program is considered as
fixed [Wałęga et al., 2019], and ExpSpace-complete for com-
bined complexity, when complexity is measured also with re-
spect to the program [Brandt et al., 2018].

3 DatalogMTL∃

In this section we introduce DatalogMTL∃. We provide it’s
syntax, two types of semantics, and results on decidability as
well as computational complexity of reasoning.

3.1 Syntax
We obtain DatalogMTL∃ by extending DatalogMTL with
(temporal) existential rules, analogously to the way Datalog∃

extends Datalog with existential rules [Calì et al., 2009].
Formally, we let an existential rule be an expression of a

similar form to a (non-existential) rule from Expression (1)
except that now, in front of the head atom M ′, we allow for
the existential quantifier ∃ with a tuple x of (existential) vari-
ables which are mentioned in M ′ but not in the rule body, so
an existential rule is of the form

∃xM ′ ←M1 ∧ · · · ∧Mn, for n ≥ 1,

where M ′, M1, . . . ,Mn are metric atoms (i.e., they al-
low for nesting of temporal operators) generated by the
same grammars as in Expression (1). Note that with such
rules we can easily express multi-atom heads; for ex-
ample ∃x (Q(x, y) ∧R(x, y))← P (y) can be written as
three rules: ∃x P ′(x, y)← P (y), Q(x, y)← P ′(x, y), and
R(x, y)← P (x, y).

An existential rule is safe if all its non-existential variables
are mentioned in the body. A (DatalogMTL∃) program is
a finite set of existential and non-existential safe rules. An
existential rule r is ground if all the variables it mentions
are existential and its grounding, ground(r), is the set of all
ground rules obtained by assigning constants from Dom to
non-existential variables in r.

As DatalogMTL∃ inherits from Datalog∃ undecidability of
reasoning, we will study standard syntactical fragments that
are known to be decidable for Datalog∃ [Fagin et al., 2005;
Calì et al., 2013]; in particular, we will consider guarded and
weakly acyclic programs.
Guarded Programs. A rule is guarded if one of its body
atoms mentions all the variables occurring in the body of this
rule. A program is guarded, if all its rules are so; for instance,
Πex from Example 1 is guarded.
Weakly Acyclic Programs. We use a standard definition
of a weakly acyclic program [Fagin et al., 2005] involving a
dependency graph. The dependency graph for a program Π
has a vertex v(P,i) for each predicate P in Π and for each
position i ∈ {1, . . . , a}, where a is the arity of P . There is
a normal edge from v(P,i) to v(Q,j) if there is a rule in Π
with a body atom mentioning P (s) and the head mentioning
Q(s′) such that the ith element of s is a variable, which is
the same as the jth element of s′. Moreover, there is a spe-
cial edge from v(P,i) to v(Q,j) if there is an existential rule in
Π with a body atom mentioning P (s) and the head mention-
ing Q(s′) such that the ith element of s is a variable which
occurs also in s′, and the jth element of s′ is any existen-
tially quantified variable in Π. A program is weakly acyclic if
its dependency graph has no cycle containing a special edge.
For instance, Πex from Example 1 is weakly acyclic, as its
dependency graph is as in Figure 1, where normal edges are
presented as solid arrows and special edges as dashed arrows.
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•

v(Depart,1)

•

v(Depart,2)

•

v(Arrive,1)

•

v(Arrive,2)

•v(Drive,2) • v(Drive,3)

•v(Working,1)
•v(Dangerous,1)

•v(Drive,1)

Figure 1: The dependency graph for Πex from Example 1

3.2 Semantics
First, we describe the ‘natural’ semantics (N ) of
DatalogMTL∃, which is based on the standard reading
of existential quantification.

Definition 2. Under the natural semantics, an interpreta-
tion I satisfies an existential rule r, written as I |=N r,
if for each ground rule r′ ∈ ground({r}) of the form
∃xM ′ ←M1 ∧ · · · ∧Mn and every time point t in which
I satisfies all body atoms M1, . . . ,Mn, there exists an as-
signment ν of constants in Dom to variables of M ′ such that
I, t |= ν(M ′). Interpretation I satisfies a program Π under
the natural semantics, written as I |=N Π, if and only if
I |=N r, for each r ∈ Π.

We observe, however, that the natural semantics can intro-
duce unintuitive behaviour in some settings. In particular, if
the body of an existential rule holds in an interval %, then the
rule can lead to invention of distinct constants for each t ∈ %,
as illustrated in Example 3.

Example 3. Consider Πex from Example 1 and a dataset Dex

with the following facts about vehicles Veh1, Veh2 and or-
ders Ord1, Ord2, Ord3:

Depart(Veh1, Ord1)@0, Arrive(Veh1, Ord1)@12,

Depart(Veh2, Ord2)@0, Arrive(Veh2, Ord2)@4,

Depart(Veh2, Ord3)@4, Arrive(Veh2, Ord3)@10,

Drive(Amy ,Veh2, Ord2)@[0, 4],

Drive(Amy ,Veh2, Ord3)@[4, 10].

We have that (Πex,Dex) |=N Dangerous(Veh2)@[8, 10]. In-
tuitively, we would also want to deduce that Veh1 is being
operated under dangerous conditions, as its driver needs to
work for 12 hours to deliver Ord1. This entailment, however,
does not hold, since the natural semantics allows for unin-
tended models where Veh1 has many drivers within the inter-
val [0, 12], say a different driver in each of the densely dis-
tributed time points t ∈ [0, 12].

This example illustrates that while natural semantics is the
straightforward way of extending DatalogMTL semantics,
the resulting interactions with time can lead to unintended
meaning of existential rules. Furthermore, as we will show
in the next subsection, natural semantics lead to significant
issues from a computational perspective.

To address these problems, we introduce ‘uniform’ seman-
tics (U ) which behaves better in both respects. Intuitively, it
can be seen as replacing existential variables with Skolem

terms, where the same Skolem terms are used no matter in
which time point a rule is applied.
Definition 4. Under the uniform semantics, an interpreta-
tion I satisfies an existential rule r, written as I |=U r,
if for every atom M ′ there exists an assignment νr,M ′ of
constants to variables of M ′ such that for each ground rule
r′ ∈ ground({r}) of the form ∃x M ′ ← M1 ∧ · · · ∧ Mn

and every time point t in which I satisfies all body atoms
M1, . . . ,Mn, we have I, t |= νr,M ′(M ′). Interpretation I
satisfies a program Π under the uniform semantics, written as
I |=U Π, if I |=U r for each r ∈ Π.

The uniform semantics provides an intuitive reading of our
running example; we observe that now, the program Πex and
the dataset Dex from Example 3 entail that Veh1 operated
under dangerous conditions, as intended. Indeed, we have
(Πex,Dex) |=U Dangerous(Veh1)@[8, 12] as the existential
rule of Πex is interpreted via an ‘uniform’ assignment that in-
vents the same constant representing a driver of Veh1, within
the whole interval [0, 12].

We will also differentiate between the open world assump-
tion (OWA), where the assignments ν can use arbitrary con-
stants from the domain Dom and the closed world assump-
tion (CWA), where only constants from the active domain
(i.e., occurring explicitly in a program or in a dataset) can
be used. In particular, existential rules under CWA provide us
with a compact and more human-friendly representation of
long disjunctions in rule heads, which have gained attention
for reasoning about ‘complete data’ or when privacy reasons
impose restrictions on the form of allowed reasoning [Lutz et
al., 2019; Benedikt et al., 2016; Wolter et al., 2019].

Now, we can use our definitions to show that entailment
in the uniform semantics generalises entailment in natural se-
mantics, namely if a fact is entailed in natural semantics by
some program and dataset, then it is also entailed in the uni-
form semantics. Furthermore, in the absence of temporal op-
erators, DatalogMTL∃ under both semantics behaves exactly
like Datalog∃, as we report formally next.

Proposition 5. Let Π be a DatalogMTL∃ program, D a
dataset, and M@% a relational fact. If (Π,D) |=N M@%,
then (Π,D) |=U M@%, but the opposite implication does
not hold. This property holds under both OWA and CWA.

Proposition 6. Let M@0 be a fact, Π a DatalogMTL∃ pro-
gram without temporal operators,D a set of factsM ′@0, and
D′ = {M ′ | M ′@0 ∈ D}. The following are equivalent: (i)
(Π,D) |=N M@0 under OWA, (ii) (Π,D) |=U M@0 under
OWA, and (iii) Π and D′ entail M in Datalog∃.

3.3 Decidability and Computational Complexity
We recall that the central reasoning problems of DatalogMTL
are consistency checking and fact entailment; we will study
them in DatalogMTL∃ under both of the proposed semantics.
We refer to the consistency checking problem under natural
semantics and uniform semantics as N - and U -consistency,
respectively. The same applies to N - and U -entailment. We
start by observing that both reasoning problems are interre-
ducible, as we can use a similar reduction as in the case
of DatalogMTL [Brandt et al., 2018]. Hence, in the further

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3280



analysis of computational properties, we will focus on con-
sistency checking only.
Proposition 7. For both OWA and CWA and S ∈ {U,N},
checking S-consistency and fact S-entailment reduce in log-
arithmic space to the complement of each other.

Undecidability of N - and U -consistency in full
DatalogMTL∃ follows immediately from the well-known
undecidability of Datalog∃. Thus, we will consider the
guarded and weakly-acyclic fragments, since in the case
of Datalog∃ both of them are decidable and proved to
be useful in numerous applications [Fagin et al., 2005;
Calì et al., 2009]. As the first main result, we observe that
N -consistency is undecidable in each of these fragments.
Surprisingly, this holds true even under CWA, when existen-
tially quantified variables can be bound only to constants in
the active domain.
Theorem 8. Checking N -consistency for guarded as well as
for weakly acyclic DatalogMTL∃ programs is undecidable
under both OWA and CWA.

Proof sketch. Under OWA we show undecidability by simu-
lating a Turing machine computation. In the case of guarded
programs we obtain it by constructing a program with a sin-
gle existential rule ∃z Next(y, z)← Next(x, y), which intro-
duces an infinite sequence of constants, that we use to repre-
sent tape cells. With the rule ⊞1Next(x, y) ← Next(x, y) we
propagate facts about Next to all positive integer time points,
which allows us to simulate configurations of the machine
with facts holding in subsequent integer time points.

The existential rule we use in the reduction for the guarded
programs makes the program not weakly acyclic. However,
we can obtain a similar behaviour with a weakly acyclic pro-
gram. To this end, we use an existential rule which introduces
one constant per each negative integer time point. We propa-
gate all these constants to the future which, again, gives us an
access to infinitely many constants simulating tape cells and
allows for simulating a Turing machine.

In the case of CWA we show undecidability for programs
which are both guarded and weakly-acyclic. For this we use
the fact that propositional DatalogMTL (with predicates of
0-arity) is undecidable if we extend it with rules mention-
ing |(0,1) in heads [Brandt et al., 2018, Theorem 10]. We
show that|(0,1)Q← P can be simulated with constants true
and false together with rules ⊞(0,1)P ′ ← P , ∃x P ′′(x)← P ′,
⊥ ← P ∧ ⊞(0,1)P ′′(false), and Q← P ′′(true).

In contrast, reasoning under the uniform semantics be-
comes decidable for weakly acyclic programs under OWA as
well as for full DatalogMTL∃ programs under CWA. Note
that the former result shows that reasoning with programs
such as our Πex from Example 1 (whose intended mean-
ing is provided by the uniform semantics) is decidable. Ob-
serve also that the result is not straightforward, as it requires
providing a reasoning procedure which extends reasoning in
DatalogMTL (for which, in general, the chase does not termi-
nate) and, at the same time, handles invention of new values
by existential rules. We provide tight complexity bounds for
both reasoning tasks.

Theorem 9. Checking U -consistency is 2-ExpSpace-
complete for weakly acyclic DatalogMTL∃ programs under
OWA and ExpSpace-complete for arbitrary DatalogMTL∃

programs under CWA.

Proof sketch. ExpSpace-hardness is inherited from consis-
tency checking in DatalogMTL [Brandt et al., 2018]. For 2-
ExpSpace-hardness we simulate computation of a Turing ma-
chine with doubly-exponentially many tape cells. We obtain
it by combining the ideas from our undecidability proof for
weakly acyclic programs in Theorem 8 with the ideas from
the 2-ExpTime-hardness proof for weakly acyclic Datalog∃
[Calì et al., 2012b].

For the upper bounds we reduce the problem to reason-
ing in DatalogMTL. In particular, we construct a set X of
constants (with nulls) and non-deterministically guess assign-
ments ν over X , interpreting existential rules. This allows us
to transform the input DatalogMTL∃ program into a ground
DatalogMTL program. Under CWA X is of linear size and
under OWA with weakly acyclic programs, we can show that
it suffices to consider doubly exponentially large X . The ob-
tained ground DatalogMTL programs are exponentially and
doubly exponentially large, respectively. Reasoning with such
programs is performed by a translation to linear temporal
logic [Brandt et al., 2018], which yields the required bounds.
The main technical challenge of the proof lies in the careful
construction of the appropriate X’s to avoid a blowup.

On the other hand, we observe that reasoning for guarded
programs remains undecidable even under the uniform se-
mantics. This also implies undecidability of many other frag-
ments that are decidable in Datalog∃, such as weakly-guarded
or frontier-guarded programs, suggesting that the standard
notions of guardedness are not applicable to the setting of
temporal programs.
Theorem 10. Checking U -consistency under OWA is unde-
cidable for guarded DatalogMTL∃ programs.

Proof sketch. The proof is obtained by modifying the reduc-
tion for guarded programs from Theorem 8. In a sense, the
proof becomes even easier, as we do not need to propa-
gate invented constants to the future/past time points; indeed,
the uniform semantics guarantees that existential rules invent
constants uniformly along the time line.

We observe that all our undecidability proofs apply also
to the case when the timeline consists of integer time points
only. This, in turn, corresponds to extensions with existential
rules of such formalisms as Temporal Datalog [Ronca et al.,
2018] or Datalog1S [Chomicki and Imieliński, 1988].

4 Experimental Evaluation
In this section, we report first experiments with our prototypi-
cal implementation of DatalogMTL∃ with uniform semantics
and OWA, to demonstrate that our formalism has a potential
for practical feasibility. We focus on the uniform semantics
and OWA, as we consider it the choice of practical interest:
it allows us to naturally express scenarios like the one from
Example 1 and reasoning in this setting can be decidable.
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4.1 Benchmarks and Execution Environment
As DatalogMTL∃ is a new formalism, there are no bench-
marks or real-world instances to use in our experiments, as
well as there are no other implementations for comparison.
Thus, we exploit available resources to introduce two bench-
marks with instances applicable to DatalogMTL∃ reasoning.

LARS+. The most related language to DatalogMTL∃

seems to be LARS+ which was recently introduced via ex-
tending the LARS framework with existential rules [Ur-
bani et al., 2022]. Rules of LARS+ can be expressed in
DatalogMTL∃, for example, the LARS+ program used in ex-
periments to reason about conveyor belts [Urbani et al., 2022]
can be written in our language in a straightforward manner as
follows, where Bopr, Brkg, and IncId, stand for belt operator,
broken gear, and incident Id, respectively

∃y Bopr(x, y)←Belt(x),

∃z Brkg(x, z)←x[0,5]Speed(x, y) ∧ Slow(y),

∃z IncId(z, x)←⊟[0,3]Temp(x, y) ∧ High(y),

Assign(y, z)← IncId(y, x) ∧ Bopr(x, z),

Block(x)←⊞[0,3]IncId(z, x).

The structure of some programs in our benchmarks for
DatalogMTL∃ are inspired by the above rules; however,
the datasets used in LARS+ experiments are not avail-
able [Urbani et al., 2022]. It is also worth observing that
although there are similarities in the syntax of LARS+

and DatalogMTL∃, unlike in DatalogMTL∃, decidability of
LARS+ was shown only for cases when the temporal dimen-
sion can be finitely grounded (which is not the case already
in DatalogMTL) and LARS+ was interpreted over the integer
time line (DatalogMTL∃ is interpreted over the rational time-
line, which is increases the complexity of reasoning [Wałęga
et al., 2020a]).

SUMO. Our first benchmark is based on data from Eclipse
Simulation of Urban MObility (SUMO)1 describing road ve-
hicles in a traffic jam, which was used during the Hackathon
Challenge at the Stream Reasoning Workshop 2021 [Schnei-
der et al., 2022]. As in the Hackathon, we considered a simple
map of roads and three datasetD1,D2, andD3 corresponding
to small, medium, and large levels of traffic, respectively. The
datasets have roughly 800, 5,000, and 9,000 temporal facts
describing vehicles’ position, speed, acceleration, and direc-
tion, among others. In the experiments we used the follow-
ing DatalogMTL∃ program for detecting dangerous vehicles
(where 1 unit on the timeline represents 1 second):

∃dDrive(d, v) ∧
SpeedExt(v, s)←x[0,3)Speed(v, s),

Speeding(v)←SpeedExt(v, s) ∧ HighSpeed(s),

∃z IncId(z, v)←⊟[0,5]Speeding(v),

Inc(z, d) ∧ Danger(v)← IncId(z, v) ∧ Drive(d, v),

Danger(v)←Speeding(v) ∧x[0,∞)Danger(v).

1http://www.eclipse.org/sumo/

As SUMO generates information about the traffic every 3
seconds, our first rule extends the information about speed
to intervals of length 3 (using SpeedExt). The same rule
also assigns a driver d to each vehicle v. The second rule
marks with Speeding times when a vehicle exceeded allowed
speed, whereas the third rule invents new ID numbers for
incidents in which a vehicle was continuously Speeding for
the last 5 seconds. The forth rule assigns incident IDs to in-
volved drivers and marks corresponding vehicles as danger-
ous. The final rule recursively propagates via time the infor-
mation about dangerous vehicles, whenever their Speeding is
detected again. Note that the program is recursive and that
it mentions heads with multi-atoms, which can be easily ex-
pressed in DatalogMTL∃ as we explained in Section 3.1.

iTemporal. Our second benchmark exploits iTemporal,
which allows us to generate DatalogMTL programs and
matching datasets of varying size [Bellomarini et al., 2022b].
To obtain a benchmark for reasoning in DatalogMTL∃ we
proceeded as follows. We started by generating with iTempo-
ral DatalogMTL programs Π1, . . . ,Π4 such that Π1 (3 rules)
is non-recursive and linear, Π2 (14 rules) is also non-recursive
but non-linear, whereas Π3 (8 rules) and Π4 (23 rules) are
both recursive. Next, we extended each Πi into 5 different
DatalogMTL∃ programs in the following manner. First, we
introduce existential rules by randomly selecting rule heads
and extending their predicates with existentially quantified
variables (this involves increasing the arity of predicates,
which we perform consistently in the whole program). Sec-
ond, we extend rules so that existential variables are ‘propa-
gated’ to rule heads; namely for each rule whose body men-
tions a newly invented variable, we randomly decide if and
where this variable will occur in the rule head. This process
allows us to generate DatalogMTL∃ programs which, as we
confirmed by our experiments, involve non-trivial propaga-
tion of existential variables. Moreover, for each Πi, we in-
voke iTemporal to generate three matching datasets that con-
tain approximately 5000, 50,000, and 500,000 temporal facts,
respectively.

4.2 Implementation
We have provided a prototype implementation for weakly-
acyclic DatalogMTL∃ programs under the uniform seman-
tics and OWA. Our implementation exploits the well-known
Skolemisation technique used for weakly-acyclic Datalog∃

programs [Marnette, 2009; Benedikt et al., 2017], where ex-
istential variables z in rules are replaced by Skolem terms
fz(x) that depend only on the frontier variables x (i.e., those
variables that are shared between the head and the body of a
rule) and where f is a unique function symbol per existential
variable in a rule head. For example, the existential variable z
in a rule r1 of the form ∃z B(x, z)← x3A(x, y) is replaced
by r1z(x) resulting in B(x, r1z(x)) ← x3A(x, y). Given
an input dataset our implementation performs a chase (with
a Skolemised program) which mimics consecutive applica-
tions of the immediate consequence operator in DatalogMTL
[Brandt et al., 2018; Wałęga et al., 2019].

It is worth observing that our practical procedure is not
guaranteed to terminate for arbitrary DatalogMTL∃ pro-
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grams. However, it terminates in all instances of our bench-
marks. Note also that after the chase terminates we obtain a
model which allows us to determine all the facts that are en-
tailed by the input program and the dataset, as well as to de-
tect if the program and the dataset are consistent.We provided
this implementation by extending the Vadalog system [Bel-
lomarini et al., 2018; 2022a], which allows for reasoning over
Datalog±, but not in DatalogMTL∃.

4.3 Experiments
All our experiments were run on an Intel Core i7-8700 CPU
with 64GB memory. Since Vadalog is a commercial system
we are not able to provide a full access to our implementation.
Instead, we provide an online tool (https://kg.dbai.tuwien.ac.
at/vadalog-scheduler), which allows to pass DatalogMTL∃

instances to our implementation, as well as to view the ob-
tained outputs. This allows a user to pass programs from our
benchmarks together with datasets (which can be freely mod-
ified by users) on the same hardware we used in the experi-
ments reported in this paper.

The run times we obtain for the SUMO benchmark are 66
ms, 267 ms, and 397 ms, for increasing size datasets D1, D2,
and D3, respectively. The results for the iTemporal bench-
mark with increasing size datasets (small, medium, and large,
respectively) are presented in Table 3. The reported numbers
are the runtimes of our implementation in ms until the chase
terminates; in the case of iTemporal, those are the average
times computed for all five DatalogMTL∃ programs obtained
by extending a particular program Πi. As we have already ob-
served, this allows for performing fact entailment of arbitrary
facts and checking consistency. It is worth to notice, however,
that entailment of a fact can be verified as soon as the fact
is derived, which may happen much quicker than the chase
terminates. Thus, fact entailment may require in practice sig-
nificantly less time. In Table 3 we have additionally reported
in parentheses the standard deviations (also in ms), computed
for each set of five programs generated from a particular Πi.

Although the theoretical complexity of DatalogMTL∃ is
high, we observed that both in the real-world inspired SUMO
benchmark and in the artificially generated instances of vari-
ous degree of complexity with iTemporal, the running times
were usually around few seconds (17 seconds for the hardest
instance). This supports usefulness of the language in prac-
tical scenarios. Regarding the SUMO benchmark, given the
quite small number of facts in each of the three datasets, it is
not surprising that the results show only slight increase in run-
ning time. Yet, it demonstrates that for a real-world scenario,
reasoning can be performed fast enough (with the running
time around 1 second), which is enough even for the stream
reasoning setting, where reasoning needs to be performed
in almost real time. Runtimes for the iTemporal benchmark
are higher for the SUMO benchmark, as both programs and
datasets in the iTemporal are significantly larger. Neverthe-
less, even for the hardest case, where the programs (obtained
by extending Π4) consist of 23 rules and the dataset consists
of 500,000 temporal facts, the average runtime is less than
17 seconds. In the case of Π4 we observe a large standard
derivation compared to the other instances. A detailed inves-

small medium large
Π1 88 (6) 738 (41) 7196 (225)
Π2 464 (50) 455 (38) 4154 (463)
Π3 161 (21) 1385 (151) 13701 (1019)
Π4 273 (133) 2211 (1181) 16857 (8727)

Table 3: Results for increasing datasets in iTemporal; reported num-
bers are average times for five runs in ms whereas standard devia-
tions are located in parentheses

tigation showed that one of the DatalogMTL∃ programs ob-
tained from Π4 has a runtime of around 2, 800 ms while the
other four instances have run times over 10, 000 ms. Due to
the random generation of existential rules, it may happen that
some of the DatalogMTL∃ programs we generate do not al-
low for long derivations from a particular input dataset. It is
hard to predict such a situation, and this is why for each Πi

we have generated several different DatalogMTL∃ programs.

5 Conclusions
We have introduced DatalogMTL∃, an extension of
DatalogMTL that allows for existential rules. We have studied
the computational complexity of the obtained language under
the natural and uniform semantics. We showed that reasoning
in DatalogMTL∃ under the natural semantics is undecidable
even under severe restrictions. In contrast, reasoning becomes
decidable under the uniform semantics in the case of CWA or
weakly acyclic programs where we showed tight ExpSpace
and 2-ExpSpace bounds. This provides us with a strict ex-
tension of both DatalogMTL and weakly acyclic Datalog∃,
in which reasoning is decidable, even though it allows us to
express complex temporal properties over a dense timeline
and in the presence of existential rules. Furthermore, we pro-
vided a prototypical implementation and performed a series
of experiments illustrating practical feasibility of the formal-
ism. Our current implementation supports only the uniform
semantics and OWA; in future we plan to consider natural
semantics and CWA. This, however, requires fundamentally
different approaches: natural semantics requires novel ideas
for dealing with the possibility of infinitely many distinct
assignments to existential variables in any interval, whereas
CWA requires reasoning over large disjunctions in rule heads;
both of them need techniques different from those used in our
prototype implementation. In future we plan to introduce al-
ternative restrictions to the language, and collaborate with our
industrial partners on practical applications.
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[Wałęga et al., 2023b] Przemysław A Wałęga, Mark Kamin-
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Zawidzki, Dingmin Wang, and Bernardo Cuenca Grau.
Materialisation-based reasoning in DatalogMTL with
bounded intervals. In Proc. of AAAI, 2023.

[Wang et al., 2022] Dingmin Wang, Pan Hu, Prze-
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