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Abstract
Ranking is ubiquitous in everyday life. This paper
is concerned with the problem of ranking informa-
tion of a knowledge base when this latter is possibly
inconsistent. In particular, the key issue is to elicit
a plausibility order on the formulas in an inconsis-
tent knowledge base. We show how such ordering
can be obtained by using only the inherent structure
of the knowledge base. We start by introducing a
principled way a reasonable ranking framework for
formulas should satisfy. Then, a variety of ordering
criteria have been explored to define plausibility or-
der over formulas based on consistency. Finally, we
study the behaviour of the different formula rank-
ing semantics in terms of the proposed logical pos-
tulates as well as their (in)-compatibility.

1 Introduction
Representing preferences and reasoning about them have
been extensively studied in Artificial Intelligence (AI) and
notably in knowledge representation and reasoning, where
a set of information is equipped with a partial or total pre-
ordering [Domshlak et al., 2011]. Nevertheless, classical
logics begin under the assumption that all formulas are re-
garded equally important, and there is no preference be-
tween them. However, in many real-world situations, it
is desirable to express preferences among information, es-
pecially when one data source is more reliable than an-
other. To cope with such applications, a number of works
were introduced to incorporate explicit orderings over formu-
las [Dubois and Prade, 1988; Delgrande and Schaub, 2000;
Delgrande et al., 2004]. However, in many applications we
may lack information about the data sources and/or their reli-
ability or other explicit information in view of which formulas
may be ranked according to plausibility, probability, etc.

In particular, in case a given knowledge base K is inconsis-
tent one may still be interested in ranking formulas for several
purposes. When trying to restore consistency in an informed
way, one may proceed by trying to falsify specific (conflict-
ing) information in K. We may think of a scientist facing an
inconsistent data set. Dissatisfied with the inconsistency, she
may want to conduct new experiments in the hope of falsify-
ing some data and thereby restoring consistency. But where

to begin? Some formulas in K may be more conflicting than
others and it may make sense to target them first when search-
ing for defeaters. On the other hand, one may be in a situation
where one has to practically rely on K, in which case one is
interested in identifying formulas which are involved in less
conflicts (ideally none). A ranking rank : K → N on for-
mulas in K may help in identifying the relevant information
for both scenarios. But what does it mean for a formula to be
more conflicting than others?

There are many ways of making this precise, many of
which will be explored in this paper. Let us present two in
order to familiarize the reader with some basic underlying
ideas. One way is to make use of minimal conflicts (or min-
imal inconsistent sets), which are inconsistent subsets of K
whose strict subsets are consistent. The dual notion is the one
of a maxicon set (or maximal consistent subset) of K, i.e., a
subset of K that is ⊆-maximal with the property of being a
consistent subset of K.
Example 1. For instance, where K1 = {p, q,¬(p ∧
q),¬p, u}, the minimal conflicts are {p,¬p} and {p, q,¬(p∧
q)}, while the maxicon sets are {p, q, u}, {p,¬(p∧q), u} and
{q,¬(p ∧ q),¬p, u}.

Approach 1. A formula present in more minimal conflicts
is more conflicting than others and therefore it might be ad-
visable to try to falsify it first, absent other information. The
number of conflicts in which a formula is contained may be
considered its rank. In this case:

u (rank 0) < ¬p,¬(p ∧ q), q (rank 1) < p (rank 2).
If we engage in defeater search, we may want to start with
searching for defeaters for p since it is the most conflicting
formula (having the highest rank). If we have to rely on parts
of the knowledge base, it may be best to stick to the least
conflicting formulas with the lowest ranks, in this case u.

There is a richness of choices of formal explications of
the idea of how conflicting a formula is. Moreover, differ-
ent choices give rise to different outcomes. We motivate an
alternative approach by means of another example.
Example 2. Consider K2 = {p,¬(p∧q), q∧s, q∧¬s, q∧p}.
We have the minimal conflicts {p, q ∧ s,¬(p ∧ q)}, {p, q ∧
¬s,¬(p ∧ q)}, {p ∧ q,¬(p ∧ q)} and {q ∧ s, q ∧ ¬s}. So, p
has the rank 2, while p ∧ q has the rank 1.

This may seem counter-intuitive, given that a logically
stronger formula is strictly ranked better than a weaker for-
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mula. It seems committing to p should be considered max-
imally as risky as committing to p ∧ q and it would seem
strange to claim that p is more conflicting than the logically
stronger p ∧ q. Let us therefore consider another idea.

Approach 2. Instead of counting the minimal conflicts a
formula is part of, one could count the number of maxicon
sets in which it is contained. The most unproblematic formu-
las, classical theorems, will be contained in every maxicon
set. A formula contained in minimal conflicts will not be
present in some. One could define the rank of a formula in
K as the difference between the number of maxicon sets of K
and the number of maxicon sets in which it is contained.
Example 3 (Ex.2 cont.). The maxicon set of K2 are {p,¬(p∧
q)}, {p, q∧ s, q∧ p}, {p, q∧¬s, q∧ p}, {q∧ s,¬(q∧ p)} and
{q ∧¬s,¬(p∧ q)}. We have, for instance, that p receives the
rank 2 and p ∧ q receives the rank 3.

Other approaches. As the reader will have noticed, many
variations of the above presented ideas are possible. One of
many ways to measure the inconsistency of a set of formulas
is by counting the number of conflict sets. E.g., the incon-
sistency of K1 above is 2, the one of K2 is 4. The marginal
distribution a formula α makes to the inconsistency of K can
be measured by looking at the difference between the incon-
sistency of K and K\{α}. This difference may be considered
the rank of α according to this alternative approach. As the
reader can easily verify, in our Example 1 this results in:

u (rank 0) < q,¬p,¬(p ∧ q) (rank 1) < p (rank 2).
Similarly, one could use other known inconsistency mea-

sures from the literature to determine the marginal contribu-
tion α makes to the inconsistency of K (e.g., [Ribeiro and
Thimm, 2021; Thimm, 2016]). Finally, one may use other
approaches to rank formulas, for instance, based on notions
from game theory such as the Shapley value [Hunter and
Konieczny, 2010], etc.

In this paper, we will comparatively study different op-
tions, identifying cases where the induced ranking coincide or
differ. Additionally, one may have certain basic expectations
concerning such rankings. E.g., formulas not involved in min-
imal conflicts should always receive rank 0, the rank of for-
mulas should be robust under the addition of non-conflicting
formulas to the knowledge base, etc. We will propose and
study such postulates. By means of the postulate-based and
comparative study, this paper provides a first systematic study
of different approaches to ranking formulas based on consis-
tency considerations. In the literature, various proposals have
been made for the formula clustering problem. Basically, the
goal is to organize the formulas into several groups and to
compare them as a set (e.g., minimal conflicts, maxicon sets,
etc.). A little further afield, in [Rescher and Manor, 1970,
p. 186] we find the clustering of knowledge bases into in-
nocent bystanders (non-members of minimal conflicts) and
culprits (members of minimal conflicts). There has been a re-
search effort to comparing maxicon sets in description logics
[Bienvenu et al., 2014], existential rules [Yun et al., 2018],
propositional logic [Konieczny et al., 2019], and databases
setting [Kimelfeld et al., 2020]. More recently, in [Yun et
al., 2018], the authors used inconsistency measures to rank
and filter maxicon sets in existential rules knowledge bases.

Moreover, in [Ribeiro, 2022], the authors consider a prefer-
ence relation on the subsets of a knowledge base given a for-
mula α. However, such global evaluation could be not suf-
ficient enough for real-world applications. A more focused
comparison of the formulas individually might provide a clear
picture on the plausibility of information as discussed previ-
ously. Contrastingly, there is few work on the formula rank-
ing problem which is concerned with ordering a set of for-
mulas, e.g., from the most to the least plausible ones. In the
context of the situation calculus, [Klassen et al., 2018] have
studied the incorporation of plausibility levels into the iter-
ated belief change. Further, [Amgoud and Ben-Naim, 2015]
used logical argumentation to rank conclusions based on the
ranking of their target arguments. In [Ribeiro and Thimm,
2021], the authors have shown how culpability measures can
induce a ranking among agent’s beliefs. Then, a consolida-
tion function is defined by removing preferably beliefs with
high culpability values. Despite the existence of the above-
cited works that can serve to rank formulas in knowledge
bases, there exists no framework to formally compare the be-
haviour of these methods for ordering formulas in knowledge
bases. In contrast with extant work that rely on prioritised
logics, the key feature of our study is that it solely requires the
inherent structure of the base to express a ranking reflecting a
plausibility order on the formulas. This makes our approach
widely applicable to various knowledge systems without the
need of any external preference information.

2 General Setting
We assume an arbitrary finite set of propositional variables
V . We use the set V with the usual classical connectives (¬,
∨, ∧, →) as well as the two constants ⊤ (true) and ⊥ (false)
to build in the usual way the propositional language L(V).
Well-formed formulas from L(V) are denoted by Greek let-
ters α, β, γ, etc. We also denote by ⊢ the classical con-
sequence relation. Two formulas α, β ∈ L(V) are called
equivalent, denoted as usual by α ≡ β, if {α} ⊢ β and
{β} ⊢ α. A knowledge base is a finite set of propositional
formulas. We write KV to denote the set of all knowledge
bases build over V . From now on, we let S# denote the car-
dinality of any set of sets S. Given K ∈ KV , we denote by
Atoms(K) ⊆ V the set of all atoms occurring in K. Let
Atoms(K) = {p1, . . . , pn} and let {q1, . . . , qn} ⊆ V be
atoms not occurring in Atoms(K). We use K[q1, . . . , qn] to
denote the syntactic substitution of each occurrence p1≤i≤n

by q1≤i≤n in K. Also, K is said to be inconsistent if there
exists a formula α such that K ⊢ α and K ⊢ ¬α. In the fol-
lowing, we use the notation K⊕α [resp. K⊖α] for K∪{α}
[resp. K \ {α}]. A Boolean interpretation w is defined as a
total function from V to {0, 1}. By W we denote the set of all
Boolean interpretations. An interpretation w ∈ W is a model
of a formula α ∈ L(V) iff α is true w.r.t. w in the classical
truth functional way. We recall some concepts which have
widespread roles for reasoning under inconsistency in AI.

Definition 1. Given K ∈ KV , then, a subset M ⊆ K is a:

minimal inconsistent set of K iff M is inconsistent and
∀α ∈ M , M ⊖ α is consistent.
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maximal consistent set of K iff M is consistent and ∀α ∈
K \M , M ⊕ α is inconsistent.1

minimal correction set of K iff K \ M is consistent, and
∀α ∈ M , K \M ⊕ α is inconsistent.

For ease of notation, MI(K), MS(K) and MC(K) stand for
the three notions, respectively. We define MS(α,K) = {M ∈
MS(K) | α ∈ M}, and MI(α,K) = {M ∈ MI(K) | α ∈
M}. Abusing notation, we define the minimal correction
sets for a set of minimal inconsistent sets S ⊆ MI(K) as
MC(S) = min⊆{M ⊆ K | ∀M ′ ∈ S,M ∩ M ′ ̸= ∅}. A
formula not involved in any MI of K is called a free formula.
We use Free(K) to denote the set of free formulas in K, i.e.,
Free(K) = K \

⋃
MI(K) =

⋂
MS(K). The formulas in K

that are inconsistent are called self contradictory formulas
and denoted as ⊥(K) = {α ∈ K | α ⊢ ⊥}. Let us also de-
fine Prob(K) to be the set of problematic formulas that are
involved in at least a conflict, i.e., Prob(K) =

⋃
MI(K).

Definition 2. The following consequence relations are typi-
cally defined on the basis of MS(K) for a given K ∈ KV :

• K |∼∀ α iff for all M ∈ MS(K), M ⊢ α.

• K |∼∃ α iff for some M ∈ MS(K), M ⊢ α.

Let U(K) denote the set of universal conclusions of K,
i.e., U(K) = {α | K |∼∀ α}. We say that α is nonmonotoni-
cally consistent with K if K |̸∼∃ ¬α. We write ⊤(K) for the
set of all nonmonotonically consistent formulas with K.

3 Formula Ranking Framework
Our aim is to express preferences as ordinal rankings over a
finite set of information by only using the inherent structure
of the knowledge base. Such a ranking reflects the plausibil-
ity of each formula in the context of the information in the
knowledge base. While we limit ourselves to propositional
logic, the formula ranking semantics presented in this paper
do not commit to any particular language (given decidability).

Definition 3. Given K ∈ KV , a ranking on K is a binary
relation ⪰ over the elements of K such that ⪰ is total, re-
flexive and transitive. A formula ranking semantics σ is a
mapping σ : KV → 2K×K which maps each knowledge base
K to a ranking ⪰σ

K on K. α ⪰σ
K β means that α is at least as

plausible as β by the semantics σ. If α ⪰σ
K β and β ⪰σ

K α,
α and β are equally plausible and we write α ≃σ

K β, and if
α ⪰σ

K β and β ̸⪰σ
K α, α is strictly more plausible than β

and we write α ≻σ
K β.

Since our knowledge bases are finite, each ranking induces
a unique (inversely) order-preserving surjective function to
an initial sequence of natural numbers {0, . . . , n}, allowing
to assign numerical ranks to formulas.

Given two formula ranking semantics σ1 and σ2 over K =
{α1, . . . , αn}, the well-known Kendall-tau distance [Kendall,
1938] computes how many pairs of formulas over which σ1

and σ2 disagree, i.e., ∆(σ1, σ2,K) = |{(αi, αj) s.t. αi ≻σ1

K
αj , αj ≻σ2

K αi, 1 ≤ i < j ≤ n}|. This distance can be [0,1]-
normalized as: dτ (σ1, σ2,K) = 2×∆(σ1,σ2,K)

n×(n−1) . Given the

1Minimal inconsistent sets resp. maximal consistent sets are also
known as minimal conflicts resp. maxicon sets.

above, we are now ready to define the rank-(in)compatibility
for formula ranking semantics.
Definition 4. Given two formula ranking semantics σ1 and
σ2, we say that σ1 and σ2 are rank-compatible iff for all
K ∈ KV , dτ (σ1, σ2,K) = 0; otherwise, σ1 and σ2 are rank-
incompatible.

Basically, if dτ (σ1, σ2,K) = 1, the two rankings obtained
by the semantics σ1 and σ2 are in completely reversed order
over K. Note that the concept of (in)-compatibility is of inter-
est, since as we will see in the rest of the paper various criteria
induce different rankings over the formulas of K. This is also
the case for social rankings when using for instance the Shap-
ley value or Banzhaf index [Doignon et al., 2022].

4 Postulates for Formula Ranking Semantics
We start our approach by providing some desirable require-
ments that allow to understand and compare the behaviour of
our different formula ranking semantics. In all the properties
listed below it is silently quantified over all K ∈ KV . We
partition these postulates into five classes.

4.1 Syntax-based Postulates
The two following properties state that the names of the vari-
ables in K are not important for the comparison result.
Syntax Independence (SI). for every set {q1, . . . , qn} ⊆ V
s.t. Atoms(K) ∩ {q1, . . . , qn} = ∅, ∀α, β ∈ K, we have
α ⪰σ

K β iff α[q1, . . . , qn] ⪰σ
K[q1,...,qn]

β[q1, . . . , qn].

Non-Interference (NI). Let γ be a formula which shares
no atoms with K. Then, ∀α, β ∈ K, α ⪰σ

K β iff α ⪰σ
K⊕γ β.

4.2 Conflict-based Postulates
The second class of criteria concerns the robustness of rank-
ings under the inconsistency in K.

In consistent bases, all formulas are ranked equally:
Non-Discrimination (ND). If Prob(K) = ∅, then ∀α, β ∈
K, α ≃σ

K β.
Inconsistent formulas are strictly worse than consistent

ones:
Self Contradictory Formula (SF). ∀α ∈ K s.t. α ̸∈ ⊥(K),
if β ∈ ⊥(K), then α ≻σ

K β.
Given an inconsistent K, a formula α ∈ K is centrally con-

flicting in K if after its removal K is consistent. A centrally
conflicting formula should always be ranked (strictly) lower
than one that is not centrally conflicting:
Central Conflict (CC). ∀α, β ∈ K, if K ⊖ α ⊬ ⊥ and
K ⊖ β ⊢ ⊥, α ≺σ

K β.
Given α is at least as good as β, adding a formula with

which α does not conflict preserves the relative ranking be-
tween α and β:
Decomposability (DE). ∀α, β ∈ K, α ⪰σ

K β and
MI(α,K) = MI(α,K ⊕ γ) implies α ⪰σ

K⊕γ β.

4.3 Inference-based Postulates
Herein, we make four properties that express the behavior of
rankings under logical relations between formulas of K.

Equivalent formulas shall be ranked equally:
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Logical Equivalence (LE). ∀α, β ∈ K, if α ≡ β, then
α ≃σ

K β.
Logically weaker formulas are as least as strong as logi-

cally stronger ones:

Weakening (WE). ∀α, β ∈ K, if α ⊢ β, β ⪰σ
K α.

Adding a logically stronger formula should not weaken the
plausibility of a given formula:

Left Dominance (LD). For all α, β ∈ K, and for all γ, if
γ ⊢ α and α ⪰σ

K β, then α ⪰σ
K⊕γ β.

Adding a logically weaker formula should not strengthen
the plausibility of some formula:

Right Dominance (RD). ∀α, β ∈ K, and for all γ, if β ⊢ γ
s.t. β ̸∈ ⊥(K), and α ⪰σ

K β, then α ⪰σ
K⊕γ β.

4.4 Freeness-based Postulates
The following properties express the role of free-conflict for-
mulas on the robustness of rankings.

All free formulas are equally plausible:

Free Equivalence (FE). ∀α, β ∈ Free(K), α ≃σ
K β.

Universal formulas are equally plausible:

Universal Equivalence (UE). ∀α, β ∈ U(K), α ≃σ
K⊕α⊕β

β.
Free formulas are strictly better than those involved in con-

flicts:2

Free Discernment (FD). If α ∈ Free(K), then ∀β ∈
Prob(K), α ≻σ

K β.

4.5 Update-based Postulates
These criteria concern the robustness of rankings under the
addition/contraction of formulas. Obviously, the expansion
of K by tautological formulas (which are free) should not im-
pact the ranking, but what about other types of formulas (free,
nonmonotonically consistent or universal ones)?

The first two postulates concern the update of knowledge
bases with innocent bystanders.

Dynamic Freeness 1 (DF1). ∀α, β ∈ K, if α ⪰σ
K β then

α ⪰σ
K⊕γ β, where γ ∈ Free(K ⊕ γ).

Dynamic Freeness 2 (DF2). ∀γ ∈ Free(K), ∀α, β ∈ K ⊖
γ, if α ⪰σ

K β then α ⪰σ
K⊖γ β.

We can require similar dynamic properties for universal
and nonmonotonically consistent consequences of K.

Dynamic Universality 1 (DU1). ∀γ ∈ U(K), ∀α, β ∈ K,
if α ⪰σ

K β then α ⪰σ
K⊕γ β.

Dynamic Universality 2 (DU2). ∀γ ∈ U(K), ∀α, β ∈ K⊖
γ, if α ⪰σ

K β then α ⪰σ
K⊖γ β.

Dynamic Consistency 1 (DC1). ∀γ ∈ ⊤(K), ∀α, β ∈ K,
if α ⪰σ

K β then α ⪰σ
K⊕γ β.

2We omit some obvious variants of the given criteria for reasons
of space (such as Universal Discernment, etc.).

Dynamic Consistency 2 (DC2). ∀γ ∈ ⊤(K), ∀α, β ∈ K⊖
γ, if α ⪰σ

K β then α ⪰σ
K⊖γ β.

To sum up, the above properties put upon formula rank-
ing semantics are generally independent, except the following
special cases where some of them follow from others.

Proposition 1. The following properties hold:

1. σ satisfies DF1 (resp. DF2) iff it satisfies DC1 (resp.
DC2).

2. if σ satisfies DC1 (resp. DC2), then it satisfies DU1
(resp. DU2).

3. σ satisfies UE iff it satisfies FE.
4. if σ satisfies FE, then it satisfies ND.
5. if σ satisfies DE, then it satisfies LD.
6. if σ satisfies WE, then it satisfies LE.

5 Formula Ranking Semantics
This section presents different ways of ranking formulas in
knowledge bases according to their plausibility. We also in-
vestigate the (in)-compatibility of the different formula rank-
ing semantics. We will see that these ranking semantics could
place the formulas in different orders.

5.1 Culpability-based Ranking Semantics
The key idea behind inconsistency measures is to quantize
the amount of conflict in knowledge bases, and therefore they
represent a good candidate for ranking information.

To put it simply, an inconsistency measure is a function
I : KV ,K → R≥0 that assigns a non-negative real value
to K where I(K) = 0, if Prob(K) = ∅. Such value
presents the intensity of conflict in the base K (see e.g., [Jab-
bour et al., 2014; Jabbour et al., 2016; Jabbour et al., 2017;
Ammoura et al., 2017; Thimm and Wallner, 2019; Bona et
al., 2019]). On the other hand, culpability measures, as de-
fined in [Hunter and Konieczny, 2010; Ribeiro and Thimm,
2021], seek to evaluate the responsibility of a formula to ren-
der a base inconsistent. More precisely, a culpability measure
is a function C on K×KV that associates a real value to each
formula α ∈ K such that if Prob(K) = ∅, then C(α,K) = 0,
∀α ∈ K; and if α ∈ Prob(K), then C(α,K) > 0. Now, we
present the first formula ranking semantics that makes use of
culpability measures as follows:

Definition 5. Given a culpability measure C, a culpability-
based ranking semantics associates to any K ∈ KV a rank-
ing ⪰C

K such that ∀α, β ∈ K, α ⪰C
K β iff C(α,K) ≤ C(β,K).

Roughly speaking, the culpability-based ranking semantics
ranks the formulas by decreasing score. Concretely, the lower
the culpability value, the higher the plausibility of a formula,
with the free formulas all being ranked equally at the top.

For illustration, let us now consider a particular culpability
measure called the Shapley inconsistency value [Hunter and
Konieczny, 2010], which uses the Shapley value to evaluate
the contribution a formula makes to the inconsistency of the
knowledge base. This measure is defined as follows:

Definition 6. Let K ∈ KV s.t. |K| = n, α ∈ K and I be
an inconsistency measure s.t. I(K) = MI(K)#. Then, the
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Shapley inconsistency value (SIV) w.r.t. I is defined as:

S
I
K(α) =

∑
Φ⊆K

(|Φ| − 1)!(n − |Φ|)!
n!

(I(Φ) − I(Φ ⊖ α))

That is, the SIV value is higher the more a formula is involved
in conflicts of K. We make the choice in this paper to focus
on the SIV value since it possesses the desirable postulates
any rational measure should satisfy [Hunter and Konieczny,
2010]. It has been shown in [Hunter and Konieczny, 2008]
that SI

K(α) =
∑

M∈MI(α,K)
1

|M | . In this way, the SIV value
induces a preference ordering, which we call Shapley-based
ranking, where ∀α, β ∈ K, α ⪰SIV

K β iff SI
K(α) ≤ SI

K(β).
Example 4. Consider the knowledge base K =
{p,¬p, q,¬(p ∧ q), r,¬p ∧ r, s ∧ ¬s}. We have
MI(K) = {{p,¬p}, {p, q,¬(p∧ q)}, {p,¬p∧ r}, {s∧¬s}}.
Then, SI

K(p) =
4
3 , SI

K(¬p) = SI
K(¬p ∧ r) = 1

2 , SI
K(r) = 0,

SI
K(¬(p ∧ q)) = SI

K(q) =
1
3 , and SI

K(s ∧ ¬s) = 1. Hence,
r ≻SIV

K ¬(p ∧ q) ≃SIV
K q ≻SIV

K ¬p ≃SIV
K ¬p ∧ r ≻SIV

K
s ∧ ¬s ≻SIV

K p. This shows that Shapley ranking semantics
can lead to counter-intuitive results, here a violation of SF.

5.2 Clustering-based Ranking Semantics
In this subsection, we turn to a more elaborate family of rank-
ings semantics based on formula clustering. Central to the
topic of reasoning with inconsistency are the crucial notions
of minimal inconsistent and maximal consistent sets, which
are used to cluster formulas from two complementary per-
spectives into several groups. In what follows, we use these
two concepts as our primary criterion for defining rankings
on the formulas.
MI-based ranking semantics. Given a knowledge base K,
one might stratify the formulas of K based upon the minimal
inconsistent sets. So, the plausibility rank of a formula can be
measured by the conflicts in which the formula is involved.
Definition 7. Given K ∈ KV and α, β ∈ K, the MI-based
ranking semantics associates to K a ranking ⪰MI such that
∀α, β ∈ K, α ⪰MI

K β iff β ∈ ⊥(K), or MI(α,K)# ≤
MI(β,K)#, otherwise.

In words, the less conflicts in which a formula is contained,
the less problematic it is, and thus the more plausible, with
the self contradictory formulas all being ranked equally lower
than any other formula. The rationale here is that to achieve
consistency, one has to delete at least one formula from every
MI, thus by removing a formula which is in more conflicts,
one resolves more ”rapidly” the inconsistencies. It is worth
highlighting here that the MI-based ranking semantics can be
obtained by taking the MIV# culpability measure [Hunter
and Konieczny, 2008], defined as MIV#(α) = MI(α,K)#.
However, this result remains valid only if ⊥(K) = ∅.

Despite that the Shapley-based ranking is MI-dependent,
the next result shows that the MI- and the Shapley-based
ranking semantics give different orderings on the formulas.
Theorem 2. The MI-based ranking semantics and the
Shapley-based ranking semantics are rank-incompatible.
Example 5 (Ex. 4 cont.). We have r ≻MI

K ¬p ≃MI
K q ≃MI

K
¬(p ∧ q) ≃MI

K ¬p ∧ r ≻MI
K p ≻MI

K s ∧ ¬s. However, q ≻SIV
K

¬p.

Now, we define a variant of MI-based semantics which
will show to have some more intuitive properties. Before
introducing it, let us first define an enriched notion of min-
imal inconsistent sets of α as follows: MI+(α,K) = {M ∈
MI(K) | ∃β ∈ M : α ⊢ β}. Intuitively, MI+(α,K) contains
the set of conflicts the formula α participates in, both directly
and indirectly (in the sense that a logically weaker formula
participates). This gives rise to a new plausibility ordering
among formulas as stated by Definition 8.
Definition 8. Given K ∈ KV and α, β ∈ K, the enriched
MI-based ranking semantics associates to K a ranking
⪰MI+ such that ∀α, β ∈ K, α ⪰MI+

K β iff MI+(α,K)# ≤
MI+(β,K)#.
Example 6 (Ex. 2 cont.). Based on the set K1 = {p,¬(p ∧
q), q ∧ s, q ∧¬s, p∧ q}, we have seen that WE is violated by
MI. Where α = p ∧ q and β = p, recall that MI(p,K)# =
2 = ({{p,¬(p∧q), q∧s}, {p,¬(p∧q), q∧¬s}})# > MI(p∧
q,K)# = 1 = ({{p∧q,¬(p∧q)}})#. The situation changes
when we move to MI+. We now have: MI+(p,K)# =
({{p,¬(p ∧ q), q ∧ s}, {p,¬(p ∧ q), q ∧ ¬s}})# = 2 < 3 =

MI+(p ∧ q,K)# = ({{p ∧ q,¬(p ∧ q)}} ∪MI+(p,K))#.

Theorem 3. The MI-based ranking semantics and the MI+-
based ranking semantics are rank-incompatible.
MS-based ranking semantics. The well-known inference
relations (see Def. 2) are based on the notion of maximal con-
sistent sets. These sets induced a natural way to rank formu-
las. Namely, given K ∈ KV , the formulas can been stratified
into priority levels based on their belonging to MS(K).
Definition 9. Given K ∈ KV and α, β ∈ K, the MS-based
ranking semantics associates to K a ranking ⪰MS such that
∀α, β ∈ K, α ⪰MS

K β iff MS(α,K)# ≥ MS(β,K)#.
The intuition underlying this ranking is: the more maximal

consistent sets of K contain a formula, the more plausible is
the formula.
Example 7 (Ex. 4 cont.). We have MS(K) =
{{p, q, r}, {p,¬(p ∧ q), r}, {¬p, q,¬(p ∧ q), r,¬p ∧ r}}.
Then, r ≻MS

K p ≃MS
K q ≃MS

K ¬(p ∧ q) ≻MS
K ¬p ≃MS

K
¬p ∧ r ≻MS

K s ∧ ¬s.
At a first glance, one might think that the notions of mini-

mal inconsistent sets and maximal consistent sets lead to the
same formula ranking. However, it turns out that the MS-
and MI-based ranking semantics are different (as has been
observed in the introduction).
Theorem 4. The MS-based ranking semantics and the MI-
based ranking semantics are rank-incompatible.

5.3 Update-based Ranking Semantics
This subsection examines other forms of formula rankings
based on the update of knowledge bases. Let us state the idea
precisely: instead of focusing on the set of maximal consis-
tent sets or minimal inconsistent sets in which the formula
appears, we can build a ranking dynamically by evaluating
the impact of contracting a formula from the knowledge base.
In essence, this novel ranking semantics will be investigated
for the cases of minimal inconsistent, maximal consistent sets
and the set of problematic formulas.
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Ranking-based on MI-revision. This ranking semantics is
based on the number of minimal inconsistent sets of K that
would be eliminated if a formula α was removed from K.
Definition 10. Given K ∈ KV and α, β ∈ K, the revision
MI-based ranking semantics (in short, MIR-based ranking
semantics) associates to K a ranking ⪰MIR such that ∀α, β ∈
K, α ⪰MIR

K β iff MI(K ⊖ α)# ≥ MI(K ⊖ β)#.
According to this semantics, a formula whose removal “de-

stroys” less minimal inconsistent sets is selected as a more
plausible formula (for instance, the removal of a free formula
leaves the minimal inconsistent sets intact whence it should
be considered most plausible). Just like the other rankings,
this ranking can be expressed equivalently by a numerical
ranking. Since this may be less obvious, we show how.
Fact 1. MI(K) ⊇ MI(K ⊖ α).

Let rankK(α) = MI(K)# −MI(K ⊖ α)#.
Proposition 5. α ⪰MIR

K β iff rankK(α) ≤ rankK(β).
Interestingly, it can be shown that the ranking obtained un-

der the MI-based ranking semantics coincides with the one
based on revision MI-based semantics.
Theorem 6. For knowledge bases K for which ⊥(K) = ∅,
the MI-based ranking semantics and the MIR-based ranking
semantics are rank-compatible.

Ranking-based on MS-revision. Now, we define the rank
of a formula α as the number of maximal consistent sets of K
that would be eliminated if α was removed from K. Hence,
we might prefer a formula that destroys more maximal con-
sistent sets.
Definition 11. Given K ∈ KV and α, β ∈ K, the revision
MS-based ranking semantics (in short, MSR-based rank-
ing semantics) associates to K a ranking ⪰MSR such that
∀α, β ∈ K, α ⪰MSR

K β iff β ∈ ⊥(K), or MS(K ⊖ α)# ≥
MS(K ⊖ β)#, otherwise.

The MSR-based preference relation can be expressed by a
numerical ranking. Let rankK(α) = MS(K)# − MS(K ⊖
α)# if α /∈ ⊥(K), and rankK(α) = ∞ else. Then,
Proposition 7. α ⪰MSR

K β iff rankK(α) ≤ rankK(β).
Theorem 8. The MS-based ranking semantics and the MSR-
based ranking semantics are rank-incompatible.
Example 8 (Ex. 4 cont.). For the knowledge base K, we
have MS(K⊖ p) = {{¬p, q,¬(p ∧ q), r,¬p ∧ r}}, MS(K⊖
¬p) = {{p, q, r}, {q, r,¬(p ∧ q),¬p ∧ r}, {p, r,¬(p ∧ q)}},
MS(K ⊖ q) = {{p,¬(p ∧ q), r}, {¬p,¬(p ∧ q), r,¬p ∧ r}},
MS(K⊖ r) = {{p, q}, {p,¬(p ∧ q)}, {¬p, q,¬(p ∧ q),¬p ∧
r}}, MS(K⊖¬(p∧q)) = {{p, q, r}, {¬p, q, r,¬p∧r}}, and
MS(K⊖¬p∧ r) = {{p, q, r}, {¬p, q,¬(p∧ q), r}, {p,¬(p∧
q), r}}. Then, r ≃MSR

K ¬p ≃MSR
K ¬p ∧ r ≻MSR

K q ≃MSR
K

¬(p ∧ q) ≻MSR
K p ≻MSR

K s ∧ ¬s which is different from the
MS-based ranking.

Maybe surprisingly, the MSR-based semantics is rank-
incompatible with the one based on MI-based semantics, as
well as with the MS-based semantics.
Theorem 9. The MSR-based ranking semantics and the
MI-based (resp. the MS-based) ranking semantics are rank-
incompatible.

Ranking-based on problematic formulas revision. This
semantics compares information by counting the number of
problematic formulas after removing the formula α from the
knowledge base. More formally,
Definition 12. Given K ∈ KV and α, β ∈ K, the
problematic-based ranking semantics (in short, Prob-
based semantics) associates to K a ranking ⪰Prob such that
∀α, β ∈ K, α ⪰Prob

K β iff |Prob(K ⊖ α)| ≥ |Prob(K ⊖ β)|.
Intuitively, a formula is more plausible if its removal af-

fects slightly the other formulas status in K.
Example 9 (Ex. 4 cont.). We have r ≻Prob

K s ∧ ¬s ≃Prob
K

¬p ∧ r ≃MS
K ¬p ≻Prob

K q ≃Prob
K ¬(p ∧ q) ≻Prob

K p.
Theorem 10. The MI-based ranking semantics and the Prob-
based (resp. the MS-based) ranking semantics are rank-
incompatible.

5.4 Distance-based Ranking Semantics
Up to this point, we have defined formula ranking seman-
tics that are all syntax-dependent. To discriminate among for-
mulas, this section is intended to introduce another criterion
to grade formulas according to their plausibility. More pre-
cisely, this new criterion could be expressed via the closeness
of a formula to the consistency, namely the maximal consis-
tent sets, or the free set of K.
Consistency-based distance. This semantics is based on
minimizing the distance to the maximal consistent sets of the
knowledge base. More precisely, a formula α is more plau-
sible in K if it is not far away from maximal consistent sets
of K. Before we introduce our consistency-based ranking se-
mantics, we shall consider the distance between two inter-
pretations d : W × W → N, satisfying the usual proper-
ties (i) for all w1, w2 ∈ W , d(w1, w2) = d(w2, w1), and (ii)
d(w1, w2) = 0 iff w1 = w2. Numerous notions, already stud-
ied in logic and AI, can be used to define the distance between
interpretations. A commonly used distance that we consider
here is the hamming distance [Dalal, 1988] where the func-
tion dH(w1, w2) returns n if w1 and w2 differ on n atoms.
Clearly, the function dH(w1, w2) induces a hamming dis-
tance for each pair of formulas such as dH(α, β) = ∞ if α ∈
⊥(K) or β ∈ ⊥(K), dH(α, β) = min

w1|=α,w2|=β
dH(w1, w2),

otherwise. Now, the hamming distance between a formula
and a consistent set of formulas K can be formulated as:
dH(α,K) = dH(α,

∧
β∈K β). Thereafter, our intent is to de-

termine a plausibility order on the formulas where the most
plausible formulas are those that are as close as possible to the
maximal consistent sets of K. Towards this end, the formulas
will be ranked by increasing order of their distance to MS(K).
Let us start by associating with each formula α ∈ K a dis-
tance vector VMS(α,K) = (dH(α,M1), . . . , dH(α,Mn))
with MS(K) = {M1, . . . ,Mn}. Note that this vector is
sorted in nondecreasing order. By doing this, a way to rank-
order formulas is by simply comparing their distance vectors.
Definition 13. Given K ∈ KV s.t. MS(K) =
{M1, . . . ,Mn}, and α, β ∈ K, the consistency-based rank-
ing semantics associates to K a ranking ⪰d such that α ⪰d

K
β iff VMS(α,K) ≥d VMS(β,K) where ≥d is an order relation
over vectors.
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The consistency-based ranking semantics is general
enough to consider various instantiations of the order rela-
tion ≥d over vectors. Obvious choices for this vector rank-
ing ≥ include the min: in such case, the induced ranking
⪰min

K is dichotomous, that is, formulas can be split into two
main groups: consistent formulas in an inconsistent base
seen as equally plausible, followed by self contradictory for-
mulas judged as the worst plausible ones; the avg: this al-
lows for computing the average up the distance vectors. No-
tice that the induced ordering ⪰avg

K allows for compensation
between distances. The third relation is the lexicographic
order lex defined as follows: VMS(α,K) ≥lex VMS(β,K)
iff VMS(α,K) = VMS(β,K), or there exists k ≤ n s.t.
V k
MS(α,K) < V k

MS(β,K) and V i
MS(α,K) = V i

MS(β,K) for
each i < k where V i

MS(α,K) is the i-th value in VMS.

Proposition 11. For K ∈ KV , If α ≻MS
K β, then α ≻lex

K β.

Theorem 12. The Consistency-based semantics w.r.t. ≥lex

(in short, Conslex-based) and the MSR-based ranking seman-
tics are rank-incompatible.

Freeness-based distance. The last formula ranking seman-
tics follows the intuition that the more close a formula is to
the free ones, the more plausible is, since the free formulas
are the most plausible formulas in the knowledge base.

Definition 14. Given K ∈ KV and α, β ∈ K, the freeness-
based ranking semantics associates to K a ranking ⪰Free

such that ∀α, β ∈ K, α ⪰Free
K β iff min{|M |,M ∈

MC(MI(α,K)) \ {α}} ≤ min{|M |,M ∈ MC(MI(β,K)) \
{β}}.

Intuitively, this ranking semantics encodes the fact that the
distance of α to the free set of K is the minimum set of for-
mulas that need to be removed in order to make α free in K.

Example 10 (Ex. 2 cont.). p ≻lex
K2

q ∧ s and q ∧ s ≻Free
K2

p.

Theorem 13. The Conslex-based ranking semantics and the
freeness-based ranking semantics are rank-incompatible.

6 Discussion
Table 1 summarizes the satisfaction of the postulates (Section
4) by the different formula ranking semantics.

A number of observations can be made regarding the rank-
(in)compatibility between rankings and the results reported
in Table 1. First of all, the formula ranking semantics studied
in this paper are mostly rank-incompatible. For many pairs
of ranking (in)compatibilities are by no means obvious: e.g.,
although MIR and MI are compatible (when ⊥(K) = ∅),
the same does not hold for MSR and MS (resp. and MI).
What the many incompatibilities show is that the different
approaches to consistency measurement indeed make a dif-
ference in the ranking of information, despite their under-
lying similarities, and that this difference can be evaluated
by means of a postulate-based analysis. Despite their rank-
incompatibility, all the formula ranking semantics rank free
formulas at the top. In addition, if the knowledge base is
consistent, all formulas are equally plausible according to the
different ranking semantics investigated in this paper. How-
ever, we remark that there is no consensus regarding self

prop.
sem. Shapley Clustering Update Distance

MI MI+ MS MIR MSR Prob Conslex Freeness

SI
√ √ √ √ √ √ √ √ √

NI
√ √ √ √ √ √ √ √ √

ND
√ √ √ √ √ √ √ √ √

SF × ×
√ √

× × ×
√

×
CC

√ √
× ×

√
× × × ×

DE
√ √

× ×
√

× × ×
√

LE
√ √ √ √ √ √ √ √ √

WE × ×
√ √

× × ×
√

×
LD

√ √ √ √ √ √
×

√ √

RD × ×
√ √

× × × × ×
FE

√ √ √ √ √ √ √ √ √

UE
√ √ √ √ √ √ √ √ √

FD
√ √ √ √ √ √ √ √ √

DF1
√ √ √ √ √ √ √ √ √

DF2
√ √ √ √ √ √ √ √ √

DU1
√ √ √ √ √ √ √ √ √

DU2
√ √ √ √ √ √ √ √ √

DC1
√ √ √ √ √ √ √ √ √

DC2
√ √ √ √ √ √ √ √ √

Table 1: Properties fulfilled by ranking-based semantics.

contradictory formulas as some rankings semantics may rank
these formulas not as the least plausible ones, e.g., MI- or
Shapley-based semantics. This seems clearly a shortcoming
which is captured by the fact that the SF property holds only
for MI+-, MS- and Conslex-based semantics. Further, Ta-
ble 1 shows that syntax-, freeness-, and update-based postu-
lates are shared by the different formula ranking semantics.
This seems intuitive since these properties seem natural can-
didates for minimal requirements on rankings. We also note
that the LD postulate is satisfied by all ranking semantics ex-
cept for the Prob-based semantics. More interestingly, as one
can see, some other properties demarcate specific rankings.
To be precise, the CC and DE postulates are satisfied only by
Shapley, MI- and MIR-based semantics, except for DE which
also holds for freeness-based ranking. These two postulates
allow to distinguish between MI- and MSR-based rankings.
Moreover, the very basic WE property is satisfied only by
the MI+, MS and Conslex rankings. Lastly, Table 1 shows
that the MI+ and MS-based ranking semantics strictly dom-
inate all the other rankings by satisfying all the considered
postulates except for CC and DE.

7 Summary and Future Work

In this paper, a framework for ranking semantics in proposi-
tional logic was presented, where formulas are ranked based
on consistency by using solely the inherent structure of the
knowledge base. A broad family of properties is also in-
vestigated, some of them are satisfied by all ranking seman-
tics, while others (e.g. CC, WE, DE) better discriminate
between some rankings. We have also shown that almost
ranking semantics are pairwise incompatible. In future work
we will consider other semantics, such as argumentation-
based rankings [Amgoud and Ben-Naim, 2015], rankings-
based on multi-valued logics and rankings-based on MC sets
[Mu, 2015]. This paper provides a first step to possible future
characterization results concerning sets of criteria.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3336



Acknowledgments
This work was funded, in part, by the Agence Nationale de la
Recherche ANR under grant EXPIDA: ANR-22-CE23-0017.

References
[Amgoud and Ben-Naim, 2015] Leila Amgoud and

Jonathan Ben-Naim. Argumentation-based ranking
logics. In AAMAS, pages 1511–1519, 2015.

[Ammoura et al., 2017] Meriem Ammoura, Yakoub Salhi,
Brahim Oukacha, and Badran Raddaoui. On an mcs-based
inconsistency measure. Int. J. Approx. Reason., 80:443–
459, 2017.

[Bienvenu et al., 2014] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Querying inconsistent de-
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