
On Discovering Interesting Combinatorial Integer Sequences

Martin Svatoš1 , Peter Jung1 , Jan Tóth1 , Yuyi Wang2,3 and
Ondřej Kuželka1

1Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
2CRRC Zhuzhou Institute, China

3ETH Zurich, Switzerland
{svatoma1, jungpete, tothjan2, ondrej.kuzelka}@fel.cvut.cz, yuyiwang920@gmail.com

Abstract
We study the problem of generating interesting in-
teger sequences with a combinatorial interpreta-
tion. For this we introduce a two-step approach.
In the first step, we generate first-order logic sen-
tences which define some combinatorial objects,
e.g., undirected graphs, permutations, matchings
etc. In the second step, we use algorithms for lifted
first-order model counting to generate integer se-
quences that count the objects encoded by the first-
order logic formulas generated in the first step. For
instance, if the first-order sentence defines permu-
tations then the generated integer sequence is the
sequence of factorial numbers n!. We demonstrate
that our approach is able to generate interesting new
sequences by showing that a non-negligible frac-
tion of the automatically generated sequences can
actually be found in the Online Encyclopaedia of
Integer Sequences (OEIS) while generating many
other similar sequences which are not present in
OEIS and which are potentially interesting. A key
technical contribution of our work is the method for
generation of first-order logic sentences which is
able to drastically prune the space of sentences by
discarding large fraction of sentences which would
lead to redundant integer sequences.

1 Introduction
In this paper we are interested in integer sequences. As its
name suggests, an integer sequence is a sequence of integers
a0, a1, a2, . . . , where ai ∈ Z for all i ∈ N. Integer sequences
are fundamental mathematical objects that appear almost ev-
erywhere in mathematics, ranging from enumerative combi-
natorics, where they count objects with certain properties, to
mathematical analysis, where they define functions by means
of Taylor series, and in many other areas as well. There is
even an encyclopedia of them, called Online Encyclopedia
of Integer Sequences (OEIS),1 whose offline predecessor was

1https://oeis.org, for a popular account of the place
of OEIS in mathematics, we also refer to the article
in Quanta Magazine: https://www.quantamagazine.org/
neil-sloane-connoisseur-of-number-sequences-20150806/.

established in 1964 by Neil Sloane [OEIS Foundation Inc.,
2023]. It contains more than 359k integer sequences, as of
January 2023. OEIS contains sequences that are of interest to
professional or amateur mathematicians.

A typical mode of use of the OEIS database is as follows.
Say, you work on a combinatorial problem, counting undi-
rected graphs on n vertices that have certain property that
you care about, e.g., having all vertex-degrees equal to 3.
You manage to compute the numbers of these graphs for sev-
eral small values of n and you start wondering if someone
did not study the same sequence of numbers. So you take
the values you computed and insert them into the search box
on the OEIS homepage and hit search. After that you re-
ceive all hits into OEIS and if you are lucky, one of them will
tell you something interesting about your problem—maybe
somebody has already solved it or at least computed more
elements of the sequence.2

How do sequences get into OEIS? Sequences that are
deemed interesting are manually submitted to OEIS by users.
Here, what is interesting is obviously subjective to a large
extent. However, this is also a limitation of OEIS—the first
person to study a certain sequence will not get much help by
looking it up in OEIS. Many quite natural sequences are not
contained in OEIS. For instance, as observed by [Barvı́nek
et al., 2021], it contains sequences counting 2-regular graphs
properly colored by 2 colors, but not 2-regular graphs prop-
erly colored by 3 colors. There are many similar examples
of interesting sequences missing from OEIS, which might be
potentially useful for some users. This is also the motiva-
tion for the work we present here in which we develop an au-
tomated method for discovering arguably interesting integer
sequences.

We focus on combinatorial sequences, i.e., sequences
which count objects of size n that have some given prop-
erty, which are the subject of interest of enumerative combi-
natorics [Stanley, 1986]. Examples of such combinatorial se-
quences include sequences counting: subsets of an n-element
set, graphs on n vertices, connected graphs on n vertices,
trees on n vertices, permutations on n elements without fix-
points etc. In particular, we focus on combinatorial sequences

2For instance, for undirected graphs with all vertex degrees equal
to 3, one of the hits in OEIS would be sequence A002829: Number
of trivalent (or cubic) labeled graphs with 2n nodes.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3338

https://oeis.org
https://www.quantamagazine.org/neil-sloane-connoisseur-of-number-sequences-20150806/
https://www.quantamagazine.org/neil-sloane-connoisseur-of-number-sequences-20150806/


of structures that can be described using a first-order logic
sentence.

There are several advantages of working with combina-
torial enumeration problems expressed in first-order logic.
First, even though it may sometimes require some effort,
the first-order logic sentences can be interpreted by the hu-
man users. For instance, the sentence ∀x ¬R(x, x) ∧
∀x∀y R(x, y) ⇒ R(y, x) can be interpreted as encoding
undirected graphs without loops. Second, despite the fact that
counting the models of first-order logic sentences is generally
intractable [Beame et al., 2015], there are well-characterized
non-trivial fragments of first-order logic for which counting is
tractable [Van den Broeck, 2011; Van den Broeck et al., 2014;
Kuželka, 2021] with fast implementations available [Van den
Broeck, 2011; van Bremen and Kuželka, 2021].3 This means
that we are able to compute the respective combinatorial se-
quences fast.4

Our method has two stages. First, we generate first-order
logic sentences from a tractable fragment. Second, we com-
pute sequences for each of the generated sentences and filter
out sentences which give rise to redundant sequences. It turns
out that the first step is critical. As we demonstrate experi-
mentally later in this paper, if we generated sentences naively,
i.e., if we attempted to generate all sentences of length at most
k that differ syntactically, we would have to compute such
huge numbers of sequences, most of them redundant, that we
would never be able to get to the interesting ones. In the
present paper, we therefore focus mostly on describing the
sentence-generating component of our system.

The rest of this paper is structured as follows. Section 2
describes the preliminaries from first-order logic. Section 3
describes our approach to construct a database of sentences
and the respective integer sequences, which is evaluated in
Section 4. The paper ends with related work in Section 5 and
conclusion in Section 6.5

2 Preliminaries
We work with a function-free subset of first-order logic. The
language is defined by a finite set of constants ∆, a finite
set of variables V and a finite set of predicates P . An atom
has the form P (t1, t2, . . . , tk) where P ∈ P and ti ∈ ∆
∪ V . A literal is an atom or its negation. A formula is a
literal. More complex formulas may be formed from existing
formulas by logical connectives, or by surrounding them with
a universal (∀x) or an existential (∃x) quantifier where x ∈ V .
A variable x in a formula is called free if the formula contains
no quantification over x. A formula is called a sentence if it
contains no free variables. A formula is called ground if it
contains no variables.

3https://github.com/UCLA-StarAI/Forclift, https://www.comp.
nus.edu.sg/∼tvanbr/software/fastwfomc.tar.gz

4Computational complexity of integer sequences that count com-
binatorial objects is an active research direction in enumerative com-
binatorics, see, e.g., [Pak, 2018].

5This paper is accompanied by a technical report available
at https://arxiv.org/abs/2302.04606 and codes available at https://
github.com/martinsvat/SentenceFinder.

As is customary in computer science, we adopt the Her-
brand semantics [Hinrichs and Genesereth, 2006] with a fi-
nite domain. We use HB to denote the Herbrand base, i.e.,
the set all ground atoms. We use ω to denote a possible world,
i.e., any subset of HB. Elements of a possible world are as-
sumed to be true, all others are assumed to be false.

2.1 Weighted First-Order Model Counting
To compute the combinatorial integer sequences, we make
use of the weighted first-order model counting (WFOMC)
problem [Van den Broeck et al., 2011].
Definition 1. (Weighted First-Order Model Counting) Let ϕ
be a sentence over some relational language L. Let HB de-
note the Herbrand base of L over some domain of size n ∈ N.
Let P be the set of the predicates of the language L and let
pred : HB 7→ P map each atom to its corresponding predi-
cate symbol. Let w : P 7→ R and w : P 7→ R be a pair of
weightings assigning a positive and a negative weight to each
predicate in L. We define WFOMC(ϕ, n,w, w) =∑

ω⊆HB:ω|=ϕ

∏
l∈ω

w(pred(l))
∏

l∈HB\ω

w(pred(l)).

Example 1. Consider the sentence

ϕ = ∀x ¬E(x, x)

and the weightsw(E) = w(E) = 1. Since all the weights are
unitary, we simply count the number of models of ϕ. We can
interpret the sentence as follows: Each constant of the lan-
guage is a vertex. Each atom E(A,B) ∈ HB with A,B ∈ ∆
denotes an edge fromA toB. Furthermore, the sentence pro-
hibits reflexive atoms, i.e, loops. Overall, the models of ϕ will
be all directed graphs without loops on n vertices. Hence, we
obtain

WFOMC(ϕ, n,w, w) = 2n
2−n.

Example 2. Consider the sentence

ϕ = ∃x Heads(x)
and the weights w(Heads) = 4, w(Heads) = 1. Now, we
can consider each domain element to be the result of a coin
flip. The sentence requires that there is at least one coin flip
with the value of “heads” (there exists a constantA ∈ ∆ such
thatHeads(A) is an element of the model). Suppose we have
i > 0 “heads” in the model. Then, the model’s weight will be
4i · 1n−i = 4i and there will be

(
n
i

)
such models. Therefore,

WFOMC(ϕ, n,w, w) =
n∑

i=1

4i ·
(
n

i

)
= 5n − 1.

2.2 Tractable Language
In order to make our calculations tractable, we limit the num-
ber of variables in each sentence to at most two. Such lan-
guage is known as FO2 and it allows computing WFOMC in
time polynomial in the domain size [Van den Broeck, 2011;
Van den Broeck et al., 2014].

We further add counting quantifiers to our syntactic con-
structs. Counting quantifiers are a generalization of the
traditional existential quantifier. For a variable x ∈ V ,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3339

https://github.com/UCLA-StarAI/Forclift
https://www.comp.nus.edu.sg/~tvanbr/software/fastwfomc.tar.gz
https://www.comp.nus.edu.sg/~tvanbr/software/fastwfomc.tar.gz
https://arxiv.org/abs/2302.04606
https://github.com/martinsvat/SentenceFinder
https://github.com/martinsvat/SentenceFinder


we allow usage of a quantifier of the form ∃▷◁kx, where
▷◁∈ { ≤,=,≥ } and k ∈ N. Satisfaction of formulas
with counting quantifiers is defined naturally. For example,
∃=kx ψ(x) is satisfied in ω if there are exactly k constants
{A1, A2, . . . , Ak } ⊆ ∆ such that ω |= ψ(Ai) if and only if
1 ≤ i ≤ k. Such language is known as C2 and it still per-
mits WFOMC computation time polynomial in the domain
size [Kuželka, 2021].

Handling counting quantifiers leads to some weights be-
ing symbolic.6 Although, we defined WFOMC only for real-
valued weights, the extension to (multivariate) polynomials is
natural and does not break anything.

3 Constructing the Sequence Database
Our aim is to build a database consisting of first-order logic
sentences and the respective integer sequences that are gen-
erated by these sentences. We do not want the database to be
exhaustive in terms of sentences. For any integer sequence,
there may be many sentences that generate it7 and we want
only one sentence per integer sequence. If there are multiple
sentences that generate the same integer sequence, we call
them redundant. We generally try to avoid generating redun-
dant sentences.

The database is constructed in two steps. In the first step,
we generate first-order logic sentences and in the second step
we compute the integer sequences that count the models of
these sentences. In this section, we describe these two steps
in the reverse order. First we describe how the sequences,
which we will call combinatorial spectra, are computed from
first-order logic sentences, which can be done using exist-
ing lifted inference methods. Then we describe our novel
sentence-generation algorithm which strives to generate as
few redundant sentences as possible.

3.1 Computing the Integer Sequences
Given a first-order logic sentence, we need to compute a num-
ber sequence such that its k-th member is the model count of
a first-order logic sentence on the domain of size k. The set of
domain sizes, for which the sequence member would be non-
zero is called a spectrum of the sentence, i.e., the spectrum of
a logical sentence ϕ is the set of natural numbers occurring
as size of some finite model of ϕ [Börger et al., 2001]. Since
the sequence that we seek builds, in some sense, on top of
the spectrum, and since the sequence can also be described as
the result of the combinatorial interpretation of the original
sentence, we call the sequence combinatorial spectrum of the
sentence.

Definition 2 (Combinatorial Spectrum). The combinatorial
spectrum of a logical sentence ϕ, denoted as S(ϕ), is a se-
quence of model counts of ϕ on finite domains of sizes taking
on values 1, 2, 3, 4, . . .

6In [Kuželka, 2021], symbolic weights are not used explicitly.
The author uses polynomial interpolation instead, but that is for all
our purposes in this paper equivalent to using symbolic weights.

7Trivially, if we allowed arbitrary predicate names, we could
even say that there are infinitely many sentences that generate the
same sequence.

Example 3. Consider again the sentence

ϕ = ∃x Heads(x).
Then, all subsets of HB are a model of ϕ except for the empty
set. Hence, for a domain of size n, there will be 2n−1 models,
i.e,

S(ϕ) = 1, 3, 7, 15, . . .

Combinatorial spectra can be computed using a WFOMC
algorithm. In this work we use our implementation of the
algorithm from [van Bremen and Kuželka, 2021], which is
a state-of-the-art algorithm running in time polynomial in n
for FO2. We use it together with our implementation of the
reductions from [Kuželka, 2021] which allow us to compute
spectra of any C2 sentence in time polynomial in n.

3.2 Generating the First-Order Logic Sentences
In general, we aim to generate sentences that have the follow-
ing syntactic form:8

M∧
i=1

Qi,1x Qi,2y Φi(x, y) ∧
M ′∧
i=1

Qix Φi(x) (1)

where Qi, Qi,1, Qi,2 ∈ {∀, ∃, ∃=1, . . . , ∃=K}, each Φi(x, y)
is a quantifier-free disjunction of literals containing only the
logical variables x and y and, similarly, each Φi(x) is a
quantifier-free disjunction of literals containing only the log-
ical variable x. The integers K, M and M ′ are parameters.

Examples of sentences that have the form (1) are:

• ∀x∃=1y R(x, y) ∧ ∀x∃=1y R(y, x),

• ∀x ¬R(x, x) ∧ ∀x∀y ¬R(x, y) ∨R(y, x).
Here the first sentence defines bijections (i.e., permutations)
and the second sentence defines undirected graphs without
loops.

Note 1. We will slightly abuse terminology and use the
term clause for the quantified disjunctions of the form
Qi,1xQi,2y Φi(x, y) and Qjx Φj(x), even though the term
clause is normally reserved only for universally quantified
disjunctions.

Do We Cover All of C2?
A natural question to ask is: Do we get all possible combina-
torial spectra of C2 sentences if we restrict ourselves to sen-
tences in the form of (1)? The answer seems to be negative, as
we explain next, but it hardly matters in our opinion because
the task that we set for ourselves in this paper is not to gener-
ate all combinatorial sequences of C2 sentences—this would

8There are at least two Scott normal forms for C2 appearing in
the literature [Grädel and Otto, 1999; Pratt-Hartmann, 2009], which
would allow us to use less quantifier prefixes. However, these nor-
mal forms were not designed for combinatorial counting—they were
designed only to guarantee equisatisfiability of C2 sentences and
their normal forms and they do not guarantee combinatorial equiv-
alence. That is why they would not be directly useful for us in this
paper.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3340



not be feasible anyways because the number of different in-
teger sequences generated as spectra of C2 sentences is infi-
nite.9 Instead, what we want to achieve is to generate as many
interesting integer sequences as possible within a limited time
budget. Of course, here what is interesting does not have a
crisp definition and we use a heuristic. Roughly, a sequence
is “interesting” for us if it counts some combinatorial struc-
tures that a short sentence in first-order logic can describe
(“Occam’s razor for interestingness”) and which cannot be
trivially decomposed into simpler combinatorial sequences.

Now we briefly explain why sentences of the form (1) do
not guarantee that we would be able to find all C2 combina-
torial spectra. First of all, we cannot rely on normal forms
from [Grädel and Otto, 1999; Pratt-Hartmann, 2009] because
those were not designed to preserve model counts. While the
transformation presented in [Kuželka, 2021] allows one to re-
duce the computation of model counts of any C2 sentence to
a computation with sentences that are in the form of (1), it
requires some of the predicates to have negative weights. We
do not allow negative weights in the generated sentences be-
cause they make the post-hoc combinatorial explanation of
the sentences significantly more difficult.

Traversing the Sentence Space
We use a standard breadth-first search algorithm to traverse
the space of C2 sentences. The algorithm starts with the
empty sentence. In each layer of the search tree it generates
all possible sentences that can be obtained by adding a literal
to one of the sentences generated in the previous layer. The
literal may be added into an existing clause or it can be added
to the sentence as a new clause, in which case it also needs to
be prefixed with quantifiers.

Example 4. Suppose we have the sentence φ =
∀x∃y R(x, y), which we want to extend. Suppose also that
the only predicate in our language is the binary predicate
R and that the only allowed quantifiers are ∀ and ∃ (for
simplicity). To extend φ, the first option we have is to add
a new R-literal to the clause ∀x∃y R(x, y). There are 8
ways to do this resulting in the following sentences: φ1 =
∀x∃y (R(x, y) ∨R(x, x)), φ2 = ∀x∃y (R(x, y) ∨R(x, y)),
φ3 = ∀x∃y (R(x, y) ∨ R(y, x)), φ4 = ∀x∃y (R(x, y) ∨
R(y, y)), φ5 = ∀x∃y (R(x, y) ∨ ¬R(x, x)), φ6 =
∀x∃y (R(x, y) ∨ ¬R(x, y)), φ7 = ∀x∃y (R(x, y) ∨
¬R(y, x)), φ8 = ∀x∃y (R(x, y) ∨ ¬R(y, y)). The second
option is to create a new single-literal clause and add it to φ.
In this case we have the following: φ9 = ∀x∃y R(x, y) ∧
∀x R(x, x), φ10 = ∀x∃y R(x, y) ∧ ∃x R(x, x), φ11 =
∀x∃y R(x, y) ∧ ∀x ¬R(x, x), φ12 = ∀x∃y R(x, y) ∧
∀x ¬R(x, x), and then sentences of one of the following
types: ∀x∃y R(x, y) ∧ Q1xQ2y R(x, y), ∀x∃y R(x, y) ∧
Q1xQ2y R(y, x), ∀x∃y R(x, y) ∧ Q1xQ2y ¬R(x, y), and
∀x∃y R(x, y) ∧Q1xQ2y ¬R(y, x) where Q1, Q2 ∈ {∀, ∃}.

9This is easy to see. In fact, even FO2 sentences generate in-
finitely many integer sequences. Take, for instance the sentences
φk of the form φk = ∃x

∨k
i=1 Ui(x). Their combinatorial spec-

tra are S(φk) =
(
(2k)n − 1

)∞
n=1

. Hence, we have infinitely many
combinatorial spectra even for these simple sentences—one for each
k ∈ N.

As can be seen from this example, the branching factor is
large even when the first-order language of the sentences con-
tains just one binary predicate. However, if we actually com-
puted the combinatorial spectra of these sentences, we would
see that many of them are redundant (we give a precise defi-
nition of this term in the next subsection). Furthermore, if we
were able to detect which sentences are redundant without
computing their spectra, we would save a significant amount
of time. This is because the computation of combinatorial
spectra, even though polynomial in n, is still computation-
ally expensive. Moreover, if we were able to remove some
sentences from the search, while guaranteeing that all non-
redundant sentences would still be generated, we would save
even more time. In the remainder of this section, we describe
such techniques—either techniques that mark sentences as
just redundant, in which case we will not compute their com-
binatorial spectra, or also as safe-to-delete, in which case we
will not even use them to generate new sentences. We will
use the term not-safe-to-delete when we want to refer to sen-
tences which are redundant but not safe-to-delete.

What Does It Mean That a Sequence Is Redundant?
Given a collection of sentences S , a sentence φ ∈ S is con-
sidered redundant if there is another sentence φ′ ∈ S and
S(φ) = S(φ′), i.e., if the other sentence generates the same
integer sequence. Since checking whether two sentences have
the same combinatorial spectrum is computationally hard,10

we will only search for sufficient conditions for when two
sentences generate the same spectrum.

Apart from the above notion of redundancy, we also con-
sider a sentence φ ∈ S redundant if there are two other sen-
tences φ′, φ′′ such that S(φ) = S(φ′) · S(φ′′), where the
product · is taken element-wise. The rationale is that when
this happens, the set of models of φ likely corresponds to the
elements of the Cartesian product of the models of φ′ and φ′′

(or, at least, there is a bijection between them), which is not
combinatorially very interesting.11

Detecting Redundant Sentences
Now that we explained what we mean by redundant sen-
tences, we can move on to methods for detecting whether
a sentence is redundant and if it is then whether it is also
safe-to-delete. We stress upfront that the methods described
in this section will not guarantee detecting all redundancies.
On the other hand, these methods will be sound—they will
not mark non-redundant sentences as redundant. Some of the
techniques will mark a sentence as redundant but they will
not give us a witness for the redundancy, i.e., other sentences
with the same combinatorial spectrum. This will be the case
for techniques that guarantee that the witness is a shorter sen-
tence (in the number of literals), which must have been gen-
erated earlier, thus, we will know that by pruning the longer
redundant sentences, we will not affect completeness of the
search.

10See the online technical report for details.
11After all, one can always create such sequences in a post-

processing step and interpret them as elements of the respective
Cartesian products if one so desires.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3341



Pruning Technique Name Short Description of the Idea
Sentences detected using the techniques described below are safe-to-delete.
Isomorphic Sentences Two sentences are isomorphic if one can be obtained from the other by renaming variables

and predicate names.12

Decomposable Sentences If a sentence φ can be written as a conjunction φ = φ′ ∧ φ′′ of two conjunctions with
disjoint sets of predicates then φ is redundant. See the main text for a justification.

Negations If two sentences can be made isomorphic by negating all occurrences of literals of
some predicates, then they generate the same combinatorial spectra. For example,
S(∀x∃y R(x, y)) = S(∀x∃y ¬R(x, y)).

Permuting Arguments Argument-flip on a predicate R is a transformation which replaces all occurrences of
R(x, y) by R(y, x) and all occurrences of R(y, x) by R(x, y). If two sentences φ and φ′

can be made isomorphic using argument flips, then they generate the same combinatorial
spectra, i.e., S(φ) = S(φ′).

Sentences detected by techniques described below are not-safe-to-delete. We do not compute combinatorial spectra
for those sentences and do not store them in the database.
Tautologies & Contradictions Any sentence which contains an always-true (i.e., tautological) clause is redundant—there

exists a shorter sentence with the same combinatorial spectrum. All unsatisfiable sentences
(contradictions) produce the same combinatorial spectrum consisting of zeros and, hence,
are also redundant.

Trivial Constraints Suppose a sentence φ contains a clause of the form ∀x U(x) or ∀x∀y R(x, y), which
we call a trivial constraint. Then the sentence φ′ obtained from φ by dropping the trivial
constraint and replacing all occurrences of U or R, respectively by true, has the same
combinatorial spectrum as φ.

Reflexive Atoms If a binary literalR appears in a sentence φ only asR(x, x), ¬R(x, x),R(y, y) or ¬R(y, y)
and φ has at least two literals, then the sentence is redundant. See the main text for a
justification.

Subsumption If a sentence φ contains two clauses Q1xQ2y α(x, y) and Q1xQ2y β(x, y), with the same
quantifier prefix, and if there is a substitution θ : {x, y} → {x, y} such that αθ ⊆ β, then
φ is redundant—the sentence φ′ obtained from φ by dropping Q1xQ2y β(x, y) generates
the same combinatorial spectrum.

Cell Graph Isomorphism See the main text.

Table 1: Pruning techniques used in the algorithm for generation of non-redundant sentences.

The pruning methods that are used by our algorithm for
generation of sentences are summarized in Table 1. Some
of them are rather straightforward and do not require much
further justification here.

The method called Isomorphic Sentences is a straight-
forward extension of the methods for enumeration of non-
isomorphic patterns, known from data mining literature (see,
e.g., [Nijssen and Kok, 2001]), where the main difference is
that when checking isomorphism, we allow renaming of pred-
icates.12

The method called Decomposable Sentences is based on
the following observation, which is well-known among oth-
ers in lifted inference literature [Van den Broeck, 2011]: Let
φ = φ1 ∧ φ2 be a first-order logic sentence. If φ1 and φ2

use disjoint sets of predicates then it is not hard to show that
S(φ) = S(φ1) ·S(φ2), where the product is taken element-
wise and S(φ1) and S(φ2) are understood to be computed
only over the languages consisting of the predicates contained
in φ1 and φ2, respectively.

While the method called Permuting Arguments may not
need a more detailed explanation per se, we will still illus-
trate it here on an example to provide a better intuition. Sup-

12The details are described in the online technical report.

pose that we have two sentences: φ1 = ∀x∃y E(x, y) and
φ2 = ∀x∃y E(y, x). The first one can be interpreted as mod-
elling directed graphs in which no vertex has out-degree 0
and the second one as modelling directed graphs in which no
vertex has in-degree 0. This interpretation was based on our
decision to interpret E(x, y) as an edge form x to y, yet we
could have also interpreted it as an edge from y to x and this
would change nothing about the combinatorial spectrum of
the sentence (which does not depend on how we interpret the
sentence). If we generalize this observation, we realize that
sentences that differ only in the order of arguments of some
predicates (like φ1 and φ2 above) must generate the same
combinatorial spectrum.

Next, we give a little more detail on the method called Re-
flexive Atoms. If a sentence φ contains atoms of some bi-
nary predicate R only in the form R(x, x) or R(y, y) then
all the ground atoms R(i, j), where i and j are domain el-
ements and i ̸= j, are unconstrained by φ. It follows that
S(φ) = S(φ′) ·S(φ′′) where φ′ = ∀x ¬R(x, x) and φ′′ is
a sentence obtained by replacing all occurrences of R(x, x)
by UR(x) and occurrences of R(y, y) by UR(y) where UR is
a fresh predicate. Here, φ′ accounts for all possible configu-
rations of the atoms R(i, j) with arguments i ̸= j. It follows

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3342



that such a sentence φ is redundant.
The methods Tautologies & Contradictions, Negations,

Trivial Constraints and Subsumption, do not need any further
explanation beyond what is in Table 1. The only remaining
method, namely Cell Graph Isomorphism, is described in the
next subsection.

Cell Graph Isomorphism
The final pruning method of Table 1 called Cell Graph Iso-
morphism relies on a concept from the area of lifted inference.
In [van Bremen and Kuželka, 2021], the authors introduced
a special structure called a cell graph to help them compute
WFOMC faster. A cell graph is a complete undirected graph
(including loops) where each vertex represents one cell13

[Beame et al., 2015] of the sentence whose WFOMC we seek
to compute. Each edge of the cell graph is then labelled by
certain values computed from the weights (w,w).

Since the WFOMC computation is completely determined
by the cell graph, it is simple to show that if two sentences
have isomorphic cell graphs, then they also have the same
combinatorial spectrum. See the technical report for details,
including how we define isomorphism of cell graphs.

Therefore, it is enough to output just one sentence from
each equivalence class induced by cell graph isomorphism.
However, as is already stated in Table 1, sentences with iso-
morphic cell graphs are not-safe-to-delete, meaning that com-
binatorial spectrum is computed only for one member of the
induced equivalence class, but all the members are used to
further expand the search space.

4 Experiments
In this section, we experimentally evaluate the effectiveness
of the techniques for constructing the database of integer se-
quences described in Section 3.2 within a reasonable amount
of time. Furthermore, we take a closer look at a few inter-
esting generated C2 sentences whose combinatorial spectra
appear in OEIS.

4.1 Filling the Database of Integer Sequences
We ran two separate experiments with generators of FO2 and
C2 sentences. We set a time-limit of five minutes for the
computation of combinatorial spectra per sentence; results
for these experiments are depicted in Figure 1. Our aim with
these experiments was to assess the effect of the pruning tech-
niques that we proposed. We tested several setups which dif-
fered in which of the pruning techniques were used. The first
setup, the very baseline (shown in black), consisted of just the
method that filters out sentences which are isomorphic (using
the standard notion of isomorphism used in pattern mining
literature, which does not consider renaming predicates [Ni-
jssen and Kok, 2001]) and with pruning of decomposable sen-
tences—these are the very essentials any reasonable method
would probably implement. The second setup (shown in or-
ange) used the full method Isomorphic Sentences, allowing

13Cells are also referred to as 1-types in logics literature. They
are a maximal consistent conjunction of literals formed from atoms
of the input formula using only a single variable.

renaming of predicates, Decomposable Sentences and Tau-
tologies & Contradictions. The third setup (shown in pur-
ple) contained all of the methods from the previous setups
together with Negations. The fourth setup (shown in pink)
added the Permuting Arguments to it. In the fifth setup (shown
in blue) we used all methods except Cell Graph Isomorphism.
Finally, the last setup (shown in green) contained all the pro-
posed pruning methods. It can be seen that our methods re-
duce both the runtime and the number of generated sentences
by orders of magnitude.

The pruning techniques help to scale up the process of fill-
ing the database in two ways. Whereas the naive approach
(e.g. baseline) generates a lot of sentences fast, soon consum-
ing all available memory, safe-to-delete techniques lower the
memory requirements significantly. All pruning techniques
consume some computation time, but that is negligible com-
pared to the time needed for computing combinatorial spec-
tra, which is the most time-demanding part of the task. Since
the pruning methods, including those which are not-safe-to-
delete, reduce the number of computations of combinatorial
spectra, their use quickly pays off, as can be clearly seen
from Figure 1 which shows the estimated14 time to fill in the
database.

We refer to the technical report for more experiments with
detailed information about their setups.

4.2 An Initial Database Construction
Apart from the experiments in which we compared the ben-
efits of the proposed pruning methods, we also used our al-
gorithm to generate an initial database of combinatorial se-
quences. For that we let the sentence generator run for five
days to obtain a collection of sentences and their combinato-
rial spectra on a machine with 500 GB RAM, 128 processors
(we used multi-threading). We used a five-minute time limit
for combinatorial spectrum computation of a sequence.

The result was a database containing over 26,000 unique
integer sequences. For each of the sequences in our database,
we queried OEIS to determine if the sequence matches a se-
quence which is already in OEIS. We found that 301 of the
sequences were present in OEIS—this makes ≈1.2% of the
sequences we generated. This may not sound like much, but
it is certainly non-negligible. Moreover, our goal was to gen-
erate primarily new sequences. We show several interesting
generated sequences that happened to be in OEIS in Table 2.

An example of an interesting sequence is the last one in Ta-
ble 2. This sequence does not have any combinatorial char-
acterization in OEIS. We can obtain such a characterization
from the C2 sentence that generated it:15 (∀x∀y U(x) ∨
¬U(y) ∨ ¬B(x, y)) ∧ (∀x∃=1y B(x, y)). This can be inter-
preted as follows: We are counting configurations consisting
of a function b : [n] → [n] and a set U ⊆ [n] that satisfy that
if y = b(x) and y ∈ U then x ∈ U . While this may not be

14Since the methods which do not use the full set of our pruning
techniques, generate an extremely high number of (mostly redun-
dant) sentences, computing their spectra would take thousands of
hours. Therefore, we only estimated the runtime by computing the
spectra only for a random sample of sentences for these methods.

15For easier readability, we replaced the predicate B by its nega-
tion, which does not change the spectrum.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3343



Sentence OEIS ID OEIS name
(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀yB(x, x) ∨B(x, y) ∨ ¬B(y, x))

A85 Number of self-inverse permutations on n letters,
also known as involutions; number of standard
Young tableaux with n cells.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) A142 Factorial numbers: n! = 1 · 2 · 3 · 4 · ... ·n (order of
symmetric group Sn, number of permutations of n
letters).

(∀x∃=1y ¬B(x, y)) ∧ (∀x∃=1y ¬B(y, x)) ∧
(∀x B(x, x))

A166 Subfactorial or rencontres numbers, or derange-
ments: number of permutations of n elements with
no fixed points.

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧ (∃x B(x, x)) ∧
(∀x∃=1y ¬B(x, y))

A1189 Number of degree-n permutations of order ex-
actly 2.

(∀x∀y U(x) ∨B(x, y)) ∧ (∀x∀y ¬U(x) ∨B(y, x)) A47863 Number of labeled graphs with 2-colored nodes
where black nodes are only connected to white
nodes and vice versa.

(∀x B(x, x)) ∧ (∀x∃y ¬B(x, y)) ∧ (∀x∃y ¬B(y, x)) A86193 Number of n × n matrices with entries in {0, 1}
with no zero row, no zero column and with zero
main diagonal.

(∀x∀y U(x)∨¬U(y)∨B(x, y))∧ (∀x∃=1y ¬B(x, y)) A290840 a(n) = n! · [xn] exp(n·x)
1+LambertW (−x) .

Table 2: A sample of sequences that are combinatorial spectra of sentences generated by our algorithm that also appear in OEIS.

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9 10

(a)

#
se
n
te
n
ce
s

baseline Isomorphic Sentences & Tautologies & Contradictions Negations
Permuting Arguments all pruning except Cell Graph Isomorphism Cell Graph Isomorphism

0

1

2

3

·104

1 2 3 4 5 6 7 8 9 10

(b)

es
ti
m
at
ed

ti
m
e
[h
]

101

102

103

104

105

106

1 2 3 4 5 6 7 8 9 10

(c)

#
se
n
te
n
ce
s

0

1

2

3

·104

1 2 3 4 5 6 7 8 9 10

(d)

es
ti
m
at
ed

ti
m
e
[h
]

Figure 1: Number of FO2 (a) and C2 (c) sentences with at most x literals. The estimated time needed to generate FO2 (b) and C2 (d)
sentences and compute their combinatorial spectra with a five-minute time limit per spectrum. Each of these sentences can have at most one
unary, and one binary predicate and at most two clauses, five literals per clause which result in the flattening of the (a) and (c) curves. Some
generators, e.g. the baseline, did not get to the final levels of the search, since they exceeded the time or memory limit.

a profound combinatorial problem, it provides a combinato-
rial interpretation for the sequence at hand—we would not be
able to find it without the database.

Next we discuss several examples of arguably natural com-
binatorial sequences that were constructed by our algorithm
which are not present in OEIS. The first of these exam-
ples is the sequence 0, 0, 6, 72, 980, 15360, . . . gener-
ated by the sentence (∀x ¬B(x, x)) ∧ (∃x∀y ¬B(y, x)) ∧
(∀x∃=1y B(x, y)). We can interpret it as counting the num-
ber of functions f : [n] → [n] without fixed points and with
image not equal to [n]. Another example is the sequence 1,
7, 237, 31613, 16224509, 31992952773, . . . , which corre-
sponds to the sentence (∀x∃y B(x, y)) ∧ (∃x∀y B(x, y) ∨
B(y, x)) and counts directed graphs on n vertices in which
every vertex has non-zero out-degree and there is a vertex that
is connected to all other vertices (including to itself) by either
an outgoing or incoming edge. Yet another example is the se-

quence 1, 5, 127, 12209, 4329151, 5723266625, . . . , corre-
sponding to the sentence (∀x∃y B(x, y)) ∧ (∃x∀y B(x, y)),
which counts directed graphs where every vertex has non-
zero out-degree and at least one vertex has out-degree n,
which is also the same as the number of binary matrices with
no zero rows and at least one row containing all ones. These
examples correspond to the simpler structures in the database,
there are others which are more complex (and also more
difficult to interpret). For example, another sequence 0, 3,
43, 747, 22813, 1352761, . . . constructed by our algorithm,
given by the sentence (∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x)) ∧ (∃x∀y ¬B(x, y) ∨ ¬U(y)) ∧ (∃x∃y B(x, y)),
counts undirected graphs without loops with at least one edge
and with vertices labeled by two colors, red and black (red
corresponding to U(x), and black corresponding to ¬U(x))
such that there is at least one vertex not connected to any of
the red vertices (note that this vertex can itself be red). We

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3344



could keep on listing similar sequences, but we believe the
handful we showed here give sufficient idea about the kind of
sequences one could find in the database constructed by our
system.

5 Related Work
To our best knowledge, there has been almost no prior work
on automated generation of combinatorial sequences, with
the work [Albert et al., 2022] which focuses on sequences
generated by permutations avoiding certain patterns being an
exception. However, there were works that intersect with
the work presented in this paper in certain aspects. The
most closely related are works on lifted inference [Poole,
2003; Gogate and Domingos, 2011; Van den Broeck, 2011;
Van den Broeck et al., 2014; Beame et al., 2015; Kuželka,
2021]; this work would not be possible without lifted in-
ference. We directly use the algorithms, even though re-
implemented, as well as the concept of cell graphs from [van
Bremen and Kuželka, 2021]. The detection of isomorphic
sentences is similar to techniques presented in [van Bremen et
al., 2021], however, that work focused on propositional logic
problems, whereas here we use these techniques for prob-
lems with first-order logic sentences. There were also works
on automated discovery in mathematics, e.g. [Colton, 2002;
Davies et al., 2021], but as far as we know, none in enumera-
tive combinatorics that would be similar to ours. The closest
line of works at the intersection of combinatorics and artificial
intelligence are the works [Suster et al., 2021] and [Totis et
al., 2023]. However, those works do not attempt to generate
new sequences or new combinatorics results, as they mostly
aim at solving textbook-style combinatorial problems, which
is still a highly non-trivial problem too, though.

6 Conclusion
We have introduced a method for construction of a database
of integer sequences with a combinatorial interpretation and
used it to generate a small initial database consisting of more
than 26k unique sequences, of which a non-negligible frac-
tion appears to have been studied, which is a sign that we
are able to generate interesting integer sequences automati-
cally. Our approach has two key components: an existing
lifted-inference algorithm [van Bremen and Kuželka, 2021]
that computes sequences from first-order logic sentences and
the new method for generation of first-order sentences which
successfully prunes huge numbers of redundant sentences.

Acknowledgments
The work of MS and OK was supported by the Czech Sci-
ence Foundation project 20-19104Y and 23-07299S (part of
the work was done before the start of the latter project). JT,
MS, OK, PJ were also supported by the OP VVV project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for In-
formatics”. The authors acknowledge a generous donation by
X-Order Lab.

References
[Albert et al., 2022] Michael H. Albert, Christian Bean, An-

ders Claesson, Émile Nadeau, Jay Pantone, and Henning

Ulfarsson. Combinatorial Exploration: An algorithmic
framework for enumeration. https://arxiv.org/abs/2202.
07715, 2022.

[Barvı́nek et al., 2021] Jáchym Barvı́nek, Timothy van Bre-
men, Yuyi Wang, Filip Zelezný, and Ondrej Kuzelka. Au-
tomatic conjecturing of p-recursions using lifted inference.
In Nikos Katzouris and Alexander Artikis, editors, Induc-
tive Logic Programming - 30th International Conference,
ILP 2021, Proceedings, volume 13191 of Lecture Notes in
Computer Science, pages 17–25. Springer, 2021.

[Beame et al., 2015] Paul Beame, Guy Van den Broeck,
Eric Gribkoff, and Dan Suciu. Symmetric weighted
first-order model counting. In Proceedings of the 34th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’15, page 313–328, New
York, NY, USA, 2015. Association for Computing Ma-
chinery.

[Börger et al., 2001] Egon Börger, Erich Grädel, and Yuri
Gurevich. The classical decision problem, page 48.
Springer Science & Business Media, 2001.

[Colton, 2002] Simon Colton. The hr program for theorem
generation. In International Conference on Automated De-
duction, pages 285–289. Springer, 2002.

[Davies et al., 2021] Alex Davies, Petar Veličković, Lars
Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell,
András Juhász, et al. Advancing mathematics by guiding
human intuition with ai. Nature, 600(7887):70–74, 2021.

[Gogate and Domingos, 2011] Vibhav Gogate and Pedro M.
Domingos. Probabilistic theorem proving. In
Fábio Gagliardi Cozman and Avi Pfeffer, editors, UAI
2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain,
July 14-17, 2011, pages 256–265. AUAI Press, 2011.

[Grädel and Otto, 1999] Erich Grädel and Martin Otto. On
logics with two variables. Theoretical computer science,
224(1-2):73–113, 1999.

[Hinrichs and Genesereth, 2006] Timothy Hinrichs and
Michael Genesereth. Herbrand logic. Technical Report
LG-2006-02, Stanford University, Stanford, CA, 2006.
http://logic.stanford.edu/reports/LG-2006-02.pdf.

[Kuželka, 2021] Ondřej Kuželka. Weighted first-order
model counting in the two-variable fragment with count-
ing quantifiers. Journal of Artificial Intelligence Research,
70:1281–1307, 2021.

[Nijssen and Kok, 2001] Siegfried Nijssen and Joost N. Kok.
Faster association rules for multiple relations. In Bern-
hard Nebel, editor, Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001, pages
891–896. Morgan Kaufmann, 2001.

[OEIS Foundation Inc., 2023] OEIS Foundation Inc. The
on-line encyclopedia of integer sequences. Published elec-
tronically at http://oeis.org, 2023. Accessed: 2023-05-23.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3345

https://arxiv.org/abs/2202.07715
https://arxiv.org/abs/2202.07715
http://oeis.org


[Pak, 2018] Igor Pak. Complexity problems in enumera-
tive combinatorics. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018, pages
3153–3180. World Scientific, 2018.

[Poole, 2003] David Poole. First-order probabilistic infer-
ence. In Georg Gottlob and Toby Walsh, editors, IJCAI-03,
Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence, Acapulco, Mexico, August
9-15, 2003, pages 985–991. Morgan Kaufmann, 2003.

[Pratt-Hartmann, 2009] Ian Pratt-Hartmann. Data-
complexity of the two-variable fragment with counting
quantifiers. Information and Computation, 207(8):867–
888, 2009.

[Stanley, 1986] Richard P Stanley. What is enumerative
combinatorics? In Enumerative combinatorics, pages 1–
63. Springer, 1986.

[Suster et al., 2021] Simon Suster, Pieter Fivez, Pietro Totis,
Angelika Kimmig, Jesse Davis, Luc De Raedt, and Walter
Daelemans. Mapping probability word problems to exe-
cutable representations. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 3627–3640, 2021.

[Totis et al., 2023] Pietro Totis, Jesse Davis, Luc De Raedt,
and Angelika Kimmig. Lifted reasoning for combinato-
rial counting. Journal of Artificial Intelligence Research,
76:1–58, 2023.

[van Bremen and Kuželka, 2021] Timothy van Bremen and
Ondřej Kuželka. Faster lifting for two-variable logic using
cell graphs. In Proceedings of the Thirty-Seventh Con-
ference on Uncertainty in Artificial Intelligence, volume
161 of Proceedings of Machine Learning Research, pages
1393–1402. PMLR, 27–30 Jul 2021.

[van Bremen et al., 2021] Timothy van Bremen, Vincent
Derkinderen, Shubham Sharma, Subhajit Roy, and
Kuldeep S. Meel. Symmetric component caching for
model counting on combinatorial instances. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, pages 3922–
3930. AAAI Press, 2021.

[Van den Broeck et al., 2011] Guy Van den Broeck, Nima
Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt.
Lifted probabilistic inference by first-order knowledge
compilation. In Toby Walsh, editor, Proceedings of
the Twenty-Second International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 2178–2185. AAAI
Press/International Joint Conferences on Artificial Intelli-
gence, 2011.

[Van den Broeck et al., 2014] Guy Van den Broeck, Wannes
Meert, and Adnan Darwiche. Skolemization for weighted
first-order model counting. In Proceedings of the
Fourteenth International Conference on Principles of
Knowledge Representation and Reasoning, KR’14, page
111–120. AAAI Press, 2014.

[Van den Broeck, 2011] Guy Van den Broeck. On the com-
pleteness of first-order knowledge compilation for lifted

probabilistic inference. In Proceedings of the 24th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’11, page 1386–1394, Red Hook, NY, USA,
2011. Curran Associates Inc.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3346


	Introduction
	Preliminaries
	Weighted First-Order Model Counting
	Tractable Language

	Constructing the Sequence Database
	Computing the Integer Sequences
	Generating the First-Order Logic Sentences
	Do We Cover All of C2?
	Traversing the Sentence Space
	What Does It Mean That a Sequence Is Redundant?
	Detecting Redundant Sentences
	Cell Graph Isomorphism


	Experiments
	Filling the Database of Integer Sequences
	An Initial Database Construction

	Related Work
	Conclusion

