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Abstract
We propose bounded fitting as a scheme for learning
description logic concepts in the presence of ontolo-
gies. A main advantage is that the resulting learning
algorithms come with theoretical guarantees regard-
ing their generalization to unseen examples in the
sense of PAC learning. We prove that, in contrast,
several other natural learning algorithms fail to pro-
vide such guarantees. As a further contribution,
we present the system SPELL which efficiently im-
plements bounded fitting for the description logic
ELHr based on a SAT solver, and compare its per-
formance to a state-of-the-art learner.

1 Introduction
In knowledge representation, the manual curation of knowl-
edge bases (KBs) is time consuming and expensive, mak-
ing learning-based approaches to knowledge acquisition an
attractive alternative. We are interested in description log-
ics (DLs) where concepts are an important class of expres-
sions, used for querying KBs and also as central building
blocks for ontologies. The subject of learning DL con-
cepts from labeled data examples has received great inter-
est, resulting in various implemented systems such as DL-
Learner, DL-Foil, and YINYANG [Bühmann et al., 2016;
Fanizzi et al., 2018; Iannone et al., 2007]. These systems
take a set of positively and negatively labeled examples and
an ontology O, and try to construct a concept that fits the
examples w.r.t. O. The related fitting problem, which asks to
decide the existence of a fitting concept, has also been stud-
ied intensely [Lehmann and Hitzler, 2010; Funk et al., 2019;
Jung et al., 2021].

The purpose of this paper is to propose a new approach to
concept learning in DLs that we call bounded fitting, inspired
by both bounded model checking as known from systems
verification [Biere et al., 1999] and by Occam algorithms from
computational learning theory [Blumer et al., 1989]. The idea
of bounded fitting is to search for a fitting concept of bounded
size, iteratively increasing the size bound until a fitting is
found. This approach has two main advantages, which we
discuss in the following.

First, it comes with formal guarantees regarding the gen-
eralization of the returned concept from the training data

to previously unseen data. This is formalized by Valiant’s
framework of probably approximately correct (PAC) learn-
ing [Valiant, 1984]. Given sufficiently many data examples
sampled from an unknown distribution, bounded fitting re-
turns a concept that with high probability δ has a classification
error bounded by some small ϵ. It is well-known that PAC
learning is intimately linked to Occam algorithms which guar-
antee to find a hypothesis of small size [Blumer et al., 1989;
Board and Pitt, 1992]. By design, algorithms following the
bounded fitting paradigm are Occam, and as a consequence the
number of examples needed for generalization depends only
linearly on 1/δ, 1/ϵ, and the size of the target concept to be
learned. This generalization guarantee holds independently of
the DL used to formulate concepts and ontologies. In contrast,
no formal generalization guarantees have been established for
DL concept learning approaches.

The second advantage is that, in important cases, bounded
fitting enables learning based on SAT solvers and thus lever-
ages the practical efficiency of these systems. We consider
ontologies formulated in the description logic ELHr and con-
cepts formulated in EL, which may be viewed as a core of the
ontology language OWL 2 EL. In this case, the size-restricted
fitting problem, which is defined like the fitting problem except
that the maximum size of fitting concepts to be considered
is given as an additional input (in unary), is NP-complete;
it is thus natural to implement bounded fitting using a SAT
solver. For comparison, we mention that the unbounded fitting
problem is EXPTIME-complete in this case [Funk et al., 2019].

As a further contribution of the paper, we analyze the gener-
alization ability of other relevant approaches to constructing fit-
ting EL-concepts. We start with algorithms that return fittings
that are ‘prominent’ from a logical perspective in that they
are most specific or most general or of minimum quantifier
depth among all fittings. Algorithms with such characteristics
and their applications are discussed in [ten Cate et al., 2023a].
Notably, constructing fittings via direct products of positive ex-
amples yields most specific fittings [Zarrieß and Turhan, 2013;
Jung et al., 2020]. Our result is that, even without ontolo-
gies, these types of algorithms are not sample-efficient, that is,
no polynomial amount of positive and negative examples is
sufficient to achieve generalization in the PAC sense.

We next turn to algorithms based on so-called downward
refinement operators which underlie all implemented DL learn-
ing systems that we are aware of. We consider two natural such
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operators that are rather similar to one another and combine
them with a breadth-first search strategy. The first operator
can be described as exploring ‘most-general specializations’
of the current hypotheses and the second one does the same,
but is made ‘artificially Occam’ (with, most likely, a negative
impact on practicality). We prove that while the first operator
does not lead to a not sample-efficient algorithm (even without
ontologies), the second one does. This leaves open whether
or not implemented systems based on refinement operators
admit generalization guarantees, as they implement complex
heuristics and optimizations.

As our final contribution we present SPELL, a SAT-based
system that implements bounded fitting of EL-concepts under
ELHr-ontologies. We evaluate SPELL on several datasets and
compare it to the only other available learning system for EL
that we are aware of, the EL tree learner (ELTL) incarnation
of the DL-Learner system [Bühmann et al., 2016]. We find
that the running time of SPELL is almost always significantly
lower than that of ELTL. Since, as we also show, it is the size
of the target concept that has most impact on the running time,
this means that SPELL can learn larger target queries than
ELTL. We also analyze the relative strengths and weaknesses
of the two approaches, identifying classes of inputs on which
one of the systems performs significantly better than the other
one. Finally, we make initial experiments regarding general-
ization, where both systems generalize well to unseen data,
even on very small samples. While this is expected for SPELL,
for ELTL it may be due to the fact that some of the heuris-
tics prefer fittings of small size, which might make ELTL an
Occam algorithm.

Proof details are provided in [ten Cate et al., 2023b].

Related work. Cohen and Hirsh identified a fragment of the
early DL CLASSIC that admits sample-efficient PAC learning,
even in polynomial time [Cohen and Hirsh, 1994]. For several
DLs such as EL and CLASSIC, concepts are learnable in poly-
nomial time in Angluin’s framework of exact learning with
membership and equivalence queries [Frazier and Pitt, 1996;
ten Cate and Dalmau, 2021; Funk et al., 2021; Funk et al.,
2022b]. The algorithms can be transformed in a standard way
into sample-efficient polynomial time PAC learning algorithms
that, however, additionally use membership queries to an or-
acle [Angluin, 1987]. It is known that sample-efficient PAC
learning under certain assumptions implies the existence of
Occam algorithms [Board and Pitt, 1992]. These assumptions,
however, do not apply to the learning tasks studied here.

2 Preliminaries
Concepts, ontologies, queries. Let NC, NR, and NI be count-
ably infinite sets of concept names, role names, and individual
names, respectively. An EL-concept is formed according to
the syntax rule

C,D ::= ⊤ | A | C ⊓D | ∃r.C

where A ranges over NC and r over NR. A concept of the
form ∃r.C is called an existential restriction and the quan-
tifier depth of a concept is the maximum nesting depth of
existential restrictions in it. An ELHr-ontology O is a finite
set of concept inclusions (CIs) C ⊑ D, role inclusions r ⊑ s,

and range assertions ran(r) ⊑ C where C and D range over
EL-concepts and r, s over role names. An EL-ontology is an
ELHr-ontology that uses neither role inclusions nor range
assertions. We also sometimes mention ELI-concepts and
ELI-ontologies, which extend their EL-counterparts with in-
verse roles r− that can be used in place of role names. See
[Baader et al., 2017] for more information. A database D
(also called ABox in a DL context) is a finite set of concept
assertions A(a) and role assertions r(a, b) where A ∈ NC,
r ∈ NR, and a, b ∈ NI. We use adom(D) to denote the set of
individual names that are used in D. A signature is a set of
concept and role names, in this context uniformly referred to
as symbols. For any syntactic object O, such as a concept or an
ontology, we use sig(O) to denote the set of symbols used in
O and ||O|| to denote the size of O, that is, the number of sym-
bols used to write O encoded as a word over a finite alphabet,
with each occurrence of a concept or role name contributing a
single symbol.

The semantics is defined in terms of interpretations I =
(∆I , ·I) where ∆I is the domain of I and ·I assigns a set
AI ⊆ ∆I to every A ∈ NC and a binary relation rI ⊆ ∆I ×
∆I to every r ∈ NR. The extension CI of EL-concepts C is
then defined as usual [Baader et al., 2017]. An interpretation I
satisfies a concept or role inclusion α ⊑ β if αI ⊆ βI , a range
assertion ran(r) ⊑ C if the projection of rI to the second
component is contained in CI , a concept assertion A(a) if
a ∈ AI , and a role assertion r(a, b) if (a, b) ∈ rI . We say
that I is a model of an ontology/database if it satisfies all
inclusions/assertions in it.

An EL-concept C can be viewed as an EL-query (ELQ) q,
as follows. Let D be a database and O an ELHr-ontology.
Then a ∈ adom(D) is an answer to q on D w.r.t. O if a ∈ CI

for all models I of D and O. In a similar way, we may view
ELI-concepts as ELI-queries (ELIQs). We will from now on
mostly view EL-concepts as ELQs. This does not, however,
restrict their use, which may be as actual queries or as concepts
used as building blocks for ontologies.

An ontology-mediated query (OMQ) language is a pair
(L,Q) with L an ontology language and Q a query language,
such as (ELHr,ELQ) and (ELI,ELIQ). For a query lan-
guage Q and signature Σ, we use QΣ to denote the set of
all queries q ∈ Q with sig(q) ⊆ Σ. All query languages
considered in this paper are unary, that is, they return a sub-
set of adom(D) as answers. We use q(D ∪ O) to denote the
set of answers to q on D w.r.t. O. For an L-ontology O and
queries q1, q2, we write O |= q1 ⊑ q2 if for all databases D,
q1(D ∪ O) ⊆ q2(D ∪ O). We say that q1 and q2 are equiv-
alent w.r.t. O, written O |= q1 ≡ q2, if O |= q1 ⊑ q2 and
O |= q2 ⊑ q1. When O = ∅, we write q1 ⊑ q2 and q1 ≡ q2.

Every ELQ q may be viewed as a database Dq in an obvious
way, e.g. q = ∃r.∃s.A as Dq = {r(aq, a1), s(a1, a2), A(a2)}.
Let D1,D2 be databases and Σ a signature. A Σ-simulation
from D1 to D2 is a relation S ⊆ adom(D1)×adom(D2) such
that for all (a1, a2) ∈ S:

1. if A(a1) ∈ D1 with A ∈ Σ, then A(a2) ∈ D2;
2. if r(a1, b1) ∈ D1 with r ∈ Σ, there is r(a2, b2) ∈ D2

such that (b1, b2) ∈ S.
For a1 ∈ adom(D1) and a2 ∈ adom(D2), we write
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(D1, a1) ⪯Σ (D2, a2) if there is a Σ-simulation S from D1 to
D2 with (a1, a2) ∈ S. We generally drop the mention of Σ in
case that Σ = NC ∪ NR. The following well-known lemma
links simulations to ELQs.
Lemma 1. For all ELQs q, databases D, and a ∈ adom(D):
a ∈ q(D) iff (Dq, aq) ⪯ (D, a). Consequently, for all
ELQs q, p: q ⊑ p iff (Dp, ap) ⪯ (Dq, aq).
Fitting. A pointed database is a pair (D, a) with D a
database and a ∈ adom(D). A labeled data example takes
the form (D, a,+) or (D, a,−), the former being a positive
example and the latter a negative example.

Let O be an ontology, Q a query language, and E a collec-
tion of labeled data examples. A query q ∈ Q fits E w.r.t. O
if a ∈ q(D ∪O) for all (D, a,+) ∈ E and a /∈ q(D ∪O) for
all (D, a,−) ∈ E. We then call E a q-labeled data example
w.r.t. O. We say that q is a most specific fitting if O |= q ⊑ q′

for every q′ ∈ Q that fits E, and that it is most general if
O |= q′ ⊑ q for every q′ ∈ Q that fits E.
Example 1. Consider the collection E0 of examples
({r(a, a), A(a), B(a)}, a,+), ({A(a), r(a, b), B(b)}, a,+),
({r(a, b)}, b,−). It has several ELQ fittings, the most specific
one being A ⊓ ∃r.B. There is no most general fitting ELQ as
both A and ∃r.B fit, but no common generalization does.

A fitting algorithm for an OMQ language (L,Q) is an algo-
rithm that takes as input an L-ontology O and a collection of
labeled data examples E and returns a query q ∈ Q that fits E
w.r.t. O, if such a q exists, and otherwise reports non-existence
or does not terminate. The size-restricted fitting problem for
(L,Q) means to decide, given a collection of labeled data ex-
amples E, an L-ontology O, and an s ≥ 1 in unary, whether
there is a query q ∈ Q with ||q|| ≤ s that fits E w.r.t. O.

It is well-known that for every database D and ELHr-
ontology O, we can compute in polynomial time a
database UD,O that is universal for ELQs in the sense that
a ∈ q(D ∪ O) iff a ∈ q(UD,O) for all ELQs q and a ∈
adom(D) [Lutz et al., 2009]. Given a collection of labeled
data examples E and an ELHr-ontology O, we denote with
EO the collection obtained from E by replacing each (pos-
itive or negative) example (D, a, ·) with (UD,O, a, ·). The
following proposition shows that a fitting algorithm for ELQ
without ontologies also gives rise to a fitting algorithm for
(ELHr,ELQ) with at most a polynomial increase in running
time. It is immediate from the definition of universality.
Proposition 1. An ELQ q fits a collection of labeled examples
E w.r.t. an ELHr-ontology O iff q fits EO w.r.t. ∅.

We remark that in contrast to ELQs, finite databases that
are universal for ELIQs need not exist [Funk et al., 2022a].
PAC learning. We recall the definition of PAC learning, in
a formulation that is tailored towards OMQ languages. Let P
be a probability distribution over pointed databases and let qT
and qH be queries, the target and the hypothesis. The error of
qH relative to qT and P is
errorP,qT (qH) = Pr

(D,a)∼P
(a ∈ qH(D ∪O) ∆ qT (D ∪O))

where ∆ denotes symmetric difference and Pr(D,a)∼P X is
the probability of X when drawing (D, a) randomly according
to P .

Definition 1. A PAC learning algorithm for an OMQ language
(L,Q) is a (potentially randomized) algorithm A associated
with a function m : R2 × N4 → N such that

• A takes as input an L-ontology O and a collection of
labeled data examples E;

• for all ϵ, δ ∈ (0, 1), all L-ontologies O, all finite sig-
natures Σ, all sQ, sE ≥ 0, all probability distributions
P over pointed databases (D, c) with sig(D) ⊆ Σ and
||D|| ≤ sE , and all qT ∈ QΣ with ||qT || ≤ sQ, the
following holds: when running A on O and a collec-
tion E of at least m(1/δ, 1/ϵ, ||O||, |Σ|, sQ, sE) labeled
data examples that are qT -labeled w.r.t. O and drawn
according to P , it returns a hypothesis qH such that with
probability at least 1− δ (over the choice of E), we have
errorP,qT (qH) ≤ ϵ.

We say that A has sample size m and call A sample-efficient
if m is a polynomial.

Note that a PAC learning algorithm is not required to
terminate if no fitting query exists. It would be desir-
able to even attain efficient PAC learning which addition-
ally requires A to be a polynomial time algorithm. How-
ever, ELQs are known to not be efficiently PAC learnable
even without ontologies, unless RP = NP [Kietz, 1993;
ten Cate et al., 2022]. The same is true for ELIQs and any
other class of conjunctive queries that contains all ELQs.

3 Bounded Fitting and Generalization
We introduce bounded fitting and analyze when fitting algo-
rithms are PAC learning algorithms.

Definition 2. Let (L,Q) be an OMQ language and let A be
an algorithm for the size-restricted fitting problem for (L,Q).
Then BOUNDED-FITTINGA is the algorithm that, given a col-
lection of labeled data examples E and an L-ontology O, runs
A with input (E,O, s) to decide whether there is a q ∈ Q
with ||q|| ≤ s that fits E w.r.t. O, for s = 1, 2, 3 . . ., returning
a fitting query as soon as it finds one.

Example 2. Consider again Example 1. For s = 1, bounded
fitting tries the candidates ⊤, A,B, ∃r.⊤ and returns the fit-
ting A. If started on E0 extended with ({A(a)}, a,−), it finds
one of the fitting ELQs A ⊓ ∃r.⊤ and ∃r.B in Round 2.

In spirit, bounded fitting focusses on finding fitting queries
when they exist, and not on deciding the existence of a fitting
query. This is in analogy with bounded model checking, which
focusses on finding counterexamples rather than on proving
that no such examples exist. If an upper bound on the size
of fitting queries is known, however, we can make bounded
fitting terminate by reporting non-existence of a fitting query
once the bound is exceeded. This is more of theoretical than
of practical interest since the size bounds tend to be large.
For ELQs without ontologies and for (EL,ELQ), for instance,
it is double exponential [Funk, 2019]. It thus seems more
realistic to run an algorithm that decides the existence of a
fitting in parallel to bounded fitting and to report the result
as soon as one of the algorithms terminates. There are also
important cases where fitting existence is undecidable, such
as for the OMQ language (ELI,ELIQ) [Funk et al., 2019].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3349



Bounded fitting may be used also in such cases as long as
the size-restricted fitting problem is still decidable. This is
the case for (ELI,ELIQ), as a direct consequence of query
evaluation to be decidable in this OMQ language [Baader et
al., 2008], see Appendix H of [ten Cate et al., 2023b].

A major advantage of bounded fitting is that it yields a
sample-efficient PAC learning algorithm with sample size
linear in the size of the target query. This is because bounded
fitting is an Occam algorithm which essentially means that it
produces a fitting query that is at most polynomially larger
than the fitting query of minimal size [Blumer et al., 1989].1

Theorem 1. Let (L,Q) be an OMQ language. Ev-
ery bounded fitting algorithm for (L,Q) is a (sample-
efficient) PAC learning algorithm with sample size
O
(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· log |Σ| · ||qT ||

)
.

We remark that bounded fitting is robust in that other
natural measures of query size (such as the number of ex-
istential restrictions) and enumeration sequences such as
s = 1, 2, 4, 8, . . . also lead to sample-efficient PAC learning
algorithms. This results in some flexibility in implementations.

We next show that many other fitting algorithms are not
sample-efficient when used as PAC learning algorithms. We
start with algorithms that return fittings which are most specific
or most general or of minimum quantifier depth. No such
algorithm is a sample-efficient PAC learning algorithm, even
without ontologies.

Theorem 2. If A is a fitting algorithm for ELQs that satisfies
one of the conditions below, then A is not a sample-efficient
PAC learning algorithm.

1. A always produces a most specific fitting, if it exists;

2. A always produces a most general fitting, if it exists;

3. A produces a fitting of minimal quantifier depth, if a
fitting exists.

The proof of Theorem 2 relies on duals of finite relational
structures, which are widely known in the form of homomor-
phism duals [Nesetril and Tardif, 2000]. Here, we introduce
the new notion of simulation duals.

Let (D, a) be a pointed database and Σ a signature. A set
M of pointed databases is a Σ-simulation dual of (D, a) if for
all pointed databases (D′, a′), the following holds:

(D, a) ⪯Σ (D′, a′) iff (D′, a′) ̸⪯Σ (D′′, a′′)

for all (D′′, a′′) ∈ M.

For illustration, consider the simulation dual M of (Dq, aq) for
an ELQ q. Then every negative example for q has a simulation
into an element of M and q is the most general ELQ that fits
{(D, a,−) | (D, a) ∈ M}. We exploit this in the proof of
Theorem 2. Moreover, we rely on the fact that ELQs have
simulation duals of polynomial size. In contrast, (non-pointed)
homomorphism duals of tree-shaped databases may become
exponentially large [Nesetril and Tardif, 2005].

1A precise definition of Occam algorithms is based on the notion
of VC-dimension; it is not crucial to the main part of the paper, details
can be found in [ten Cate et al., 2023b].

Theorem 3. Given an ELQ q and a finite signature Σ, a Σ-
simulation dual M of (Dq, aq) of size ||M || ≤ 3·|Σ|·||q||2 can
be computed in polynomial time. Moreover, if Dq contains only
a single Σ-assertion that mentions aq , then M is a singleton.

The notion of simulation duals is of independent interest
and we develop it further in [ten Cate et al., 2023b]. We show
that Theorem 3 generalizes from databases Dq to all pointed
databases (D, a) such that the directed graph induced by the
restriction of D to the individuals reachable (in a directed
sense) from a is a DAG. Conversely, databases that are not of
this form do not have finite simulation duals. We find it inter-
esting to recall that DAG-shaped databases do in general not
have finite homomorphism duals [Nesetril and Tardif, 2000].

Using Theorem 3, we now prove Point 2 of Theorem 2.
Points 1 and 3 are proved in [ten Cate et al., 2023b].

Proof. To highlight the intuitions, we leave out some minor
technical details that are provided in [ten Cate et al., 2023b].
Assume to the contrary of what we aim to show that there is a
sample-efficient PAC learning algorithm that produces a most
general fitting ELQ, if it exists, with associated polynomial
function m : R2×N4 as in Definition 1. As target ELQs qT , we
use concepts Ci where C0 = ⊤ and Ci = ∃r.(A⊓B ⊓Ci−1).
Thus, Ci is an r-path of length i in which every non-root node
is labeled with A and B.

Choose Σ = {A,B, r}, δ = ϵ = 0.5, and n large enough
so that 2n > 2m(1/δ, 1/ϵ, 0, |Σ|, 3n, 3 · |Σ| · ||Cn||2). Further
choose qT = Cn.

We next construct negative examples; positive examples are
not used. Define a set of ELQs S = Sn where

S0 = {⊤} Si = {∃r.(α ⊓ C) | C ∈ Si−1, α ∈ {A,B}}.
Note that the ELQs in S resemble qT except that every node
is labeled with only one of the concept names A,B. Now
consider any q ∈ S. Clearly, qT ⊑ q. Moreover, the pointed
database (Dq, aq) contains a single assertion that mentions aq .
By Theorem 3, q has a singleton Σ-simulation dual {(D′

q, a
′
q)}

with ||D′
q|| ≤ 3 · |Σ| · ||Cn||2. We shall use these duals as

negative examples.
The two crucial properties of S are that for all q ∈ S,
1. q is the most general ELQ that fits (D′

q, a
′
q,−);

2. for all T ⊆ S, q /∈ T implies
d

p∈T p ̸⊑ q.

By Point 1 and since qT ⊑ q, each (D′
q, a

′
q) is also a negative

example for qT .
Let the probability distribution P assign probability 1

2n to
all (D′

q, a
′
q) with q ∈ S and probability 0 to all other pointed

databases. Now assume that the algorithm is started on a
collection of m(1/δ, 1/ϵ, 0, |Σ|, 3n, 3 · |Σ| · ||Cn||2) labeled
data examples E drawn according to P . It follows from Point 1
that qH =

d
(D′

q,a
′
q)∈E q is the most general ELQ that fits E.

Thus, (an ELQ equivalent to) qH is output by the algorithm.
To obtain a contradiction, it suffices to show that with prob-

ability 1 − δ, we have errorP,qT (qH) > ϵ. We argue that,
in fact, qH violates all (negative) data examples that are not
in the sample E, that is, aq ∈ qH(Dp) for all p ∈ S with
(D′

p, a
′
p) /∈ E. The definition of P and choice of n then yield

that with probability 1, errorP,qT (qH) = |S|−|E|
|S| > 1

2 .
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Thus consider any p ∈ S such that (D′
p, a

′
p) /∈ E. It follows

from Point 2 that qH ̸⊑ p and the definition of duals may now
be used to derive a′p ∈ qH(D′

p) as desired.

4 Refinement Operators
We discuss fitting algorithms based on refinement operators,
used in implemented systems such as ELTL, and show that the
generalization abilities of such algorithms subtly depend on
the exact operator (and strategy) used.

Let (L,Q) be an OMQ language. A (downward) refinement
of a query q ∈ Q w.r.t. an L-ontology O is any p ∈ Q
such that O |= p ⊑ q and O ̸|= q ⊑ p. A (downward)
refinement operator for (L,Q) is a function ρ that associates
every q ∈ QΣ, L-ontology O, and finite signature Σ with a
set ρ(q,O,Σ) of downward refinements p ∈ QΣ of q w.r.t. O.
The operator ρ is ideal if it is finite and complete where ρ is

1. finite if ρ(q,O,Σ) is finite for all q, O, and finite Σ, and

2. complete if for all finite signatures Σ and all q, p ∈ QΣ,
O |= p ⊑ q implies that there is a finite ρ,O,Σ-
refinement sequence from q to p, that is, a sequence of
queries q1, . . . , qn such that q = q1, qi+1 ∈ ρ(qi,O,Σ)
for 1 ≤ i < n, and O |= qn ≡ p.

When O is empty, we write ρ(q,Σ) in place of ρ(q,O,Σ).
For (EL,ELQ) and thus also for (ELHr,ELQ), it is known

that no ideal refinement operator exists [Kriegel, 2019]. This
problem can be overcome by making use of Proposition 1
and employing an ideal refinement operator for ELQs without
ontologies, which does exist [Lehmann and Haase, 2009]. But
also these refinement operators are not without problems. It
was observed in [Kriegel, 2021] that for any such operator,
non-elementarily long refinement sequences exist, potentially
impairing the practical use of such operators. We somewhat
relativize this by the following observation. A refinement
operator ρ for (L,Q) is f -depth bounded, for f : N → N,
if for all q, p ∈ Q and all L-ontologies O with O |= p ⊑ q,
there exists a ρ,O,Σ-refinement sequence from q to p that is
of length at most f(||p||).
Theorem 4. Let (L,Q) be an OMQ-language. If (L,Q)
has an ideal refinement operator, then it has a 2O(n)-depth
bounded ideal refinement operator.

The depth bounded operator in Theorem 4 is obtained by
starting with some operator ρ and adding to each ρ(q,O,Σ) all
p ∈ QΣ such that O |= p ⊑ q, O ̸|= q ⊑ p, and ||p|| ≤ ||q||.
Note that the size of queries is used in an essential way, as in
Occam algorithms.

A refinement operator by itself is not a fitting algorithm as
one also needs a strategy for applying the operator. We use
breadth-first search as a simple yet natural such strategy.

We consider two related refinement operators ρ1 and ρ2
for ELQs. The definition of both operators refers to (small)
query size, inspired by Occam algorithms. Let q be an ELQ.
Then ρ1(q,Σ) is the set of all p ∈ ELQΣ such that p ⊑ q,
q ̸⊑ p, and ||p|| ≤ 2||q||+ 1. The operator ρ2 is defined like
ρ1 except that we include in ρ2(q,Σ) only ELQs p that are a
(downward) neighbor of q, that is, for all ELQs p′, p ⊑ p′ ⊑ q
implies p′ ⊑ p or q ⊑ p′. The following lemma shows that

ρ2(q,Σ) actually contains all neighbors of q with sig(q) ⊆ Σ,
up to equivalence. An ELQ q is minimal if there is no ELQ p
such that ||p|| < ||q|| and p ≡ q.
Lemma 2. For every ELQ q and minimal downward neighbor
p of q, we have ||p|| ≤ 2||q||+ 1.

Both ρ1 and ρ2 can be computed by brute force. For more
elaborate approaches to computing ρ2, see [Kriegel, 2021]
where downward neighbors of ELQs are studied in detail.
Lemma 3. ρ1 and ρ2 are ideal refinement operators for ELQ.

We next give more details on what we mean by breadth-first
search. Started on a collection of labeled data examples E,
the algorithm maintains a set M of candidate ELQs that fit
all positive examples E+ in E, beginning with M = {⊤}
and proceeding in rounds. If any ELQ q in M fits E, then
we return such a fitting q with ||q|| smallest. Otherwise, the
current set M is replaced with the set of all ELQs from⋃

q∈M ρ(q, sig(E)) that fit E+, and the next round begins.
For i ∈ {1, 2}, let Ai be the version of this algorithm that uses
refinement operator ρi. Although ρ1 and ρ2 are defined quite
similarly, the behavior of the algorithms A1 and A2 differs.
Theorem 5. A1 is a sample-efficient PAC learning algorithm,
but A2 is not.

To prove Theorem 5, we show that A1 is an Occam algo-
rithm while A2 produces a most general fitting (if it exists),
which allows us to apply Theorem 2.

The above is intended to provide a case study of refinement
operators and their generalization abilities. Implemented sys-
tems use refinement operators and strategies that are more
complex and include heuristics and optimizations. This makes
it difficult to analyze whether implemented refinement-based
systems constitute a sample-efficient PAC learner.

We comment on the ELTL system that we use in our ex-
periments. ELTL is based on the refinement operator for
(ELHr,ELQ) presented in [Lehmann and Haase, 2009]. That
operator, however, admits only ELHr ontologies of a rather
restricted form: all CIs must be of the form A ⊑ B with
A,B concept names. Since no ideal refinement operators for
unrestricted (EL,ELQ) exist and ELTL does not eliminate
ontologies in the spirit of Proposition 1, it remains unclear
whether and how ELTL achieves completeness (i.e., finding a
fitting whenever there is one).

5 The SPELL System
We implemented bounded fitting for the OMQ language
(ELHr,ELQ) in the system SPELL (for SAT-based PAC EL
concept Learner).2 SPELL takes as input a knowledge base in
OWL RDF/XML format that contains both an ELHr ontology
O and a collection E of positive and negative examples, and
it outputs an ELQ represented as a SPARQL query. SPELL is
implemented in Python 3 and uses the PySat library to interact
with the Glucose SAT solver. It provides integration into the
SML-Bench benchmark framework [Westphal et al., 2019].

In the first step, SPELL removes the ontology O by re-
placing the given examples E with EO as per Proposition 1.

2Available at https://github.com/spell-system/SPELL.
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Figure 1: Yago experiment, dark red area indicates timeout (60min)

It then runs bounded fitting in the variant where in each
round n, fitting ELQs with at most n − 1 existential re-
strictions are considered (rather than fitting ELQs q with
||q|| ≤ n). The existence of such a fitting is checked us-
ing the SAT solver. Also this variant of bounded fitting results
in a sample-efficient PAC learning algorithm, with sample
size O

(
1
ϵ · log

(
1
ϵ

)
· log

(
1
δ

)
· |Σ| · ||qT ||

)
, see [ten Cate et al.,

2023b] . We prefer this variant for implementation because it
admits a more natural reduction to SAT, described next.

From EO and the bound n, we construct a propositional
formula φ = φ1∧φ2 that is satisfiable if and only if there is an
ELQ q over Σ = sig(EO) with at most n−1 existential restric-
tions that fits EO. Indeed, any model of φ returned by the SAT
solver uniquely represents a fitting ELQ q. More precisely, φ1

ensures that such a model represents EL-concepts C1, . . . , Cn

where each Ci only contains existential restrictions of the form
∃r.Cj with j > i, and we take q to be C1. We use variables of
the form ci,A to express that the concept name A is a conjunct
of Ci, and variables xj,r and yi,j to express that ∃r.Cj is a
conjunct of Ci. Then φ2 enforces that the represented ELQ fits
EO. Let D be the disjoint union of all databases that occur in
an example in EO. We use variables si,a, with 1 ≤ i ≤ n and
a ∈ adom(D), to express that a ∈ Ci(D); the exact definition
of φ2 uses simulations and relies on Lemma 1. The number
of variables in φ is O

(
n2 · |D|

)
, thus linear in |D|.

We have implemented several improvements over this basic
reduction of which we describe two. The first improvement is
based on the simple observation that for computing a fitting
ELQ with n − 1 existential restrictions, for every example
(D′, a,±) ∈ EO it suffices to consider individuals that can be
reached via at most n− 1 role assertions from a. Moreover,
we may restrict Σ to symbols that occur in all n− 1-reachable
parts of the positive examples. The second improvement is
based on the observation that the search space for satisfy-
ing assignments of φ contains significant symmetries as the
same ELQ q may be encoded by many different arrangements
of concepts C1, . . . Cn. We add constraints to φ so that the
number of possible arrangements is reduced, breaking many
symmetries. For details see [ten Cate et al., 2023b].

6 Experimental Evaluation
We evaluate SPELL on several benchmarks3 and compare it
to the ELTL component of the DL-Learner system [Bühmann
et al., 2016]. Existing benchmarks do not suit our purpose
as they aim at learning concepts that are formulated in more
expressive DLs of the ALC family. As a consequence, a fitting
EL concept almost never exists. This is the case, for example,
in the often used Structured Machine Learning Benchmark
[Westphal et al., 2019]. We thus designed several new bench-
marks leveraging various existing knowledge bases, making
sure that a fitting EL concept always exists. We hope that our
benchmarks will provide a basis also for future experimental
evaluations of EL learning systems.

Performance evaluation. We carried out two experiments
that aim at evaluating the performance of SPELL. The main
questions are: Which parameters have most impact on the
running time? And how does the running time compare to that
of ELTL?

The first experiment uses the Yago 4 knowledge base which
combines the concept classes of schema.org with data from
Wikidata [Tanon et al., 2020]. The smallest version of Yago 4
is still huge and contains over 40 million assertions. We ex-
tracted a fragment of 12 million assertions assertions that
focusses on movies and famous persons. We then systemati-
cally vary the number of labeled examples and the size of the
target ELQs. The latter take the form Cn = ∃actor.

dn
i=1 ri.⊤

where each ri is a role name that represents a property of ac-
tors in Yago and n is increased to obtain larger queries. The
positive examples are selected by querying Yago with Cn and
the negative examples by querying Yago with generalizations
of Cn. The results are presented in Figure 1. They show that
the size of the target query has a strong impact on the run-
ning time whereas the impact of the number of positive and
negative examples is much more modest. We also find that
SPELL performs ∼1.5 orders of magnitude better than ELTL,
meaning in particular that it can handle larger target queries.

3Available at https://github.com/spell-system/benchmarks.
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Sample Size 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ELTL 0.77 0.78 0.85 0.85 0.86 0.89 0.90 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.98
SPELL 0.80 0.81 0.84 0.85 0.86 0.86 0.89 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 1: Generalization experiment accuracies

o2b-1 o2b-2 o2b-3 o2b-4 o2b-5 o2b-6

ELTL TO TO 274 580 28 152
SPELL < 1 < 1 < 1 < 1 < 1 < 1

Table 2: OWL2Bench running times [s], TO: >60min

Since Yago has only a very restricted ontology that es-
sentially consists of inclusions A ⊑ B with A,B con-
cept names, we complement the above experiment with
a second one based on OWL2Bench. OWL2Bench is a
benchmark for ontology-mediated querying that combines
a database generator with a hand-crafted ontology which ex-
tends the University Ontology Benchmark [Singh et al., 2020;
Zhou et al., 2013]. The ontology is formulated in OWL 2 EL
and we extracted its ELHr fragment which uses all aspects of
this DL and comprises 142 concept names, 83 role names, and
173 concept inclusions. We use datasets that contain 2500-
2600 individuals and 100-200 examples, generated as in the
Yago case. We designed 6 ELQs with 3-5 occurrences of con-
cept and role names and varying topology. The results are
shown in Table 2. The difference in running time is even more
pronounced in this experiment, with SPELL returning a fitting
ELQ almost instantaneously in all cases.4

Strengths and weaknesses. In this experiment, we aim to
highlight the respective strengths and weaknesses of SPELL
and ELTL or, more generally, of bounded fitting versus
refinement-operator based approaches. We anticipated that the
performance of bounded fitting would be most affected by the
number of existential restrictions in the target query whereas
the performance of refinement would be most affected by the
(unique) length of the sequence C1, . . . , Ck such that C1 = ⊤,
Ci+1 is a downward neighbor of Ci for 1 ≤ i < k, and Ck is
the target query. Let us call this the depth of Ck. The number
of existential restrictions and depth are orthogonal parameters.
In the k-path benchmark, we use target ELQs of the form
∃rk.⊤, k ≥ 1. These should be difficult for bounded fitting
when the number k of existential restrictions gets large, but
easy for refinement as the depth of ∃rk.⊤ is only k. In the k-1-
conj benchmark, we use ELQs of the form ∃r.

dk
i=1 Ai, k ≥ 1.

These have only one existential restriction and depth 2k. ELQs
in the k-2-conj benchmark take the form ∃r.∃r.

dk
i=1 Ai and

even have depth 22
k [Kriegel, 2021]. These should be difficult

for refinement when k gets large, but easy for SPELL. There
is no ontology and we use only a single positive and a single
negative example, which are the target ELQ and its unique
upwards neighbor (defined in analogy with downwards neigh-
bors). The results in Table 3 confirm our expectations, with
ELTL arguably degrading faster than SPELL.

4ELTL crashes on this benchmark unless one option (‘useMini-
mizer’) is switched off. We thus ran ELTL without useMinimizer.

k-path k-1-conj k-2-conj
k ELTL SPELL ELTL SPELL ELTL SPELL

4 1 <1 1 <1 1 <1
6 1 <1 2 <1 394 <1
8 1 <1 20 <1 TO <1
10 1 <1 TO <1 TO <1
12 1 26 TO <1 TO <1
14 1 30 TO <1 TO <1
16 1 68 TO <1 TO <1
18 1 TO TO <1 TO <1

Table 3: Strengths/weaknesses running time [s], TO: >10min

Generalization. We also performed initial experiments to
evaluate how well the constructed fittings generalize to unseen
data. We again use the Yago benchmark, but now split the ex-
amples into training data and testing data (assuming a uniform
probability distribution). Table 1 lists the median accuracies
of returned fittings (over 20 experiments) where the number of
examples in the training data ranges from 5 to 75. As expected,
fittings returned by SPELL generalize extremely well, even
when the number of training examples is remarkably small.
To our surprise, ELTL exhibits the same characteristics. This
may be due to the fact that some heuristics of ELTL prefer
fittings of smaller size, which might make ELTL an Occam
algorithm. It would be interesting to carry out more extensive
experiments on this aspect.

7 Conclusion and Future Work

We have introduced the bounded fitting paradigm along with
the SAT-based implementation SPELL for (ELHr,ELQ), with
competitive performance and formal generalization guaran-
tees. A natural next step is to extend SPELL to other DLs such
as ELI , ALC, or ELU , both with and without ontologies. We
expect that, in the case without ontology, a SAT encoding of
the size-restricted fitting problem will often be possible. The
case with ontology is more challenging; e.g., size-restricted fit-
ting is EXPTIME-complete for (ELI,ELIQ), see Appendix H
of [ten Cate et al., 2023b] for additional discussion. It is also
interesting to investigate query languages beyond DLs such as
conjunctive queries (CQs). Note that the size-restricted fitting
problem for CQs is Σp

2-complete [Gottlob et al., 1999] and
thus beyond SAT solvers; one could resort to using an ASP
solver or to CQs of bounded treewidth.

It would also be interesting to investigate settings in which
input examples may be labeled erroneously or according to a
target query formulated in different language than the query to
be learned. In both cases, one has to admit non-perfect fittings
and the optimization features of SAT solvers and Max-SAT
solvers seem to be promising for efficient implementation.
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