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Abstract

Datalog reasoning based on the seminaı̈ve evalua-
tion strategy evaluates rules using traditional join
plans, which often leads to redundancy and inef-
ficiency in practice, especially when the rules are
complex. Hypertree decompositions help identify
efficient query plans and reduce similar redundancy
in query answering. However, it is unclear how
this can be applied to materialisation and incre-
mental reasoning with recursive Datalog programs.
Moreover, hypertree decompositions require addi-
tional data structures and thus introduce nonnegli-
gible overhead in both runtime and memory con-
sumption. In this paper, we provide algorithms that
exploit hypertree decompositions for the materiali-
sation and incremental evaluation of Datalog pro-
grams. Furthermore, we combine this approach
with standard Datalog reasoning algorithms in a
modular fashion so that the overhead caused by the
decompositions is reduced. Our empirical evalua-
tion shows that, when the program contains com-
plex rules, the combined approach is usually sig-
nificantly faster than the baseline approach, some-
times by orders of magnitude.

1 Introduction
Datalog [Abiteboul et al., 1995] is a widely used rule lan-
guage that can express recursive dependencies, such as graph
reachability and transitive closure. Reasoning in Datalog
has found applications in different areas and supports a wide
range of tasks including consistency checking [Luteberget
et al., 2016] and data analysis [Alvaro et al., 2010]. Dat-
alog is also able to capture OWL 2 RL ontologies [Motik
et al., 2009] extended with SWRL rules [Horrocks et al.,
2004] and can thus support query answering over ontology-
enriched data; it has been implemented in a growing number
of open-source and commercial systems, such as VLog [Car-
ral et al., 2019], LogicBlox [Aref et al., 2015], Vadalog [Bel-
lomarini et al., 2018], RDFox [Nenov et al., 2015], Oracle’s
database [Wu et al., 2008], and GraphDB.1

1https://graphdb.ontotext.com/

In a typical application, Datalog is used to declaratively
represent domain knowledge as ‘if-then’ rules. Given a set
of explicit facts and a set of rules, Datalog systems are re-
quired to answer queries over all the facts entailed by the
given rules and facts. To facilitate query answering, the en-
tailed facts are often precomputed in a preprocessing step;
we use materialisation to refer to both this process and the
resulting set of facts. Queries can then be evaluated directly
over the materialisation without considering the rules. The
materialisation can be efficiently computed using the sem-
inaı̈ve algorithm [Abiteboul et al., 1995], which ensures that
each inference is performed only once. Incremental mainte-
nance algorithms can then be used to avoid the cost of re-
computing the materialisation when explicitly given facts are
added/deleted; these include general algorithms such as the
counting algorithm [Gupta et al., 1993], the Delete/Rederive
(DRed) algorithm [Staudt and Jarke, 1995], and the Back-
ward/Forward (B/F) algorithm [Motik et al., 2015], as well as
special purpose algorithms designed for rules with particular
shapes [Subercaze et al., 2016]. It has recently been shown
that general and special purpose algorithms can be combined
in a modular framework that supports both materialisation
and incremental maintenance [Hu et al., 2022].

Existing (incremental) materialisation algorithms implic-
itly assume that the evaluation of rule bodies is based on tradi-
tional join plans which can be suboptimal in many cases [Ngo
et al., 2014; Gottlob et al., 2016], especially in the case of
cyclic rules. This can lead to a blow-up in the number of in-
termediate results and a corresponding degradation in perfor-
mance (as we demonstrate in Section 5). This phenomenon
can be observed in real-life applications, for example where
rules are used to model complex systems, which may include
the evaluation of numerical expressions.2 The resulting rules
are often cyclic and have large numbers of body atoms.

Similar problems also exist in query answering. One
promising solution is based on hypertree decomposition [Got-
tlob et al., 2016]. Hypertree decomposition is able to decom-
pose cyclic queries, and Yannakakis’s algorithm [Yannakakis,
1981] can then be used to achieve efficient evaluation over the
decomposition [Gottlob et al., 2016]. This method has been
well-investigated with its effectiveness shown in many em-

2https://2021-eu.semantics.cc/graph-based-reasoning-scaling-
energy-audits-many-customers
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pirical experiments for query evaluation [Tu and Ré, 2015;
Aberger et al., 2016].

It is unclear, however, whether the hypertree decomposi-
tion approach can benefit rule evaluation in Datalog reason-
ing. Unlike query answering, which requires only a single
evaluation via decomposition, rules in a Datalog program are
applied multiple times until no new data can be derived. In
this setting, it is important to avoid repetitive derivations, but
this is not easy to achieve when hypertree decomposition is
used for rule evaluation. Moreover, incremental materialisa-
tion usually depends on efficiently tracking fact derivations,
and it is unclear how to achieve this when such derivations
depend on hypertree decomposition. Finally, hypertree de-
composition introduces some additional overhead, and this
may degrade performance on simple rules.

In this paper, we introduce a Datalog reasoning algorithm
that exploits hypertree decomposition to provide efficient (in-
cremental) reasoning of recursive programs. Moreover, we
show how this algorithm can be combined with the seminaı̈ve
algorithm in a modular framework so as to avoid unnecessary
additional overhead on simple rules. Our empirical evaluation
shows that this combined approach significantly outperforms
the standard approach, sometimes by orders of magnitude,
and it is never significantly slower. Our test system and data
are available online.3 Proofs and additional evaluation results
are included in a technical report [Zhang et al., 2023].

2 Preliminaries
2.1 Datalog
A term is a variable or a constant. An atom is an expression
of the form P (t1, ..., tk) where P is a predicate with arity k,
k ≥ 0, and each ti, 1 ≤ i ≤ k, is a term. A fact is a variable-
free atom, and a dataset is a finite set of facts. A rule is an
expression of the following form:

B0 ∧ · · · ∧Bn → H, (1)
where n ≥ 0 and Bi, 0 ≤ i ≤ n, and H are atoms. For
r a rule, h(r) = H is its head, and b(r) = {B0, . . . , Bn}
is the set of body atoms. For S an atom or a set of atoms,
var(S) is the set of variables appearing in S. For a rule r to
be safe, each variable occurring in its head must also occur in
at least one of its body atoms, i.e., var(h(r)) ⊆ var(b(r)). A
program is a finite set of safe rules.

A substitution σ is a mapping of finitely many variables to
constants. For α a term, an atom, a rule, or a set of them,
ασ is the result of replacing each occurrence of a variable x
in α with σ(x) if σ(x) is defined in σ. For a rule r and a
substitution σ, if σ maps all the variables occurring in r to
constants, then rσ is an instance of r.

For a rule r and a dataset I , r[I] is the set of facts obtained
by applying r to I:

r[I] = {h(rσ) | b(rσ) ⊆ I}. (2)
Moreover, for a program Π and a dataset I , Π[I] is the set
obtained by applying every rule r in Π to I:

Π[I] =
⋃
r∈Π

{r[I]}. (3)

3https://xinyuezhang.xyz/HDReasoning/

Algorithm 1 MAT(Π, E)

1: I ← ∅
2: ∆← E
3: while ∆ ̸= ∅ do
4: I := I ∪∆
5: ∆ := Π[I ···∆] \ I

For E a dataset, let I0 = E, and we define the materialisa-
tion I∞ of Π w.r.t. E as:

I∞ =
⋃
i≥0

Ii, where Ii = Ii−1 ∪Π[Ii−1] for i > 0. (4)

2.2 Seminaı̈ve Algorithm
We will briefly introduce the seminaı̈ve algorithm to facil-
itate our discussion in later sections. As we shall see, our
algorithms exploit similar techniques to avoid repetition in
reasoning.

The seminaı̈ve algorithm [Abiteboul et al., 1995] realises
non-repetitive reasoning by identifying newly derived facts in
each round of rule application. Given a program Π and a set
of facts E, the algorithm computes the materialisation I of Π
w.r.t. E. As shown in Algorithm 1, ∆ is initialised as E. In
each round of rule applications, the algorithm will first update
I by adding to it the newly derived facts from the previous
round and then computing a fresh set of derived facts using
the operator Π defined as below:

r[I ···∆] = {h(rσ) | b(rσ) ⊆ I and b(rσ) ∩∆ ̸= ∅}, (5)

Π[I ···∆] =
⋃
r∈Π

{r[I ···∆]}, (6)

in which σ in expression (5) is a substitution mapping vari-
ables in r to constants, and ∆ ⊆ I . The definition of Π[I ···∆]
ensures that the algorithm will only consider rule instances
that have not been considered before. In practice, r[I ···∆] can
be efficiently implemented by evaluating the rule body n+ 1
times [Motik et al., 2019]. Specifically, for the ith evaluation,
0 ≤ i ≤ n, the body is evaluated by:

B
I\∆
0 ∧ · · · ∧B

I\∆
i−1 ∧B∆

i ∧BI
i+1 ∧ · · · ∧BI

n, (7)

in which the superscript identifies the set of facts where each
atom is matched.

2.3 DRed Algorithm
The original DRed algorithm is presented by Gupta et
al. [1993], but it does not support non-repetitive reasoning.
In this paper, we consider a non-repetitive and generalised
version of the DRed algorithm presented by Hu et al. [2022].
This version of the DRed algorithm allows modular reason-
ing, i.e., reasoning over different parts of the program can
be implemented using customised algorithms, which is more
suitable for our discussions below.

The DRed algorithm is shown in Algorithm 2 where input
arguments Π and E represent the program and the original set
of explicitly given facts, I is the materialisation of Π w.r.t. E,
and E+ and E− are the sets of facts that are to be added to and
deleted from E, respectively. As shown in lines 2–4, the main
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idea behind DRed is to first overdelete all possible derivations
that depend on E−; and then the algorithm tries to rederive
facts that have alternative proofs using the remaining facts;
lastly, to add to the materialisation, the algorithm computes
the consequences of E+ as well as the rederived facts.

Specifically, overdeletion involves recursively finding all
the consequences derived by Π and E−, directly or indi-
rectly, as shown in lines 7–14. The function Delr called in
line 13 is intended to compute the facts that are directly af-
fected by the deletion of ∆−. More precisely, Delr(I,∆−)
should compute r[I ···∆−] ∩ (I\∆−). Note that in line 13
the first argument of the call is I\D, so it should compute
r[I ′ ···∆−] ∩ (I ′\∆−) with I ′ = I\D; the same clarification
applies to Redr and Addr, so we will not reiterate.

The rederivation step recovers the facts that are overdeleted
but are one-step provable from the remaining facts. Formally,
function Redr(I,∆) should compute r[I] ∩∆. Finally, dur-
ing addition, the added set NA is initialised in line 21, and
then from line 22 to 28 the rules are iteratively applied, sim-
ilarly as in the seminaı̈ve algorithm. In this case, function
Addr(I,∆+) is required to compute r[I ···∆+]\I .

The correctness of Algorithm 2 is guaranteed by Theo-
rem 1, which straightforwardly follows from the correctness
of the modular update algorithm by Hu et al. [2022].

Theorem 1. Algorithm 2 correctly updates the materialisa-
tion I∞ of Π w.r.t. E to I ′∞ of Π w.r.t. E′ where E′ =
(E\E−) ∪ E+, provided that Delr(I,∆−), Redr(I,∆), and
Addr(I,∆+) compute r[I ···∆−] ∩ (I\∆−), r[I] ∩∆, and
r[I ···∆+]\I , respectively.

Please note that the DRed algorithm could be used for the
initial materialisation as well. To achieve this, we can set
E, I and E− as empty sets, and pass the set of explicitly
given facts as E+ to the algorithm.

2.4 Hypertree Decomposition
Following the definition of hypertree decomposition for con-
junctive queries [Gottlob et al., 2002], we define it for Data-
log rules in a similar way.

For a Datalog rule r, a hypertree decomposition is a hyper-
tree HD = ⟨T, χ, λ⟩ in which T = ⟨N,E⟩ is a rooted tree,
and χ associates each vertex p ∈ N with a set of variables
in r whereas λ associates p with a set of atoms in b(r). This
hypertree satisfies all the following conditions:

1. for each body atom Bi ∈ b(r), there exists p ∈ N such
that var(Bi) ⊆ χ(p);

2. for each variable v ∈ var(r), the set {p ∈ N | v ∈ χ(p)}
induces a connected subtree of T .

3. for each vertex p ∈ N , χ(p) ⊆ var(λ(p)).

4. for each vertex p ∈ N , var(λ(p)) ∩ χ(Tp) ⊆ χ(p) in
which Tp is the subtree of T rooted at p.

The width of the hypertree decomposition is defined as
maxp∈N |λ(p)|. The hypertree-width hw(r) of r is the min-
imum width over all possible hypertree decompositions of r.
In this paper, we refer to r as a complex rule, or interchange-
ably, a cyclic rule, if and only if its hypertree width hw(r) is
greater than 1.

Algorithm 2 DRed(Π, E, I, E+, E−)

1: D := A := ∅, E− := (E− ∩ E)\E+, E+ := E+\E
2: OVERDELETE
3: REDERIVE
4: ADD
5: E := (E\E−) ∪ E+, I := (I\D) ∪A

6: procedure OVERDELETE
7: ND := E−

8: loop
9: ∆− := ND\D

10: if ∆− = ∅ then break
11: ND := ∅
12: for r ∈ Π do
13: ND := ND ∪ Delr(I\D,∆−)

14: D := D ∪∆−

15: procedure REDERIVE
16: ∆ := ∅
17: for r ∈ Π do
18: ∆ := ∆ ∪ Redr(I\D,D)

19: ∆ := ∆ ∪ ((E\E−) ∩D)

20: procedure ADD
21: NA := (∆ ∪ E+)\(I\D)
22: loop
23: ∆+ := NA\((I\D) ∪A)
24: if ∆+ = ∅ then break
25: A := A ∪∆+

26: NA := ∅
27: for r ∈ Π do
28: NA := NA ∪ Addr((I\D) ∪A,∆+)

Next, we will introduce how query evaluation works us-
ing a decomposition as join plan. Query evaluation via hy-
pertree decomposition is a well-investigated problem in the
database literature [Gottlob et al., 2016; Flum et al., 2002],
and such a process typically consists of in-node evaluation
and cross-node evaluation. During in-node evaluation, each
node p in the decomposition joins the body atoms that are
assigned to it (i.e., λ(p)) and stores the join results for later
use. Then, cross-node evaluation applies the Yannakakis al-
gorithm to the above join results using T as the join tree. The
standard Yannakakis algorithm in turn has two steps. The
full reducer stage applies a sequence of bottom-up left semi-
joins through the tree, followed by a sequence of top-down
left semi-joins using the same fixed root of the tree [Bern-
stein and Chiu, 1981]. This removes dangling data that will
not be needed in the second stage and decreases the join re-
sult size for each node. The cross-node join stage joins the
nodes bottom-up, and it projects to the output variables, i.e.,
var(h(r)), to obtain the final answers.

Overall, the (combined) complexity of query evaluation via
a decomposition tree is known to be O(v · (mk+s) · log(m+
s)) [Gottlob et al., 2016] where v is the number of variables
in the query, m is the cardinality of the largest relation in data,
k is the hypertree width of r, and s is the output size.
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3 Motivation
In this section, we use an example to explain how hyper-
tree decompositions could benefit rule evaluation and pro-
vide some intuitions as to how they can be exploited in the
evaluation of recursive Datalog rules. To this end, consider
the following rule r, in which PC,CW and CA represent
PossibleCollaborator, Coworker, and Coauthor, respectively:

PC(x, y)← CW(x, z1),CA(x, z2),PC(z1, y),PC(z2, y).

Moreover, consider the dataset E as specified below, where n
and k are constants. Refer to Figure 1 for a (partial) illustra-
tion of the dataset and the joins.

{CW(ai, bi·k+j) | 0 ≤ i < n, 1 ≤ j ≤ k} ∪
{CA(ai, ci·k+j) | 0 ≤ i < n, 1 ≤ j ≤ k} ∪
{CW(an, a2), CA(an, a3)} ∪
{PC(bi·k+j , dj) | 0 ≤ i < n, 1 ≤ j ≤ k} ∪
{PC(ci·k+j , dj) | 0 ≤ i < n, 1 ≤ j ≤ k}

Each relation above contains O(n · k) facts, and the ma-
terialisation will additionally derive n · k + k facts, i.e.,
{PC(ai, dj) | 0 ≤ i ≤ n, 1 ≤ j ≤ k}.

Now consider the first round of rule evaluation, and assume
that the rule body of r, which corresponds to a conjunctive
query, is evaluated left-to-right. Then, matching the first three
atoms involves considering O(n · k2) different substitutions
for variables x, y, z1, and z2; only O(n·k) of them will match
the last atom and eventually lead to successful derivations. In
fact, one can verify that no matter how we reorder the body
atoms of r, it will result in similar behaviour.

Using hypertree decompositions could help process the
query more efficiently. Consider decomposition T of the
above query consisting of two nodes p1 and p2, where p1 is
the parent node of p2. Furthermore, function χ is defined
as: χ(p1) = {x, z1, y}, χ(p2) = {x, z2, y}, and function
λ is defined as: λ(p1) = {CW(x, z1),PC(z1, y)}, λ(p2) =
{CA(x, z2),PC(z2, y)}. Recall the steps of decomposition-
based query evaluation we introduced in Section 2. During
the in-node evaluation stage, each node in the decomposition
will consider O(n ·k) substitutions; the full reducer will con-
sider O(n · k) substitutions and find out that nothing needs to
be reduced; lastly, the cross-node evaluation joining p1 and
p2 also considers O(n · k) substitutions. Compared with the
left-to-right evaluation of the query, the overall cost of this
approach is O(n · k), as opposed to O(n · k2). For every ai
(0 ≤ i < n), the first round of rule application will introduce
additional PC relations between ai and d1 to dk (n·k in total).

Notice that rule r is recursive, so the facts produced
by the first round of rule evaluation could potentially
lead to further derivations of the same rule. This is in-
deed the case in our example: the first round derives all
PC(ai, dj) facts with 0 ≤ i < n and 1 ≤ j ≤ k; combined
with {CW(an, a2),CA(an, a3)} this will additionally de-
rive PC(an, dj) with 1 ≤ j ≤ k. If we used the hypertree
decomposition-based technique discussed above, then a naı̈ve
implementation would just add all the facts derived in the first
round to the corresponding nodes and run the decomposition-
based query evaluation again. However, this is unlikely to

𝑎!

𝑏!"#$%…𝑏!"#$# 𝑐!"#$%…𝑐!"#$#

𝑑%…𝑑#

CW CA

PC PC

Figure 1: Illustration of joins related to a particular ai, 0 ≤ i < n,
in the first round of rule evaluation.

be very efficient as it would have to repeat all the work per-
formed in the first round of rule evaluation. Ideally, we would
like to make the decomposition-based query evaluation algo-
rithm ‘incremental’, in the sense that the algorithm minimises
the amount of repeated work between different rounds of rule
evaluation. As we shall see in Section 4, this requires nontriv-
ial adaptation of in-node evaluation, as well as the two stages
of the Yannakakis algorithm. Handling incremental deletion
presents another challenge, which we address following the
well-known DRed algorithm.

4 Algorithms
We now introduce our reasoning algorithms based on hy-
pertree decomposition. We use DRed as the backbone of
our algorithm, but instead of standard reasoning algorithms
with plan-based rule evaluation, we will use our hypertree
decomposition-based functions Delr, Addr, and Redr as dis-
cussed below. For each rule r in Π, we assume its hypertree
decomposition ⟨T r, χr, λr⟩ with T r = ⟨Nr, Er⟩ has already
been computed, and tr is the root of the decomposition tree
T r. Our reasoning algorithms are independent of decompo-
sition methods.

4.1 Notation
First, analogously to expression (5), for each node p ∈ Nr

we define operator Πp[I,∆], in which I and ∆ are sets of
facts with ∆ ⊆ I .

Πp[I,∆] = {χr(p)σ | λr(p)σ ⊆ I and λr(p)σ ∩∆ ⊈ ∅},

Intuitively, this operator is intended to compute for a node p
all the instantiations influenced by the incremental update ∆.
Additionally, for each node p ∈ Nr, we will make use of the
following sets in the presentation of our algorithms. These
sets are initialised as empty the first time DRed is executed.

1. instIp contains the join result of in-node evaluation for p
under the current materialisation I , and it is represented
as tuples for variables χr(p). Since cross-node evalua-
tion builds upon such join results, to facilitate incremen-
tal evaluation and to avoid computing instIp every time
from scratch, instIp has to be correctly maintained be-
tween different executions of DRed.

2. inst
I ···∆+

p represents the set of instantiations that should
be added to instIp given a set of newly added facts ∆+.
This set can be obtained using the operator Πp.
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Algorithm 3 Addr[I,∆+]

1: /* in-node evaluation */
2: for p ∈ Nr do:

3: inst
I ···∆+

p := Πp[I,∆
+] \ instIp

4: /* cross-node evaluation */
5: ∆A := CrossNodeEvaluationr(L+)
6: /* updating instantiations for each node */
7: for p ∈ Nr do
8: instIp := instIp ∪ inst

I ···∆+

p

9: inst
I ···∆+

p := ∅
10: return ∆A\I

3. inst
I ···∆−

p represents the set of instantiations that no
longer hold after removing ∆− from I; these instanti-
ations should then be deleted from instIp. Similarly as
above, this set can be computed using Πp.

4. instacp represents the currently active instantiations that
will participate in the cross-node evaluation.

5. instrep represents the instantiations that will need to be
checked during the rederivation phase.

4.2 Addition
As discussed in Section 3, the decomposition-based query
evaluation should be made incremental. To this end, Algo-
rithm 3, which is responsible for addition, needs to distin-
guish between old instantiations and the new ones added due
to changes in the explicitly given data. This is achieved by
executing the in-node evaluation for each node p ∈ Nr in
line 3 using the Πp operator. Then, the cross-node evalua-
tion (line 5) is performed in a way similar to the evaluation
of r[I ···∆] outlined in Section 2, treating each node in T r as
a body atom. Specifically, as shown in algorithm 4, we will
evaluate the tree |Nr| times. Assume that there is a fixed or-
der among all the tree nodes for r, and let pi, 1 ≤ i ≤ |Nr|,
denote the ith node in this ordering. Then, in the ith iteration
of the loop of lines 2–8, node pi is chosen in line 2, and the la-
bel of each node will be determined by the labelling function
L+ as specified below. In particular, node pi will be labelled
∆+; nodes preceding and succeeding pi will be labelled I
and I ∪∆+, respectively.

L+(pi, pj) =

 I ∪∆+, pj ≺ pi
∆+, pj = pi
I, pj ≻ pi

. (8)

Based on the labels assigned in line 4, we will set pacj , the ac-
tive instantiations that will participate in the subsequent eval-
uation, as follows. Note that the last two cases will be used
later for deletion.

instacp =



instIp I

inst
I ···∆+

p ∆+

instIp ∪ inst
I ···∆+

p I ∪∆+

inst
I ···∆−

p ∆−

instIp\inst
I ···∆−

p I\∆−

. (9)

𝑎!
𝑎" 𝑎#

𝑑$…𝑑%

CW CA

PC PC

𝑎!
𝑎", 𝑎& 𝑎#

𝑑$…𝑑%

CW CA

PC PC

(1) (2) (3)

Facts in 𝐼
Facts in ∆!
Facts in ∆!
Facts in ∆"

𝑎!
𝑎& 𝑎'

𝑑$…𝑑%

CW CA

PC PC

Figure 2: The illustrations depict joins in three scenarios: (1) the
second round of rule evaluation; (2) the incremental rule evalua-
tion in response to the addition of CW(an, a4) and CA(an, a5); and
(3) the incremental rule evaluation in response to the removal of
CA(an, a3). From these joins, one can easily compute the corre-
sponding instantiations for nodes p1 and p2.

After fixing the active instantiations, algorithm 4 proceeds
with an adapted version of the Yannakakis algorithm: lines 6–
7 complete the full reducer stage whereas line 8 performs
the cross-node join. By performing left semi-joins between
nodes, the full reducer stage aims at deactivating instantia-
tions that do not join and keep only the relevant ones. The
standard full reducer does not consider incremental updates
so adaptations are required. In particular, our incremental
version of the full reducer traverses the tree three times. The
first traversal in line 6 consists of a sequence of top-down
left semi-joins with pi (the node labelled with ∆+) as the
root. As ∆+ is typically smaller than the materialisation I ,
starting from pi could potentially reduce the numbers of ac-
tive instantiations for the other nodes to a large extent. The
second and the third traversal (line 7) involves applying the
standard bottom-up and top-down left semi-join sequences,
respectively, using the root of the decomposition tree tr as
the root for the evaluation. Then, the cross-node join in
line 8 evaluates the decomposition tree T r bottom-up: for
each node p ∈ Nr, it joins active instantiations in p with
those in its children, and then projects the result to variables
χr(p) ∪ var(h(r)). The join result obtained at the root tr
is projected to the output variables var(h(r)) to compute the
derived facts, which are then returned to the Addr function.

Lastly, lines 7–9 of algorithm 3 update the instantiations

instIp for each node p and empty inst
I ···∆+

p for later use.
By applying the principles of seminaı̈ve evaluation to both

the in-node evaluation and the cross-node evaluation, Addr

avoids repeatedly reasoning over the same facts or instantia-
tions. Lemma 1 states that the algorithm is correct.

Lemma 1. Algorithm 3 computes r[I ···∆+]\I .

To further elucidate the algorithmic process, we will build
upon the examples presented in Section 3 to demonstrate our
algorithm’s recursive application in a step-by-step manner.

Example 1. Following the initial round of rule appli-
cation as detailed in Section 3, the instantiations in

inst
I ···∆+

p1 and inst
I ···∆+

p2 are derived in line 3 of algo-
rithm 3 and then merged into instIp1

and instIp2
in line 8,

respectively, before being cleared in line 9. Therefore,
we have instIp1

= {(ai, bi·k+j , dj) | 0 ≤ i < n, 1 ≤ j ≤ k},
and instIp2

= {(ai, ci·k+j , dj) | 0 ≤ i < n, 1 ≤ j ≤ k}.
Additionally, the cross-node evaluation in line 5 derives facts
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Algorithm 4 CrossNodeEvaluationr(L)

1: ∆ := ∅
2: for pi ∈ Nr do /* the ∆ node */
3: for pj ∈ Nr do
4: label pj with the output of L(pi, pj)
5: set instacpj

according to the label

6: TopDownLSJ(pi)
7: BottomUpLSJ(tr); TopDownLSJ(tr)
8: ∆ := ∆ ∪ πvar(h(r))(CrossNodeJoin(t

r))

9: return ∆

{PC(ai, dj) | 0 ≤ i < n, 1 ≤ j ≤ k}, which are all returned
in line 10 of the algorithm.

In the second round of application, the facts derived in the
first round, i.e., PC(ai, dj) with 0 ≤ i < n and 1 ≤ j ≤ k,
are passed to the Addr function as ∆+. Then, line 3 identifies
for p1 the new instantiations involving facts in ∆+; specifi-

cally, {(an, a2, dj) | 1 ≤ j ≤ k} are assigned to inst
I ···∆+

p1 .

Similarly, we have inst
I ···∆+

p2 = {(an, a3, dj) | 1 ≤ j ≤ k}.
For an illustration of the related joins, please refer to fig-
ure 2 (1). Then, during the cross-node evaluation, lines 2–5
ensure that when node p1 is labeled with ∆+, node p2 is la-

beled with I , and so inst
I ···∆+

p1 is joined with instIp2
, deriving

no new fact. In contrast, when node p2 is labeled with ∆+,

node p1 is labeled with I ∪ ∆+, and so inst
I ···∆+

p2 is joined

with instIp1
∪ inst

I ···∆+

p1 , deriving PC(an, dj) with 1 ≤ j ≤ k.
As one can readily see, the second round of rule application
does not repeat work already carried out in the first round.

The above example demonstrates the process of ini-
tial materialisation. Now consider adding {CW(an, a4),
CA(an, a5)} to the explicitly given data, i.e., by setting E+ to
the above set of facts in the DRed algorithm. In this case, ∆+

in Addr will consist of CW(an, a4) and CA(an, a5). Then,
in line 3 of algorithm 3, we clearly have Πp1

[I,∆+] =
{(an, a4, dj) | 1 ≤ j ≤ k}, as illustrated by figure 2 (2).

However, inst
I ···∆+

p1 will be empty since the identified instan-
tiations already exist in instIp1

; the same applies to p2. As a
result, no new fact is derived. This shows the benefit of keep-
ing instantiations for the nodes of the decomposition between
different runs of the DRed algorithm.

4.3 Deletion

The Delr algorithm shown in algorithm 5 is analogous to
Addr, and it identifies consequences of r that are affected
by the deletion of ∆−. The algorithm first computes the

overdeletion inst
I ···∆−

p using the operator Πp in lines 2–3. In
addition, the instantiations that have been overdeleted are also
added to instrep so that they can be checked and potentially re-
covered during rederivation.

The cross-node evaluation in line 6 is similar to that of

Algorithm 5 Delr[I,∆−]

1: /* in-node: overdelete */
2: for p ∈ Nr do:

3: inst
I ···∆−

p := Πp[I,∆
−] ∩ instIp

4: instrep := instrep ∪ inst
I ···∆−

p

5: /* cross-node: overdelete */
6: ∆D := CrossNodeEvaluationr(L−)
7: /* updating instantiations for each node */
8: for p ∈ Nr do
9: instIp := instIp\inst

I ···∆−

p

10: inst
I ···∆−

p := ∅
11: return ∆D ∩ (I\∆−)

Addr, except that a different labelling function L− is used:

L−(pi, pj) =

 I, pj ≺ pi
∆−, pj = pi
I\∆−, pj ≻ pi

. (10)

Note that the initialisation of instacpj
follows equation (9). Fi-

nally, for each node p, the set of instantiations instIp is updated

in line 9 to reflect the change, and inst
I ···∆−

p is emptied in
line 10 for later use. Similarly as in Addr, our Delr function
exploits the idea of seminaı̈ve evaluation to avoid repeated
reasoning. Lemma 2 states that the algorithm is correct.
Lemma 2. Algorithm 5 computes r[I ···∆−] ∩ (I\∆−).

The following example illustrates overdeletion using our
customised algorithms.
Example 2. Assume that E− is set as {CA(an, a3)} in algo-
rithm 2. During the overdeletion phase, E− is passed to Delr

as ∆−. After the execution of line 3 in algorithm 5, we have

inst
I ···∆−

p2 = {(an, a3, dj) | 1 ≤ j ≤ k} and inst
I ···∆−

p1 = ∅, as
can be seen from figure 2 (3). Then, the cross-node evaluation
will derive PC(an, dj), 1 ≤ j ≤ k. These facts are temporar-
ily overdeleted, and the rederivation stage will check whether
they have alternative derivations from the remaining facts.

4.4 Rederivation
The rederivation step described in algorithm 6 aims at recov-
ering facts that are overdeleted but are one-step rederivable
from the remaining facts using rule r. In the presentation
of the algorithm we take advantage of an oracle function O
which serves the purpose of encapsulation. The oracle func-
tion can be implemented arbitrarily, as long as it satisfies the
following requirement: given a fact/tuple f , the oracle func-
tion returns true if f has a one-step derivation from the re-
maining facts/tuples, and it returns false otherwise.

In practice, there are several ways to implement such an
oracle function. A straightforward way is through query eval-
uation. For example, to check whether a tuple f ∈ instrep is
one-step rederivable, one can construct a query using atoms in
λ(p), instantiate the query with the corresponding constants
in f , and then evaluate the partially instantiated query over
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Algorithm 6 Redr[I,∆]

1: for p ∈ Nr do
2: inst

I ···∆+

p := {f ∈ instrep | O[f ] = true}
3: ∆R := CrossNodeEvaluationr(L+) ∩∆
4: for p ∈ Nr do
5: instIp := instIp ∪ inst

I ···∆+

p

6: instrep := inst
I ···∆+

p := ∅
7: return ∆R ∪ {f ∈ ∆ | O[f ] = true}

the remaining facts. A more advanced approach is through
tracking derivation counts [Hu et al., 2018]: each tuple is as-
sociated with a number that indicates how many times it is
derived; during reasoning, this count is incremented if a new
derivation is identified, and it is decremented if a derivation
no longer holds. Then, the oracle function can be realised
with a simple check on the derivation count of the relevant
tuple. We have adopted the second approach in this paper.

Algorithm 6 proceeds as follows. First, lines 1–2 perform
rederivation for in-node evaluation using the oracle. Recall
that rule evaluation is decomposed into in-node evaluation
and cross-node evaluation stages, so changes in the join re-
sults stored in the tree nodes have to be propagated through
the decomposition tree, and this is achieved through line 3.
Then, lines 4–6 update the join results and clear temporal
variables. Finally, line 7 performs rederivation for cross-node
evaluation and returns all the rederived facts. Lemma 3 states
that the algorithm is correct. Together with Theorem 1 and
Lemmas 1 and 2, this ensures the correctness of our approach.
Lemma 3. Algorithm 6 computes r[I] ∩∆.

Below we continue with our running example and focus on
the rederivation stage.
Example 3. After the overdeletion in Example 2, we have
instrep2

= {(an, a3, dj) | 1 ≤ j ≤ k}. These instantiations
will not be recovered in line 2 of algorithm 6 since the or-
acle O will find out that they have no alternative derivation
from the remaining data. In contrast, the overdeleted facts
PC(an, dj) with 1 ≤ j ≤ k are recovered in line 7. This
is so since each PC(an, dj) can be rederived using instan-
tiation (an, a2, dj) from instIp1

and instantiation (an, a5, dj)

from instIp2
. These rederived triples are passed on to Addr as

∆+, but no new fact will be derived. Overall, the removal of
{CA(an, a3)} do not affect the materialisation.

5 Implementation and Evaluation
To evaluate our algorithms we have developed a proof-of-
concept implementation and conducted several experiments.

5.1 Implementation
The algorithms presented in Section 4 are independent of the
choice of decompositions; however, different hypertree de-
compositions will lead to very different performance even if
they share the same hypertree width. This is because the de-
composition method only considers structural information of

Benchmarks |E| |I| |Π| |Πs| |Πc|
LUBM L 66,751,196 91,128,727 98 98 0

LUBM L+C 66,751,196 99,361,809 114 98 16
Exp 3,362,280 6,440,280 3 0 3

YAGO 58,276,868 59,755,990 23 0 23

Table 1: Dataset statistics. |Πs| and |Πc| refer to the numbers of
simple and complex rules, respectively.

the queries and ignores quantitative information of the data.
To address this problem, Scarcello et al. [2007] introduced
an algorithm that chooses the optimal decomposition w.r.t. a
given cost model. We adopt this algorithm with a cost model
consisting of two parts: (1) an estimate of the cost of intra-
node evaluation, i.e., the joins among λ(p); and (2) an esti-
mate of the cost of inter-node evaluation, i.e., the joins be-
tween nodes. In our implementation, for (1), we use the stan-
dard textbook cardinality estimator described in Chapter 16.4
of the book [Garcia-Molina, 2008] to estimate the cardinality
of ▷◁

Bi∈λ(p)
Bi for a node p; for (2), we use 2 ∗ (|p̂i|+ |p̂j |) to

estimate the cost of performing semi-joins between nodes pi
and pj , where |p̂i| and |p̂j | represent the estimated node size.

Moreover, the extra step of full reducer we introduced in al-
gorithm 4 (line 6) is more suitable for small updates, in which
the node with the smallest size helps reduce other large nodes.
If the size of all the nodes is comparable, then this step would
be unnecessary. Therefore, in practice, we only perform this
optimisation if the number of active instantiations in the ∆
node (i.e., pi) is more than three times smaller than the maxi-
mum number of active instantiations in each node.

5.2 Benchmarks
We tested our system using the well-known
LUBM and YAGO benchmarks [Guo et al., 2005;
Suchanek et al., 2008], and a synthetic Exp (expres-
sions) benchmark which we created to capture complex rule
patterns that commonly occur in practice. LUBM models a
university domain, and it includes a data generator that can
create datasets of varying sizes; we used the LUBM-500
dataset which includes data for 500 universities. Since the
ontology of LUBM is not in OWL 2 RL, we use the LUBM L
variant created by Zhou et al. [2013]. The LUBM L rules
are very simple, so we added 16 rules that capture more
complex but semantically reasonable relations in the domain;
some of these rules are rewritten from the cyclic queries
used by Stefanoni et al. [2018]; we call the resulting rule
set LUBM L+C. One example rule is SA(?p1, ?p2) ←
HA(?o.?p1),AD(?p1, ?ad),HA(?o, ?p2),AD(?p2, ?ad), in
which HA and AD represent predicates hasAlumnus and
hasAdvisor respectively, while SA in the head represents a
new predicate haveSameAdvisor that links pairs of students
?p1 and ?p2 (not necessarily distinct) who are from the same
university ?o and share the same advisor ?ad.

YAGO is a real-world RDF dataset with general knowl-
edge about movies, people, organisations, cities, and coun-
tries. We rewrote 23 cyclic queries with different topologies
(i.e., cycle, clique, petal, flower) used by Park et al. [2020]
into 19 non-recursive rules and 4 recursive rules. These rules
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Method materialisation small deletions large deletions small additions
L+C L Exp YAGO L+C L Exp YAGO L+C L Exp YAGO L+C L Exp YAGO

standard 29,577.90 95.73 7,039.87 155,022.00 0.92 0.03 37.60 20.06 15,193.70 27.09 4,006.44 126,562.00 0.97 0.02 40.23 20.42
HD 1,168.83 740.81 56.83 367.59 4.00 3.70 0.47 0.18 812.32 558.90 30.93 168.34 1.04 0.45 0.57 0.17

combined 554.00 75.50 57.01 366.03 1.06 0.04 0.45 0.20 195.51 21.71 28.62 159.43 0.73 0.06 0.53 0.17

Table 2: Materialisation and incremental reasoning time in seconds

are helpful to evaluate the performance of our algorithm on
topologies that are frequently observed in real-world graph
queries [Bonifati et al., 2017].

As mentioned in Section 1, realistic applications often in-
volve complex rules. One example is the use of rules to eval-
uate numerical expressions, and our Exp benchmark has been
created to simulate such cases. Specifically, Exp applies Dat-
alog rules to evaluate expression trees of various depths. It
contains three recursive rules capturing the arithmetical oper-
ations addition, subtraction and multiplication; each of these
rules is cyclic and contains 9 body atoms. A generator is used
to create data for a given number of expressions, sets of val-
ues and maximum depth. In our evaluation we generated 300
expressions, each with 300 values and a maximum depth of 5.
Details of the three benchmarks are given in Table 1, where
|E| is the number of given facts, |I| is the number of facts
in the materialisation, and |Π|, |Πs|, |Πc| are the numbers of
rules, simple rules, and complex rules, respectively.

5.3 Compared Approaches
We considered three different approaches. The standard ap-
proach uses the seminaı̈ve algorithm for materialisation and
an optimised variant of DRed for incremental maintenance.
The HD approach uses our hypertree decomposition based al-
gorithms. The combined approach applies HD algorithms to
complex rules and standard algorithms to the remaining rules.
To ensure fairness, all three approaches are implemented on
top of the same code base obtained from the authors of the
modular reasoning framework [Hu et al., 2022]. The frame-
work allows us to partition a program into modules and apply
custom algorithms to each module as required.

5.4 Test Setups
All of our experiments are conducted on a Dell PowerEdge
R730 server with 512GB RAM and 2 Intel Xeon E5-2640
2.60GHz processors, running Fedora 33, kernel version
5.10.8. We evaluate the running time of materialisation (the
initial materialisation with all the explicitly given facts in-
serted as E+ in Algorithm 2), small deletions (randomly se-
lecting 1,000 facts from the dataset as E− in Algorithm 2),
large deletions (randomly selecting 25% of the dataset as
E−), and small additions (adding 1,000 facts as E+ into the
dataset). Materialisation can be regarded as a large addition.

5.5 Analysis
The experimental results are shown in Table 2 in which L
and L+C are short for LUBM L and LUBM L+C respec-
tively. The computation of decompositions takes place dur-
ing initial materialisation only and the time taken is included
in the materialisation time reported in Table 2; it takes less
than 0.05 seconds in all cases. As can be seen, the combined

approach outperforms the other approaches in most cases,
sometimes by a large factor, and it is slower than the standard
approach only for some of the small update tasks on LUBM
L and L+C where processing time is generally small. In con-
trast, the standard approach performs poorly when complex
rules are included (i.e., L+C, YAGO, and Exp), while the HD
approach performs poorly on the simple rules in LUBM L.
In particular, our combined approach is 75-139x faster than
the standard approach for all the tasks on Exp; on YAGO,
it is 100-793x faster. Moreover, for the materialisation and
large deletion tasks on LUBM L+C, the combined approach
is about 53x and 77x faster than the standard approach, re-
spectively. Furthermore, for the small deletion and addition
tasks on LUBM L+C and all the tasks on LUBM L, our com-
bined method achieves a comparable result with the standard
approach. The combined approach performs similarly to the
standard approach on LUBM L, as the HD module is never in-
voked (there are no cyclic rules), and it performs similarly to
the HD approach on Exp and YAGO, as the HD module is al-
ways invoked (all rules are cyclic). Our evaluation illustrates
the benefit of the hypertree decomposition-based algorithms
when processing complex rules, and it shows that by com-
bining HD algorithms with standard reasoning algorithms in
a modular framework we can enjoy this benefit without de-
grading performance in cases where some or all of the rules
are relatively simple.

Finally, the HD algorithms have to maintain auxiliary data
structures for rule evaluation, which incurs some space over-
head when the HD module is invoked. Specifically, our com-
bined method consumes up to 2.3 times the memory con-
sumed by the standard algorithm; the detailed memory con-
sumption for each setting can be found in the technical re-
port [Zhang et al., 2023].

6 Related Work

6.1 HD in Query Answering

The HD methods have been used in database systems to op-
timise the performance of query answering. For RDF work-
load, Aberger et al. [2016] evaluated empirically the use of
HD combined with worst-case optimal join algorithms, show-
ing up to 6x performance advantage on bottleneck cyclic RDF
queries. Also, in the EmptyHeaded [Aberger et al., 2017] re-
lational engine, a query compiler has been implemented to
choose the order of attributes in multiway joins based on a
decomposition. This line of work focuses on optimising the
evaluation of a single query, while our work focuses on eval-
uating recursive Datalog rules. For a more comprehensive
review of HD techniques for query answering, please refer
to [Gottlob et al., 2016].
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6.2 HD in Answer Set Programming

Jakl et al. [2009] applied HD techniques to the evaluation
of propositional answer set programs. Assuming that the
treewidth of a program is fixed as a constant, they devise
fixed-parameter tractable algorithms for key ASP problems
including consistency checking, counting the number of an-
swer sets of a program, and enumerating such answers. In
contrast to our work, their research focuses on propositional
answer set programs.

For ASP in the non-ground setting, a program is usually
grounded first, and then a solver deals with the ground in-
stances. The usage of (hyper)tree decomposition has been
investigated to decrease the size of generated ground rules
in the grounding phase [Bichler et al., 2020; Calimeri et al.,
2019]. Bichler et al. [2020] used hypertree decomposition as
a guide to rewrite a larger rule into several smaller rules, thus
reducing the number of considered groundings; Calimeri et
al. [2019] studied several heuristics that could predict in ad-
vance whether a decomposition is beneficial. In contrast, our
work focuses on the (incremental) evaluation directly over the
decomposition since the decomposition solely cannot avoid
the potential blowup during the evaluation of the smaller
rules.

7 Perspectives

In this paper, we introduced a hypertree decomposition-based
reasoning algorithm, which supports rule evaluation, incre-
mental reasoning, and recursive reasoning. We implemented
our algorithm in a modular framework such that the overhead
caused by using decomposition is incurred only for complex
rules, and demonstrate empirically that this approach is effec-
tive on simple, complex and mixed rule sets.

Despite the promising results, we see many opportunities
for further improving the performance of the presented algo-
rithms. Firstly, our decomposition remains unchanged once
it is fixed. However, as the input data and the materialisation
change over time, the initial decomposition may no longer
be optimal for rule evaluation. It would be beneficial if the
maintenance could be done with the underlying decompo-
sition changing. However, this would be challenging since
the data structure in each decomposition node is maintained
based on the previous decomposition, and changing the de-
composition would require transferring information from the
old node to the new one.

Secondly, although the memory usage has been optimised
to some extent, intermediate results still take up a significant
amount of space. This problem could be mitigated by in-
crementally computing the final join result without explicitly
storing the intermediate results, or by storing only “useful”
intermediate results.

Finally, it would be interesting to adapt our work to Data-
log extensions, such as Datalog± [Calı̀ et al., 2011] and Dat-
alogMTL [Walega et al., 2019]. This would require introduc-
ing mechanisms to process the relevant additional features,
such as the existential quantifier in Datalog± and the use of
intervals in DatalogMTL.
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