
Building Concise Logical Patterns by Constraining Tsetlin Machine Clause Size
K. Darshana Abeyrathna1,3 , Ahmed A. O. Abouzeid1 , Bimal Bhattarai1 , Charul Giri1 ,

Sondre Glimsdal1 , Ole-Christoffer Granmo1 , Lei Jiao1 , Rupsa Saha1 , Jivitesh Sharma1 ,
Svein A. Tunheim1 and Xuan Zhang2

1Centre for Artificial Intelligence Research (CAIR), University of Agder, Grimstad, Norway
2Norwegian Research Centre (NORCE), Grimstad, Norway

3DNV, Oslo, Norway
{ole.granmo; lei.jiao}@uia.no

Abstract
Tsetlin machine (TM) is a logic-based machine
learning approach with the crucial advantages of
being transparent and hardware-friendly. While
TMs match or surpass deep learning accuracy for
an increasing number of applications, large clause
pools tend to produce clauses with many literals
(long clauses). As such, they become less in-
terpretable. Further, longer clauses increase the
switching activity of the clause logic in hardware,
consuming more power. This paper introduces a
novel variant of TM learning – Clause Size Con-
strained TMs (CSC-TMs) – where one can set a
soft constraint on the clause size. As soon as a
clause includes more literals than the constraint al-
lows, it starts expelling literals. Accordingly, over-
sized clauses only appear transiently. To evaluate
CSC-TM, we conduct classification, clustering, and
regression experiments on tabular data, natural lan-
guage text, images, and board games. Our results
show that CSC-TM maintains accuracy with up to
80 times fewer literals. Indeed, the accuracy in-
creases with shorter clauses for TREC, IMDb, and
BBC Sports. After the accuracy peaks, it drops
gracefully as the clause size approaches a single lit-
eral. We finally analyze CSC-TM power consump-
tion and derive new convergence properties.

1 Introduction
The TM [Granmo, 2018] is a novel approach to machine
learning where groups of Tsetlin automata (TAs) [Tsetlin,
1961] produce logical (Boolean) expressions in the form of
conjunctive clauses (AND-rules). As opposed to the black-
box nature of deep neural networks, TMs are inherently in-
terpretable. Indeed, they produce models based on sparse
disjunctive normal form, which is comparatively easy for hu-
mans to understand [Valiant, 1984]. Additionally, the logi-
cal representations combined with automata-based learning
make TMs natively suitable for hardware implementation,
yielding low energy footprint [Wheeldon et al., 2020].

TMs now support various architectures, including con-
volution [Granmo et al., 2019], regression [Abeyrathna

et al., 2020c], deterministic [Abeyrathna et al., 2020b],
weighted [Abeyrathna et al., 2020a], autoencoder [Bhat-
tarai et al., 2023b], contextual bandit [Seraj et al., 2022],
relational [Saha et al., 2022], and multiple-input multiple-
output [Glimsdal and Granmo, 2021] architectures. The in-
dependent nature of clause learning allows efficient GPU-
based parallelization, providing almost constant-time scaling
with reasonable clause amounts [Abeyrathna et al., 2021].
Several schemes enhance vanilla TM learning and inference,
such as drop clause [Sharma et al., 2023] and focused neg-
ative sampling [Glimsdal et al., 2022]. These TM advances
have enabled many applications: keyword spotting [Lei et al.,
2021], aspect-based sentiment analysis [Yadav et al., 2021b],
novelty detection [Bhattarai et al., 2022b; Bhattarai et al.,
2021], semantic relation analysis [Saha et al., 2021], text
categorization [Yadav et al., 2021a; Bhattarai et al., 2022a;
Yadav et al., 2022], game playing [Giri et al., 2022], battery-
less sensing [Bakar et al., 2022b; Bakar et al., 2022a], recom-
mendation systems [Borgersen et al., 2022], and knowledge
representation [Bhattarai et al., 2023a].

The TM is somewhat related to Logistic Circuits [Liang
and Van den Broeck, 2019a], which are Probabilistic Circuits
for classification with logical expressions. However, Logis-
tic Circuits use local search to build tractable Bayesian mod-
els, learning to classify through stochastic gradient descent.
The TM, on the other hand, constructs pure logical AND-
rules from online TA-driven learning with global convergence
properties [Jiao et al., 2023; Zhang et al., 2022]. Compared to
binary and real-valued Logistic Circuits, the TM outperform
them accuracy-wise on MNIST and Fashion-MNIST [Sharma
et al., 2023]. The pure logical structure of TMs further allows
model compression [Maheshwari et al., 2023], yielding a tiny
memory footprint.

While TMs match or surpass deep learning accuracy for
an increasing number of applications, large clause pools tend
to produce longer clauses containing many literals (input fea-
tures and their negation). As such, they become less inter-
pretable. Further, longer clauses require more memory and
increase the switching activity in hardware, consuming more
power. There is currently no direct way to control the size
of the clauses learned. The challenge lies in coordinating the
decentralized TAs, each independently learning whether to
include a specific literal per clause. Indeed, since the TAs
seek frequent discriminative patterns, the clauses can become

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3395



arbitrarily long. In short, current learning schemes seem inef-
ficient when it comes to the size of the clauses they produce.

This paper introduces a novel variant of TM learning –
Clause Size Constrained TMs (CSC-TMs) – where one can
set a soft constraint on the clause size. CSC-TM revises
the TA feedback policy for including literals into the clauses.
Specifically, the new policy discourages including additional
literals once the length of a clause surpasses a predefined
constraint. The TAs instead immediately start expelling lit-
erals from the offending clause by reinforcing “exclude” ac-
tions. Accordingly, oversized clauses only appear transiently.
Otherwise, the TM feedback scheme is left unchanged. The
salient property of our approach is that the limited collections
of literals ending up in the clauses maintain high discrimina-
tion power. Even with significantly constrained clause size,
the performance of CSC-TM is not compromised compared
with the other TM variants.
Paper Contributions: The contributions of the paper can
be summarized as follows:

• We propose CSC-TM to constrain the size of the clauses
by introducing a new policy for training TMs.

• We demonstrate that CSC-TM can indeed constrain
clause size within an explicit limit, without compromis-
ing accuracy in classification, regression, and clustering.

• Using several examples, we show that the shorter clauses
become more interpretable.

• We prove analytically that CSC-TM can converge to the
intended basic operators when properly configured.

• We describe how constraining the length of the clauses
is beneficial for power consumption in embedded hard-
ware solutions due to the reduced switching activity of
the clause logic.

2 Training Tsetlin Machines with
Constrained Clause Length

In this section, we outline the difference between the vanilla
TM1 and CSC-TM.

A TM processes a vector X = [x1, . . . , xo] of proposi-
tional (Boolean) features as input, to be classified into one of
two classes, y = 0 or y = 1. Negating these features pro-
duces a set of literals L that consists of the features and their
negated counterparts: L = {x1, . . . , xo,¬x1, . . . ,¬xo}.

A TM uses conjunctive clauses to represent sub-patterns.
The number of clauses is given by a user set parameter n.
For a two-class classifier2, half of the clauses gets positive
polarity (+). The other half gets negative polarity (−). Each
clause Cp

j , j ∈ {1, 2, . . . , n/2}, p ∈ {−,+}, then becomes:

Cp
j (X) =

∧
lk∈Lp

j

lk. (1)

Here, j is the index of the clause, p its polarity, while Lp
j is

a subset of the literals L, Lp
j ⊆ L. For example, the clause

1For those who are not familiar with TM learning, please refer
to: https://cair.github.io/ijcai 2023 clause rationing.html.

2A multi-class classifier gets n clauses per class.

C+
1 (X) = ¬x1 ∧ x2 has index 1, polarity +, and consists

of the literals L+
1 = {¬x1, x2}. Accordingly, the clause out-

puts 1 if x1 = 0 and x2 = 1, and 0 otherwise.
The clause outputs are combined into a classification deci-

sion through summation and thresholding using the unit step
function u(v) = 1 if v ≥ 0 else 0:

ŷ = u
(∑n/2

j=1 C
+
j (X)−

∑n/2
j=1 C

−
j (X)

)
. (2)

Namely, classification is performed based on a major-
ity vote, with the positive clauses voting for y = 1
and the negative for y = 0. The classifier ŷ =
u ((x1 ∧ ¬x2) + (¬x1 ∧ x2)− (x1 ∧ x2)− (¬x1 ∧ ¬x2)),
e.g., captures the XOR-relation.

For training, a dedicated team of TAs composes each
clause Cp

j . Each TA of clause Cp
j decides to either Include

or Exclude a specific literal lk in the clause. A TA makes
its decision based on the feedback it receives in the form
of Reward, Inaction, and Penalty. There are two types of
feedback associated with TM learning: Type I Feedback and
Type II Feedback. Type I Feedback stimulates formation of
frequent patterns, which suppresses false negative classifica-
tions. Type II Feedback, on the other hand, increases the dis-
crimination power of the patterns, counteracting false positive
classifications.

The difference between vanilla TM and CSC-TM lies in
Type I Feedback. Type II Feedback remains the same for both
schemes. Table 1 shows how CSC-TM modifies Type I Feed-
back to constrain clause size. The modification is marked by
the red box. As seen, we introduce an additional condition
for triggering the two leftmost feedback columns. These two
columns make the clause mimic frequent patterns by rein-
forcing inclusion of “1”-valued literals with probability s−1

s
and by reinforcing exclusion of “0”-valued literals with prob-
ability 1

s . The two rightmost columns, on the other hand,
exclusively reinforce exclusion of literals.

CSC-TM requires that the size ∥Cp
j (X)∥ of the clause

is within a constraint b to give access to the two leftmost
columns. Accordingly, as soon as the number of literals in the
clause surpasses the constraint b, only Exclude actions are re-
inforced. The reason is that all the TA feedback then comes
from the two rightmost columns, which reward Exclude and
penalizes Include independently with probability 1

s . As a re-
sult, the clause starts expelling literals when oversized, which
means that oversized clauses only appear transiently.

In the following sections, we analyze the impact that CSC-
TM has on convergence. We further investigate how con-
straining clause size affects accuracy in classification, regres-
sion, and clustering. Finally, we discuss effects on hardware
complexity and energy consumption.

3 Convergence Analysis
Here we analyse the convergence property of two basic oper-
ators, namely the XOR and the OR operators, using the CSC-
TM. Specifically, we show how the literal budget influences
their convergences. We select those two operators for analy-
sis mainly due to their simplicity and representativeness.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3396

https://cair.github.io/ijcai_2023_clause_rationing.html


Cp
j (X) ∧ (∥Cp

j (X)∥ ≤ b) 1 0
xk/¬xk 1 0 1 0

TA: Include
Literal

P (Reward) s−1
s NA 0 0

P (Inaction) 1
s NA s−1

s
s−1
s

P (Penalty) 0 NA 1
s

1
s

TA: Exclude
Literal

P (Reward) 0 1
s

1
s

1
s

P (Inaction) 1
s

s−1
s

s−1
s

s−1
s

P (Penalty) s−1
s 0 0 0

Table 1: Type I Feedback for CSC-TM. The feedback is for a sin-
gle TA that decides whether to Include or Exclude a given literal
xk/¬xk into Cp

j . NA means not applicable. s is a hyper-parameter
greater than 1.

x1 x2 Output
0 0 0
1 1 0
0 1 1

Table 2: A sub-pattern in “XOR” case.

3.1 XOR Operator
Here we study the convergence of the XOR operator when
only one literal is given, i.e., (∥Ci

j(X)∥ = 1)3. We can then
show that if the budget is not sufficient to represent a sub-
pattern, the sub-pattern cannot be learnt. For XOR, a sub-
pattern means [x1 = 1, x2 = 0] or [x1 = 0, x2 = 1], i.e.,
any one input pattern that can trigger y = 1. Clearly, the sub-
patterns in XOR are mutual exclusive, and one literal cannot
capture fully any sub-pattern of XOR. In what follows, we
will show how the TM reacts upon training samples of XOR.

As already proven in [Jiao et al., 2023], the vanilla TM
can converge almost surely to the intended sub-pattern, i.e.,
Ci

j = ¬x1∧x2, when the training samples in Table 2 is given.
However, when (∥Ci

j(X)∥ = 1) is given in addition, the only
absorbing state of the system, i.e., Ci

j = ¬x1 ∧ x2, disap-
pears, making the system recurrent. More specifically, for
vanilla TM, according to [Jiao et al., 2023], when the train-
ing samples for x1 = 0, x2 = 1, y = 1 is given to the system
and when TA3

1=Exclude, TA3
2=Include, and TA3

4=Exclude,
the following transition4 holds for TA3

3.
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=Exclude.
Therefore, we have
Type I Feedback
for literal x2 = 1,
C3 = ¬x1 ∧ x2 = 1.

R

P

I E

u1
s−1
s

3Here we follow the index of clause used in [Jiao et al., 2023],
where i in Ci

j is the index of class rather than the clause polarity.
In [Jiao et al., 2023], we did not specify the polarity of the clause in
the proof.

4It is the 2nd transition of Case 1 in Subsection 3.2.1 in [Jiao
et al., 2023]. The transition diagram is derived based on the current
status of the system and the input training samples. For details please
refer to [Jiao et al., 2023].

Here the superscript of TA3
1 is the clause index and the sub-

script is the TA index. TA3
1 has two actions, i.e., Include or

Exclude x1. Similarly, TA3
2 corresponds to Include or Ex-

clude ¬x1. TA3
3 and TA3

4 determine the behavior of the x2

and ¬x2, respectively. C3 is the 3rd clause and here the class
index i in the clause notation is removed for simplicity. P and
R here mean penalty and reward respectively while I and E
denote Include and Exclude respectively. u1 is a constant in
[0, 1].

Clearly, for vanilla TM, the new training sample x1 = 0,
x2 = 1, y = 1 will encourage TA3

3 to be included, reinforcing
C3 being in the form ¬x1∧x2. However, when the constraint
(∥Ci

j(X)∥ = 1) is given in addition, the transition of TA3
3

changes to:
Condition: x1 = 0,
x2 = 1, y = 1,
TA3

4=Exclude.
Therefore, we have
Type I Feedback for
literal x2 = 1, C3 =
¬x1 ∧ x2 ∧ 0 = 0.

R

P

I E
u1

1
s

The above change will make the only absorbing state, i.e.,
C3 = ¬x1 ∧ x2, disappear. Understandably, given one literal
that has already been included, the system will not encour-
age more literals to be included. Therefore, the TM, given
the clause length being 1, cannot almost surely capture any
sub-pattern in XOR. The above analysis also confirms that
the newly added length constraint operates as expected, i.e.,
it indeed discourages more literals to be included once the
length budget is reached. The complete proof can be found
here5.

3.2 OR Operator
Now we study the OR operator, aiming at showing the fact
that when the budget of the literals in a clause is sufficient to
represent a sub-pattern (or a group of sub-patterns), the TM
can learn the intended sub-pattern (or the intended group of
sub-patterns). Before we study the convergence for the OR
operator, let us revisit its nature. There are three sub-patterns
that can rigger y = 1, i.e., [x1 = 1, x2 = 1], [x1 = 0,
x2 = 1], and [x1 = 1, x2 = 0]. To represent each of the
sub-pattern explicitly (or individually), we need two literals.
However, two sub-clauses can also be represented jointly by
one literal. Clearly, C = x1 can cover both [x1 = 1, x2 = 1]
and [x1 = 1, x2 = 0] while C = x2 can cover both [x1 = 1,
x2 = 1] and [x1 = 0, x2 = 1]. This gives the TM possibility
to learn the intended OR operator with clauses that has one
literal, in collaboration with the hyper-parameter6 T .

Based on the analysis in [Jiao et al., 2021], we understand
that if T = ⌊m

2 ⌋, and when T clauses learn x1 and the other
T clauses learn x2, the system is absorbed. This absorbing
state learns the intended OR operator and also coincides with
the requirement for the CSC-TM, which indicate that the OR

5https://cair.github.io/ijcai 2023 clause rationing.html.
6The hyper-parameter T is utilized to guide different clauses to

learn distinct sub-patterns. The details can be found in [Jiao et al.,
2023].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3397

https://cair.github.io/ijcai_2023_clause_rationing.html


operator can possibly be learnt by the CSC-TM given literal
length budget 1. In what follows, we show that the other ab-
sorbing states for the OR operator, i.e., with clauses that re-
quire more than one literal, will not be encouraged due to the
newly added length constraint.

Similar to the analysis for the XOR case, once we revisit
the transitions for the absorbing states with 2 literals, we re-
alized that the absorbing states are not absorbing any more.
More specifically, the Type I Feedback will encourage the in-
cluded literal to be excluded. For example, in vanilla TM, for
the sub-pattern below:

P (y = 1|x1 = 1, x2 = 1) = 1, (3)
P (y = 0|x1 = 0, x2 = 0) = 1,

the transition of TA3 when its current action is Include and
TA1 =Include and TA2 =Exclude, namely

Condition: x1 = 1,
x2 = 1, y = 1, TA4 =
Exclude.
Thus, Type I, x2 = 1,
C = x1 ∧ x2 = 1, R

P

I E

u1
s−1
s

is replaced in CSC-TM by

Condition: x1 = 1,
x2 = 1, y = 1, TA4 =
Exclude.
Thus, Type I, x2 = 1,
C = x1 ∧ x2 ∧ 0 = 0. R

P

I E
u1

1
s

Clearly, the state, i.e., x1 ∧x2 is not absorbing any more, and
the new constraint encourages the TA with included literal,
in this case TA3, to move towards “Exclude”. Similar cases
apply also to [x1 = 1, x2 = 0] and [x1 = 0, x2 = 1]. Based
on the above analysis, we can conclude that the CSC-TM can
still learn OR operator but only with clauses that include 1
literal.

Note that although the length of the clauses are con-
strained, it may still happen that the length of a clause is over
the budget. First, the length of a clause may be over the bud-
get when the system update is blocked. Consider an extreme
case for the OR operator when T clauses have x1 and T − 1
clauses follow x2. In this situation, due to the randomness,
a clause may become ¬x1 ∧ x2 based on a single training
sample. In this situation, any future system update is blocked
by T and the system is absorbed. Nevertheless, although this
event may happen, the probability is very low. The reason
is that it requires that both TAs happen to be in the bound-
ary states at the Exclude side. This must happen at the same
time as a training sample triggers the transitions in both TAs
toward the Include side.

Another reason of being over the budget is that the Type II
Feedback is not constrained and can produce clauses with
more literals than the budget. In this case, the TAs of the
included literals will all be in the boundary states, and the
literals will be quickly swapping between being included or
excluded in the clause, until the training stops. Type II Feed-
back ensures that all the literals are explored. During literal
exploration, although the length of the clause can be large,
the accuracy stays low until an accurate literal configuration

is found. Accordingly, the included literals at boundary due
to Type II Feedback do not necessarily contribute positively
to the classification. This can be observed from the numeri-
cal results for image processing when the literal budget is low
(demonstrated for CIFAR-2 and MNIST with convolution in
Table 3). Specifically, the convolution needs more literals so
that the clause position also can be stored. With too few lit-
erals, the clauses precision suffers, triggering a large degree
of Type II Feedback. The clauses will then be unable to settle
because of the tight literal budget. As a result, the TAs of the
included literals will not be able to progress deeply into the
Include side of the their state space. Consequently, Type II
Feedback will persistently continue to experiment with new
candidate literals, without finding a sufficiently sparse high-
accuracy configuration.

4 Empirical Results
In this section, we investigate the performance of CSC-
TM, focusing on accuracy and interpretability. To this end,
we evaluate classification, regression, and clustering perfor-
mance on various datasets spanning natural language, images,
board games, and tabular data. The experiments use a CUDA
implementation of CSC-TM and runs on Intel Xeon Platinum
8168 CPU at 2.70 GHz and a Nvidia DGX-2 with Tesla V100
GPU. We describe the details of each task in respective sub-
sections and summarize the findings in Tables 3, 4, and 5.

4.1 Natural Language Processing
We first evaluate CSC-TM on five NLP datasets: BBC
sports [Greene and Cunningham, 2006], R8 [Debole and Se-
bastiani, 2005], TREC-6 [Chang et al., 2002], SemEval 2010
Semantic Relations [Hendrickx et al., 2009], and ACL Inter-
net Movie Database (IMDb) [Maas et al., 2011].7 Starting
from a maximal constraint of 1, we progressively increase
the literal constraint to 64, recording the resulting accuracy
and the average number of literals included per clause. For
BBC Sports, we notice that a literal constraint of 8 yields the
maximum accuracy of 99.1%. Similarly, the maximum ac-
curacy for TREC and R8 are achieved with literal counts 32
and all, respectively. We further observe that incorporating
all the literals reduces the accuracy in BBC and TREC. For
all the datasets, the average literal count drops significantly
with literal budgeting. For instance, the literal constraint of
32 for BBC Sports gives 2.64 literals per clause on average,
whereas the average is 44.14 without constraints. Accord-
ingly, the clause length is considerable shortened, and the
clauses can be quickly glanced by humans for interpretation.
Similar trends can also be seen for the other data sets.

Consider as an example the results from R8 in Table 3.
Notice how a constraint as strict as 4 still almost maximizes
accuracy. Indeed, the NLP results overall show that CSC-
TM allows us build concise and accurate propositional rules
for better understandability. The improved interpretability
is showcased in Figure 1, where we retrieve a few typical
clauses from the “Football” class of BBC Sports. The literal-
constrained clauses (in red) only contain 2-3 literals, and they

7For TM hyperparameters in BBC Sports, TREC, and R8, we use
8000 clauses, a voting margin T of 100, and specificity s of 10.0.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3398



Accuracy (Literals per Clause)
Budget→ ≤1 ≤2 ≤4 ≤8 ≤16 ≤32 ≤64 All

BBC Sports 98.65
(1.59)

98.65
(1.65)

98.65
(1.71)

99.1
(1.93)

98.2
(2.15)

98.2
(2.64)

98.2
(3.35)

94.14
(44.14)

TREC 91.8
(1.05)

91.6
(1.07)

92.4
(1.07)

90.2
(1.08)

90.4
(1.1)

93.2
(1.12)

90.6
(1.16)

85.8
(96.24)

R8 95.08
(1.09)

94.54
(1.13)

95.08
(1.14)

94.9
(1.19)

95.08
(1.26)

95.26
(1.41)

95.08
(1.7)

95.8
(21.84)

California Housing
(5-bins)

59.25
(1.08)

62.28
(1.46)

64.2
(3.09)

65.02
(6.66)

65.24
(12.92)

65.26
(17.15)

65.29
(18.48)

65.79
(20.22)

SEMEVAL 93.65
(1.23)

93.00
(1.26)

92.25
(1.32)

93.2
(1.41)

92.95
(1.62)

93.00
(2.88)

93.1
(5.67)

93.63
(142.97)

IMDb 81.58
(1.08)

81.51
(1.22)

81.28
(1.28)

82.01
(1.42)

83.44
(1.75)

85.67
(2.76)

87.73
(4.05)

84.23
(27.02)

CIFAR-2 69.82
(30.8)

79.65
(30.1)

87.01
(13.5)

91.21
(6.8)

93.23
(10.8)

93.99
(20.1)

94.24
(34.1)

94.18
(60.4)

MNIST 92.09
(1.0)

97.42
(1.4)

98.34
(3.0)

98.40
(5.8)

98.42
(10.8)

98.38
(19.9)

98.33
(33.0)

98.32
(47.7)

MNIST w/conv. 40.94
(18.6)

60.55
(15.3)

95.93
(5.8)

99.22
(7.1)

99.33
(13.4)

99.29
(23.5)

99.30
(34.2)

99.28
(40.3)

Energy Performance
(Regression)

5.65
(1.0)

2.44
(1.9)

1.05
(3.9)

0.86
(6.2)

0.78
(9.3)

0.66
(11.2)

0.63
(11.3)

0.59
(11.5)

Hex
(Reinforcement Learning)

67.59
(2.7)

74.69
(2.4)

77.79
(3.0)

79.49
(4.2)

81.23
(6.1)

81.60
(9.3)

82.17
(10.2)

81.43
(13.8)

Table 3: Performance on multiple data sets for a literal budgets of 1, 2, 4, 8, 16, 32, 64, and all (no constraint) literals. Other than for
Regression analysis, each field reports the worst maximum accuracy across 5 independent runs, followed by, in brackets, the average number
of literals used by the TM. For Energy Performance, we report MAE instead of accuracy.

Clauses Literal
Count

3

2

2

329

331

5

Figure 1: Interpretability of clauses with constrained clause size for
class “football” from BBC Sports. The rows highlighted in red are
clauses from CLC-TM, while the yellow rows are from vanilla TM.

clearly relate to the “Football” class. The vanilla clauses (in
yellow), however, contain a much larger number of literals
and rely extensively on feature negation.

4.2 Image Processing
We evaluate our approach on two image datasets: MNIST and
CIFAR-2 (a two-class variant of CIFAR-10 that groups ve-
hicle images and animal images into two separate classes)8.
For MNIST, we perform experiments utilizing both vanilla

8For hyperparameters, we adopt 8000 clauses per class, a voting
margin T as 10000, and specificity s as 5.0 in the MNIST experi-
ments. For CIFAR-2, the number of clauses is 8000, T is 6000, and
s is 10.0.

and convolutional TM with constrained clause length. Ob-
serve from Table 3 how a constraint as small as 8 still yields
competitive accuracy. Specifically, the maximum accuracy is
obtained in CIFAR-2, MNIST, and MNIST w/conv. with lit-
eral constrains 64, 16, and 16, respectively. Also notice that
CSC-TM on average keeps the number of literals per clause
well below the set constraints. For example, for the latter
constraints, the corresponding average number of literals per
clause are respectively 34.1, 10.8, and 13.4. Without clause
length constraints, however, the corresponding average num-
ber of included literals are 60.4, 47.7, and 40.3. Finally, no-
tice how setting a too tight literal budget (below 4) for MNIST
w/conv. and CIFAR-2 increases the average number of lit-
erals used. This can be explained by CSC-TM not finding
sufficiently accurate patterns. As a result, it stays in literal
exploration mode throughout the epochs. In conclusion, we
observe that the maximum accuracy can be achieved using
significantly fewer literals per clauses using CLC-TM. This
allows us to significantly reduce computational complexity
and increase the readability of the clauses.

To investigate how the number of clauses interact with the
literal constraint, we now measure the effect of jointly vary-
ing the number of clauses and literal budget. From Table 4,
we observe a graceful degradation of accuracy as the number
of clauses drops to 250 and the literal budget falls to 1. Also
notice that fewer clauses produces fewer literals per clause
on average. We believe this is the case because when fewer
clauses are available, they must become less specialized to
solve the task. However, when looking at attaining maximum
accuracy, we observe that 1000 clauses require more liter-
als than 4000 (32 vs 16 literals on average per clause). The

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3399



reason may be that fewer clauses needs to be more specific
to compensate and maintain accuracy. As we increase the
number of clauses, each clause includes fewer literals, solv-
ing the task as an ensemble. In conclusion, CSC-TM allows
a fine-grained trade-off between the length of clauses and the
number of clauses.

It is interesting to compare the CSC-TM performance
against logistic circuits [Liang and Van den Broeck, 2019b].
The binary version of the logistic circuits classifier achieves
97.8% accuracy on MNIST, while the real-valued version ob-
tains 99.4%. The CSC-TM achieves 98.42% test accuracy for
MNIST for configurations of 8000 clauses and a literal bud-
get of 16. With convolution the CSC-TM obtains 99.33% test
accuracy, also with a literal budget of 16.

4.3 Self-Supervised Learning
For the self-supervised learning task, we evaluate how the
clause literal budget influences both training time and inter-
pretability. Here, we evaluate the previously proposed Label-
Critic TM (LCTM) [Abouzeid et al., 2022], which is a novel
architecture to self-learn data samples’ labels without know-
ing the ground truths. The LCTM architecture runs on top of
the standard CUDA TM implementation and starts by ran-
domly initializing the data labels. Thereafter, it performs
hierarchically clustering while learning the sub-patterns and
their associated labels. Eventually, the learned sub-patterns
represent interpretable clusters, each associated with a single
supporting and a single discriminating clause. As a result,
the method is interpretable, however, can still benefit from
smaller clauses.

Table 5 shows the empirical results from different clause
literal budgets on a subset of the MNIST dataset. Here,
LCTM is to learn the labels and sub-patterns of the MNIST
samples, associated with the digits “One” and “Zero”. The
results captures how the literal constraint influences both the
training time and the interpretability. The interpretability
metrics are as follows. Supporting interpretability is the per-
centage of the positive polarity clauses that a human verifies
as recognizable. See Figure 2 for examples of clauses that
are deemed interpretable and not interpretable. Similarly, dis-
criminating interpretability is the percentage of negative po-
larity clauses that are recognized by humans.

As shown in Table 5, when the budget was reduced to
1, 200, the LCTM was both faster and more interpretable.
Clearly, constraining the size of clauses yielded both in-
creased interpretability and learning speed in our evaluations.

4.4 Regression
We use the Energy Performance dataset to evaluate regression
performance based on [Abeyrathna et al., 2020c]. The results
are reported in terms of Mean Average Error (MAE). In brief,
Table 3 shows that the MAE decreases, i.e., the performance
is better, as the literal budget is increased from 1 to 64. Again,
the degradation of performance is graceful, and one can trade
off clause size against MAE.

4.5 Board Game Winner Prediction
We here use the Hex game as an example of reinforcement
learning with CSC-TM, where the task is to predict the win-

Good Bad

Figure 2: Example of four clusters deemed human-interpretable
(Good) and four clusters not being interpretable (Bad).

ner (value) of any given board configuration. To investigate
how the prediction accuracy varies for CSC-TM, we compare
the vanilla TM [Giri et al., 2022] with the CSC-TM for dis-
tinct literal budgets. The details of the experiment setup can
be found in [Giri et al., 2022]. Bottom row of Table 3 sum-
marises how the accuracy varies with the literal budget. We
observe that a literal budget of 64 reaches the maximum ac-
curacy of 82.17% against an accuracy of 81.43% for all the
literals. However, it is to be noted that the smaller literal bud-
gets provide relatively poor accuracy. We believe this is the
case because describing a Hex board configuration accurately
generally requires information on a sufficient number of piece
positions due to the nature of the game.

5 Hardware Complexity and Energy
Consumption Analysis

TM hardware accelerators will typically be implemented by
either Field Programmable Gate Arrays (FPGAs) or Applica-
tion Specific Integrated Circuits (ASICs). In most cases the
dominating part of the energy consumption is related to the
switching of digital circuits. It should be noted, however, that
the static power consumption due to transistor leakage cur-
rent for high performance processes can reach up to 30% of
total power [Dally et al., 2016]. With implementations in low
power processes the static power consumption will be less.

The dynamic power, P , consumed by a digital circuit with
load capacitance C, operating frequency f , supply voltage
VS , and an activity factor α (transitions per clock cycle) is
given by Eq. (4) [Dally et al., 2016],

P = 0.5× C × V 2
S × f × α. (4)

Limiting the number of literals will reduce the α value in sev-
eral gates that implement the clause logic. Only those gates

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3400



Accuracy (Literals per Clause)
Budget→ ≤1 ≤2 ≤4 ≤8 ≤16 ≤32 ≤64 All

MNIST w/250 clauses 88.20
(1.1)

93.02
(1.4)

95.96
(2.1)

96.65
(2.8)

96.92
(3.2)

97.03
(3.6)

97.06
(3.8)

97.04
(4.0)

MNIST w/500 clauses 89.05
(1.0)

94.28
(1.3)

96.82
(2.1)

97.50
(3.2)

97.67
(4.5)

97.74
(6.2)

97.78
(7.8)

97.77
(9.0)

MNIST w/1000 clauses 90.22
(1.0)

95.26
(1.2)

97.67
(2.6)

98.03
(4.7)

98.10
(8.4)

98.14
(14.6)

98.09
(22.8)

98.05
(31.2)

MNIST w/2000 clauses 90.88
(1.0)

96.23
(1.2)

98.01
(2.7)

98.26
(5.3)

98.26
(9.7)

98.33
(17.5)

98.22
(28.5)

98.2
(40.1)

MNIST w/4000 clauses 91.68
(1.0)

97.08
(1.3)

98.19
(2.9)

98.37
(5.6)

98.4
(10.5)

98.35
(19.1)

98.32
(31.4)

98.29
(45.2)

MNIST w/8000 clauses 92.09
(1.0)

97.42
(1.4)

98.34
(3.0)

98.40
(5.8)

98.42
(10.8)

98.38
(19.9)

98.33
(33.0)

98.32
(47.7)

Table 4: Performance on MNIST with different numbers of total clauses, where each clause has a literal budget of 1, 2, 4, 8, 16, 32, 64,
and all (no constraint) literals. Each field reports worst maximum accuracy across 5 independent runs, followed by, in brackets, the average
number of literals used by the TM.

Literals # Supporting Interpretability (%) Discriminating Interpretability (%) Clusters # Speed up
400 84.92 ± 5.21 32.17 ± 6.34 36 ± 7.04 1.1×
800 85.48 ± 7.80 33.02 ± 7.21 35.8± 6.76 1.3 ×
1, 200 88.84 ± 2.71 39.05 ± 8.03 34.6 ± 9.54 1.3 ×
1, 568 (all) 86.51 ± 1.33 33.63 ± 7.59 33.8 ± 7.34 1 ×

Table 5: LCTM performance on MNIST with different literal budgets. Mean and standard deviation are calculated over 5 independent runs.

that process the included literals will switch and consume en-
ergy. The reduction in energy consumption of the clause logic
can therefore roughly be estimated to b

lave
, where b is the

clause size constraint and lave is the average number of lit-
erals in the model without the length constraint. The exact
savings will depend on the dataset.

The classical approach [Wheeldon et al., 2020] for imple-
menting clause logic is shown in Figure 3. Here each literal
l1, . . . , l2o is either included or excluded by the associated in-
clude signal i1, . . . , i2o (active low) by using OR-gates. The
include signals will typically all be simultaneously available
from a register. The outputs from the OR-gates are then fed to
a wide-input AND-gate, which will normally be implemented
by several smaller AND-gates connected in a tree-structure
to reduce path delay. Clearly, for a certain fixed application,
given a smaller number of included literals, we can reduce the
number of OR-gates to b, and use an AND gate with only b
inputs. In this way, the hardware complexity and power con-
sumption can be reduced. For a general case, where the TM
needs to be programmable in distinct applications, we need
to have sufficient amount of available literals. Nevertheless,
CSC-TM still has benefits in reduced switching activity, thus
saving power.

It should be noted that it is only the energy consumption re-
lated to the clause logic that is affected by constraining clause
size. The ensuing hardware processing, e.g., with clause
weighting and summation is not affected. However, for sys-
tems with a huge number of clauses, the clause logic will
occupy a significant part of the digital circuitry, and reducing
its switching activity can enable significant energy savings.

An important system level benefit of literal budgeting is the
time required for a model to be loaded from external or on-

Figure 3: Hardware implementation of clause logic.

chip memory into registers in the ASIC or FPGA. During this
time the system’s processor and the data transfer itself will
consume energy. With less included literals, the model size
and thus the load time can be reduced with a suitable encod-
ing scheme, such as Run Length Encoding (RLE) [Bakar et
al., 2022a]. Reduction of the model size is also beneficial for
other embedded TM solutions based on low-power microcon-
trollers.

6 Conclusions and Future Work

In this paper, we proposed CSC-TM — a novel TM mech-
anism that constrains the size of clauses. We argued how
limiting the number of literals significantly reduce switching
activity in hardware, and thereby power consumption. We
further analyzed and confirmed the convergence of CSC-TM.
Experimental results showed that CSC-TM can achieve the
same or even better accuracy with shorter clauses, providing
better interpretability. Future work includes introducing other
kinds of constraints, with the intent of supporting constrained
machine learning in general.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3401



Acknowledgments
This work is supported in part by the project “Logic-
based Artificial Intelligence Everywhere: Tsetlin Machines
in Hardware” and funded under the grant number 312434 of
the Research Council of Norway. This work is also supported
in part by the project “Unleashing the Sustainable Value Cre-
ation Potential of Offshore Ocean” and funded under the
grant number 328724 of the Research Council of Norway.

Contribution Statement
All authors have contributed equally in terms of conceptual-
ization, experimentation and production of this paper.

References
[Abeyrathna et al., 2020a] K. Darshana Abeyrathna, Ole-

Christoffer Granmo, and Morten Goodwin. Extending the
Tsetlin Machine With Integer-Weighted Clauses for In-
creased Interpretability. arXiv preprint arXiv:2005.05131,
2020.

[Abeyrathna et al., 2020b] K. Darshana Abeyrathna, Ole-
Christoffer Granmo, Rishad Shafik, Alex Yakovlev,
Adrian Wheeldon, Jie Lei, and Morten Goodwin. A Novel
Multi-Step Finite-State Automaton for Arbitrarily Deter-
ministic Tsetlin Machine Learning. In the 40th Interna-
tional Conference on Innovative Techniques and Applica-
tions of Artificial Intelligence (SGAI-2020). Springer In-
ternational Publishing, 2020.

[Abeyrathna et al., 2020c] K. Darshana Abeyrathna, Ole-
Christoffer Granmo, Xuan Zhang, Lei Jiao, and Morten
Goodwin. The Regression Tsetlin Machine - A Novel
Approach to Interpretable Non-Linear Regression. Philo-
sophical Transactions of the Royal Society A, 378, 2020.

[Abeyrathna et al., 2021] K. Darshana Abeyrathna, Bimal
Bhattarai, Morten Goodwin, Saeed Gorji, Ole-Christoffer
Granmo, Lei Jiao, Rupsa Saha, and Rohan K. Yadav. Mas-
sively Parallel and Asynchronous Tsetlin Machine Archi-
tecture Supporting Almost Constant-Time Scaling. In
International Conference on Machine Learning (ICML),
2021.

[Abouzeid et al., 2022] Ahmed Abouzeid, Ole-Christoffer
Granmo, Morten Goodwin, and Christian Webersik.
Label-Critic Tsetlin Machine: A Novel Self-supervised
Learning Scheme for Interpretable Clustering. In Interna-
tional Symposium on the Tsetlin Machine (ISTM), pages
41–48. IEEE, 2022.

[Bakar et al., 2022a] Abu Bakar, Tousif Rahman, Alessan-
dro Montanari, Jie Lei, Rishad Shafik, and Fahim Kawsar.
Logic-based Intelligence for Batteryless Sensors. In the
Annual International Workshop on Mobile Computing Sys-
tems and Applications (HotMobile), pages 22–28. Associ-
ation for Computing Machinery, 2022.

[Bakar et al., 2022b] Abu Bakar, Tousif Rahman, Rishad
Shafik, Fahim Kawsar, and Alessandro Montanari. Adap-
tive Intelligence for Batteryless Sensors Using Software-
Accelerated Tsetlin Machines. In the 20th Conference on
Embedded Networked Sensor Systems. ACM, 2022.

[Bhattarai et al., 2021] Bimal Bhattarai, Ole-Christoffer
Granmo, and Lei Jiao. Measuring the novelty of natural
language text using the conjunctive clauses of a Tsetlin
machine text classifier. In International Conference on
Agents and Artificial Intelligence, 2021.

[Bhattarai et al., 2022a] Bimal Bhattarai, Ole-Christoffer
Granmo, and Lei Jiao. Explainable Tsetlin Machine
Framework for Fake News Detection with Credibility
Score Assessment. In the 13th Conference on Language
Resources and Evaluation, pages 4894–4903, 2022.

[Bhattarai et al., 2022b] Bimal Bhattarai, Ole-Christoffer
Granmo, and Lei Jiao. Word-level Human Interpretable
Scoring Mechanism for Novel Text Detection Using
Tsetlin Machines. Applied Intelligence, 52:17465–17489,
2022.

[Bhattarai et al., 2023a] Bimal Bhattarai, Ole-Christoffer
Granmo, and Lei Jiao. An interpretable knowledge repre-
sentation framework for natural language processing with
cross-domain application. In Advances in Information Re-
trieval: 45th European Conference on Information Re-
trieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Pro-
ceedings, Part I, pages 167–181, 2023.

[Bhattarai et al., 2023b] Bimal Bhattarai, Ole-Christoffer
Granmo, Lei Jiao, Rohan Yadav, and Jivitesh Sharma.
Tsetlin Machine Embedding: Representing Words Using
Logical Expressions. arXiv preprint arXiv:2301.00709,
2023.

[Borgersen et al., 2022] Karl Audun Kagnes Borgersen,
Morten Goodwin, and Jivitesh Sharma. A Comparison
Between Tsetlin Machines and Deep Neural Networks in
the Context of Recommendation Systems. arXiv preprint
arXiv:2212.10136, 2022.

[Chang et al., 2002] Eric Chang, Frank Seide, Helen M
Meng, Zhuoran Chen, Yu Shi, and Yuk-Chi Li. A Sys-
tem for Spoken Query Information Retrieval on Mobile
Devices. IEEE Transactions on Speech and Audio pro-
cessing, 10(8):531–541, 2002.

[Dally et al., 2016] William J. Dally, Harting R. Curtis, and
Tor M. Aamodt. Digital Design Using VHDL: a Systems
Approach. Cambridge University Press, 2016.

[Debole and Sebastiani, 2005] Franca Debole and Fabrizio
Sebastiani. An analysis of the relative hardness of reuters-
21578 subsets. Journal of the American Society for Infor-
mation Science and technology, 56(6):584–596, 2005.

[Giri et al., 2022] Charul Giri, Ole-Christoffer Granmo,
Herke Van Hoof, and Christian D. Blakely. Logic-based
AI for Interpretable Board Game Winner Prediction with
Tsetlin Machine. In 2022 International Joint Conference
on Neural Networks (IJCNN), pages 1–9, 2022.

[Glimsdal and Granmo, 2021] Sondre Glimsdal and Ole-
Christoffer Granmo. Coalesced Multi-Output Tsetlin
Machines with Clause Sharing. arXiv preprint,
arXiv:2108.07594, 2021.

[Glimsdal et al., 2022] Sondre Glimsdal, Rupsa Saha, Bi-
mal Bhattarai, Charul Giri, Jivitesh Sharma, Svein Anders

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3402



Tunheim, and Rohan Kumar Yadav. Focused Negative
Sampling for Increased Discriminative Power in Tsetlin
Machines. In 2022 International Symposium on the Tsetlin
Machine (ISTM), pages 73–80, 2022.

[Granmo et al., 2019] Ole-Christoffer Granmo, Sondre
Glimsdal, Lei Jiao, Morten Goodwin, Christian W.
Omlin, and Geir Thore Berge. The Convolutional Tsetlin
Machine. arXiv preprint arXiv:1905.09688, 2019.

[Granmo, 2018] Ole-Christoffer Granmo. The Tsetlin Ma-
chine - A Game Theoretic Bandit Driven Approach to Op-
timal Pattern Recognition with Propositional Logic. arXiv
preprint arXiv:1804.01508, 2018.

[Greene and Cunningham, 2006] Derek Greene and Pádraig
Cunningham. Practical Solutions to the Problem of Diag-
onal Dominance in Kernel Document Clustering. In Inter-
national Conference on Machine Learning (ICML), pages
377–384. ACM Press, 2006.

[Hendrickx et al., 2009] Iris Hendrickx, Su Nam Kim, Zor-
nitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha,
Sebastian Padó, Marco Pennacchiotti, Lorenza Romano,
and Stan Szpakowicz. Semeval-2010 task 8: Multi-way
classification of semantic relations between pairs of nom-
inals. In the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 94–99. Asso-
ciation for Computational Linguistics, 2009.

[Jiao et al., 2021] Lei Jiao, Xuan Zhang, and Ole-Christoffer
Granmo. On the Convergence of Tsetlin Machines
for the AND and the OR Operators. arXiv preprint
https://arxiv.org/abs/2109.09488, 2021.

[Jiao et al., 2023] Lei Jiao, Xuan Zhang, Ole-Christoffer
Granmo, and K. Darshana Abeyrathna. On the Conver-
gence of Tsetlin Machines for the XOR operator. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 45(5):6072–6085, 2023.

[Lei et al., 2021] Jie Lei, Tousif Rahman, Rishad Shafik,
Adrian Wheeldon, Alex Yakovlev, Ole-Christoffer
Granmo, Fahim Kawsar, and Akhil Mathur. Low-Power
Audio Keyword Spotting Using Tsetlin Machines. Journal
of Low Power Electronics and Applications, 11, 2021.

[Liang and Van den Broeck, 2019a] Yitao Liang and Guy
Van den Broeck. Learning logistic circuits. In Proceedings
of the 33rd Conference on Artificial Intelligence (AAAI),
jan 2019.

[Liang and Van den Broeck, 2019b] Yitao Liang and Guy
Van den Broeck. Learning logistic circuits. In the AAAI
Conference on Artificial Intelligence, volume 33, pages
4277–4286, 2019.

[Maas et al., 2011] Andrew Maas, Raymond E Daly, Peter T
Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning Word Vectors for Sentiment Analysis. In the 49th
Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–150,
2011.

[Maheshwari et al., 2023] Sidharth Maheshwari, Tousif
Rahman, Rishad ShafikSenior member, Alex Yakovlev,

Ashur Rafiev, Lei Jiao, and Ole-Christoffer Granmo. Re-
dress: Generating compressed models for edge inference
using tsetlin machines. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–16, 2023.

[Saha et al., 2021] Rupsa Saha, Ole-Christoffer Granmo,
and Morten Goodwin. Using Tsetlin Machine to Discover
Interpretable Rules in Natural Language Processing Ap-
plications. Expert Systems, page e12873, 2021.

[Saha et al., 2022] Rupsa Saha, Ole-Christoffer Granmo,
Vladimir Zadorozhny, and Morten Goodwin. A Relational
Tsetlin Machine with Applications to Natural Language
Understanding. Journal of Intelligent Information Sys-
tems, 2022.

[Seraj et al., 2022] Raihan Seraj, Jivitesh Sharma, and
Ole Christoffer Granmo. Tsetlin Machine for Solving
Contextual Bandit Problems. In Neural Information Pro-
cessing Systems (NeurIPS), 2022.

[Sharma et al., 2023] Jivitesh Sharma, Rohan Kumar Yadav,
Ole-Christoffer Granmo Granmo, and Lei Jiao. Drop
Clause: Enhancing Performance, Robustness and Pattern
Recognition Capabilities of the Tsetlin Machine. In the
AAAI Conference on Artificial Intelligence (AAAI), 2023.

[Tsetlin, 1961] Michael Lvovitch Tsetlin. On Behaviour of
Finite Automata in Random Medium. Avtomat. i Tele-
mekh, 22(10):1345–1354, 1961.

[Valiant, 1984] Leslie G Valiant. A Theory of the Learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

[Wheeldon et al., 2020] Adrian Wheeldon, Rishad Shafik,
Tousif Rahman, Jie Lei, Alex Yakovlev, and Ole-
Christoffer Granmo. Learning Automata based Energy-
efficient AI Hardware Design for IoT. Philosophical
Transactions of the Royal Society A, 2020.

[Yadav et al., 2021a] Rohan Yadav, Lei Jiao, Ole-Christoffer
Granmo, and Morten Goodwin. Enhancing interpretable
clauses semantically using pretrained word representation.
In the 4th BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, 2021.

[Yadav et al., 2021b] Rohan Yadav, Lei Jiao, Ole-Christoffer
Granmo, and Morten Goodwin. Human-Level Inter-
pretable Learning for Aspect-Based Sentiment Analysis.
In the AAAI Conference on Artificial Intelligence (AAAI),
2021.

[Yadav et al., 2022] Rohan Kumar Yadav, Lei Jiao,
Ole Christoffer Granmo, and Morten Goodwin. Ro-
bust Interpretable Text Classification against Spurious
Correlations Using AND-rules with Negation. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2022.

[Zhang et al., 2022] Xuan Zhang, Lei Jiao, Ole-Christoffer
Granmo, and Morten Goodwin. On the Convergence of
Tsetlin Machines for the IDENTITY- and NOT Operators.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 44(10):6345–6359, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3403


	Introduction
	Training Tsetlin Machines with Constrained Clause Length
	Convergence Analysis
	XOR Operator
	OR Operator

	Empirical Results
	Natural Language Processing
	Image Processing
	Self-Supervised Learning
	Regression
	Board Game Winner Prediction

	Hardware Complexity and Energy Consumption Analysis
	Conclusions and Future Work

