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Abstract
In a number of different fields, including Engeneer-
ing, Chemistry and Physics, the design of techno-
logical tools and device structures is increasingly
supported by deep-learning based methods, which
provide suggestions on crucial architectural choices
based on the properties that these tools and struc-
tures should exhibit. The paper proposes a novel ar-
chitecture, named GIDNET, to address this inverse
design problem, which is based on exploring a suit-
ably defined latent space associated with the pos-
sible designs. Among its distinguishing features,
GIDNET is capable of identifying the most appro-
priate starting point for the exploration and of likely
converging into a point corresponding to a design
that is a feasible one. Results of a thorough experi-
mental activity evidence that GIDNET outperforms
earlier approaches in the literature.

1 Introduction
The availability of increasingly effective AI techniques is
paving the way to conceive novel approaches for support-
ing production processes over a wide spectrum of domains
(e.g., [Chiarello et al., 2021; Glotzer, 2021; Sridharan et al.,
2022; Coli et al., 2022; Debnath et al., 2021]). In partic-
ular, in fields such as Engineering, Chemistry and Physics,
the design of technological tools and device structures is pro-
gressively supported by inverse design (deep learning) meth-
ods, providing suggestions on crucial architectural choices
based on the properties that these tools and devices should
exhibit [Sekar et al., 2019; Nellippallil et al., 2017; Molesky
et al., 2018; Noh et al., 2020; Mahynski et al., 2020].

In order to illustrate the idea behind inverse design, let us
consider a photonic application scenario where the approach
is rapidly increasing its popularity [Wiecha et al., 2021; Jiang
et al., 2020]. In this context, the forward problem is easily
solved: a number of electromagnetic simulators are already
available in the literature which are able to accurately predict
the electromagnetic response of any given photonic device
structure, such as a metamaterial or a metasurface—see the
top part of Figure 1. In practice, however, physicians and
optical engineers have to face the inverse problem. Indeed,
they would like to design novel structures exhibiting some
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Figure 1: Forward computation and inverse design.

specific and desired electromagnetic responses; and, to this
end, traditionally they have to explore the design space by
considering several candidate structures before one enjoying
the desired properties is found, possibly guiding the search
with their knowledge about previous designs.

More formally, let S ⊆ Rn be the set of the feasible “input”
values (e.g., encodings of the device structures that are al-
lowed). Then, for a given forward function F : S → Rm (e.g.,
the physical simulator) and desired “output” value ȳyy ∈ Rm

(e.g., the desired spectral response), the inverse design prob-
lem consists of computing a value x̄xx ∈ S (e.g., the encoding
of a device structure) such that ȳyy = F(x̄xx). In particular, to ac-
complish the task, we can exploit the availability of a dataset
D = {(xxxi, yyyi)}i∈{1,...,q} of (structure-response) pairs such
that, for each i ∈ {1, ..., q}, xxxi ∈ S and yyyi = F(xxxi) hold;
indeed, D can be built via the simulator or it records results
of experiments carried out on real structures.

Clearly enough, deep learning methods can help designers
to avoid their time-consuming exploration over S, by using
in a systematic way the given dataset D. In fact, we might be
tempted to view inverse design as a regression task, where we
are asked to end up with a model that is trained to predict xxxi

based on yyyi, for each i ∈ {1, ..., q}. However, directly learn-
ing a model of this kind can be rather challenging in practice,
because an “inverse function” is typically not well-defined at
all: just think that D often contains several different struc-
tures with similar or identical responses (as in Figure 1), so
that we are in charge of training a model with contrasting
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Figure 2: Earlier architectures in the literature. Bold arrows indicate the values x̄xx, such that ȳyy = F(x̄xx).

information. In addition, the output of inverse design typi-
cally consists of device structures that are one-hot encoded,
hence requiring special care to deal with the feasibility of the
solutions being produced. Combined with the fact that out-
put spaces are likely high-dimensional, these characteristics
pose specific challenges that already elicited the proposal of
a number of ad-hoc solution approaches.

The starting point of our work is precisely a review of the
most prominent deep-learning based methods proposed in the
literature for inverse design. Despite their specific technical
differences, most of existing methods share the idea of look-
ing for the solution x̄xx by directly working at the level of the
space Rn; indeed, they have been mainly conceived to deal
with applications where Rn is a low-dimensional space. By
departing from these approaches, a few works in the litera-
ture have already advocated the benefits of mapping the input
space into a continuous latent space [Gómez-Bombarelli et
al., 2018; Ma et al., 2019]. This perspective is taken in the pa-
per, by proposing a neural network architecture, named GID-
NET, where the latent space is additionally constrained to the
feasible region S and an exploration algorithm is used to end
up with more accurate solutions. The benefits of these two
novel ingredients will be eventually evidenced by the results
of a thorough experimental activity conducted over several
state-of-the-art benchmark datasets arising in different con-
texts (going beyond photonic applications).1

2 Related Works
We next classify inverse design methods in two main groups,
which we name as output-independent and output-dependent.
Output-independent Methods. Methods in this group are
aimed at building an inverse function I : Rm → S such that,
for each yyy ∈ Rm, F(I(yyy)) = yyy. So, they work on the entire
output space Rm, and do not require any kind of fine-tuning
when some specific output value ȳyy ∈ Rm is given to hand and
we look for the corresponding input x̄xx such that F(x̄xx) = ȳyy.

The basic method within this group models the inverse
function via a network Nff, which is trained over D =
{(xxxi, yyyi)}i∈{1,...,q} by receiving as input the values yyyi and
returning as output the estimated inverse Nff(yyyi), with the

1A more detailed discussion of the experimental settings and re-
sults is available in the Supplementary Material.

loss LLL to be optimized being its distance from xxxi—Fig-
ure 2(a). In fact, Nff tends to remain improperly trained
whenever F is not invertible because several input values can
be associated with the same output [Jiang et al., 2020].

To overcome this problem, a multi-branched architecture
Nmb has been proposed by Zhang et al. (2018). The network
receives again yyyi, by however producing h > 0 outputs, be-
ing all possible different inverse values. The weights of Nmb
are trained by optimizing the sum of the loss functions over
the various outputs—see Figure 2(b), for an illustration with
2 branches. Unfortunately, however, this approach is often
unviable in practice [Wiecha et al., 2021], since it requires
a datasets storing, for each output value, all corresponding
input values (which is an information that we typically lack).

Other approaches use a tandem network Nt [Liu et al.,
2018a; Yeung et al., 2021]. The idea is to pre-train a net-
work NF approximating the forward function F. Then, NF is
coupled with Nff—see Figure 2(c). As a result, the tandem
network acts as an autoencoder; however, the loss function
(minimizing the distance between the input and the output of
Nt) is optimized via backpropagation over the weights of Nff
only; indeed, the pre-trained weights of NF are freezed. After
the training, for any value ȳyy, the solution is given by Nff(ȳyy).

A different approach is to modify Nff into a network N′ff
receiving as input yyyi plus some random noise zzz, and produc-
ing xxxi as output—see Figure 2(d). In fact, the given output
value ȳyy can be feed to the network many times, each time to-
gether with a different noise value, thereby producing several
input values x̄xx associated with ȳyy—so that we can pick the best
one. This method also includes a critic/discriminative net-
work Nc enforcing that, on the training input yyyi and whatever
noise zzz is added, N′ff(yyyi, zzz) converges to xxxi [Liu et al., 2018b;
Jiang et al., 2019]. Indeed, the networks Nc and N′ff are
eventually trained according to the conditional GAN frame-
work [Mirza and Osindero, 2014; Wiecha et al., 2021].
Output-dependent Methods. Output-dependent methods
exploit the knowledge of ȳyy, thereby typically producing re-
sults of better quality for their ability to fine tune (on ȳyy)
some pre-trained architecture. Noticeable examples are the
backpropagation-based methods by [Zaabab et al., 1995;
Peurifoy et al., 2018; Asano and Noda, 2018]—see Fig-
ure 2(e). The idea is to use the pre-trained network NF coupled
with a network N0 with no input, and with one layer only con-
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sisting of n nodes whose weights are initialized at random.
The network N0 essentially encodes a value in Rn, say xxx[N0],
which is passed to NF. The loss function for the resulting net-
work Nbp is now meant to minimize the distance between ȳyy
and NF(xxx[N0]), and it is optimized by backpropagation over
the weighs of N0 only (that is, NF is freezed as usual). Even-
tually, the desired input value x̄xx (such that ȳyy = F(x̄xx)) is given
by xxx[N0] after the updates have been performed. A drawback
is that the space of the weights is rather narrow, so that they
often end up with undesired local optima [Jiang et al., 2020].
In fact, a more general architecture can be obtained by replac-
ing N0 with the network Nff [Unni et al., 2021]. This leads to
an output-dependent version of the tandem network in Fig-
ure 2(c)—which we use in the experiments.

A different approach to face that drawback is given by the
Neural Adjoint (NA) method [Ren et al., 2020]—which is a
variant of the method in Figure 2(e), hereinafter referred to
as (e∗). For a desired ȳyy, the method repeats T times the op-
timization of xxx[N0], by starting from different random initial-
ization of the N0 weights; in addition, it introduces a bound-
ary loss to constrain the final design xxx[N0] to be a normally
distributed variable. Notably, over real-valued inverse design
benchmarks, it has been shown that the method achieves com-
parable or better performances than earlier methods [Ren et
al., 2020], including methods based on (cVAE) variational
autoencoder architectures whose latent space is conditioned
by the knowledge of the output [Ma et al., 2019].

A different generative approach has been proposed by
Jiang and Fang (2019). Their architecture (call it Ng) can be
seen as a generalization of Nbp, where in place of N0 a more
complex network N∗ is used—Figure 2(f). In particular, N∗
takes as input some random noise zzz and produces a value in
Rn, say xxx[N∗(zzz)]. For the given output value ȳyy, backpropa-
gation is used to optimize the weights of N∗, by considering
as input for the network different samples of a uniformly dis-
tributed random variable. The result x̄xx is taken as the value
xxx[N∗(zzz)] computed during the training and for which the dis-
tance between F(xxx[N∗(zzz)]) and ȳyy is minimized.

Finally, we mention that a VAE-based variant of the ar-
chitecture in Figure 2(f) has been proposed too, where N∗ is
pre-trained as a decoder of a variational autoencoder and zzz is
sampled from the latent space conditioned on the output and
is optimized given ȳyy. Notably, this approach has been specif-
ically designed [Gómez-Bombarelli et al., 2018] to deal with
scenarios where the feasible region S ⊆ Rn is associated
with a proper one-hot encoding of some categorical features.

Our works shares with [Gómez-Bombarelli et al., 2018]
the idea of dealing with an embedding of Rn into a latent
space. However, while that work relies on a plain optimiza-
tion of a random point, we next introduce a method that ex-
plores large portions of the latent space to find better solu-
tions, by eventually starting from a meaningful initialization.

3 Description of the GIDNET Approach
To tackle the inverse design problem on a generic function
F : S → Rm, with S ⊆ Rn, we propose an output-dependent
method where, for any ȳyy ∈ Rm, the desired value x̄xx ∈ Rn

such that ȳyy = F(x̄xx) is built by means of a generative architec-

ture. Our method founds on the following three ideas:
(1) First, we embed the space Rn into a suitably-defined la-

tent space Rh, which is relevant to deal with input spaces
associated with complex representations going beyond
plain numerical values (such as, for instance, with one-
hot encodings of physical structures).

(2) Second, we pick a point in the latent space (correspond-
ing to the solution in the input space) via a guided explo-
ration starting from a convenient initial configuration. In
particular, we first identify the k pairs (xxxjℓ , yyyjℓ) ∈ D for
which the distance between yyyjℓ and ȳyy is minimized, i.e.,
we look for the nearest neighbors of ȳyy. Then, we pro-
vide the input parts of such pairs (namely, xxxjℓ ) as start-
ing seeds, and we design an architecture that selects an
initial configuration2 which comes as a linear combina-
tion of that seeds. Eventually, the generator is feed with
random noise to implement a mechanism that explores
the latent space all around that initial configuration.

(3) Finally, our architecture takes care of dealing with the
feasibility constraints that restrict the space Rn to some
subset S ⊆ Rn associated with a proper one-hot encod-
ing of the categorical features (e.g., the materials of the
device structure). Our solution choice is to deal with that
constraints at the embedding, by using an autoencoder
architecture that forces each value in the latent space—
even though associated with an input that has been never
seen in the training data—to be mapped into a valid en-
coding in S. This guarantees that all adjustments to the
weights needed to optimize the loss function correspond
to a meaningful exploration of the latent space.

In the following, we first detail the neural architecture and
then discuss the algorithm to compute x̄xx, given ȳyy.

3.1 Neural Network Architecture
The Generative Inverse Design network (short: GIDNET) we
propose to address inverse design is illustrated in Figure 3.

There, we can first notice an encoder E and a decoder D,
which allow GIDNET to work on an embedding of Rn into
a suitable latent space Rh. In fact, E and D define an au-
toencoder that is pre-trained over the input-components of D,
namely on {xxxi}i∈{1,...,q}. The autoencoder is a standard one,
except for how it handles the categorical features. Indeed,
let xxxi,1, ...,xxxi,ℓ be the components of xxxi that one-hot encode
some given categorical feature over ℓ alternatives, i.e., such
that

∑ℓ
j=1 xxxi,j = 1 and xxxi,j ∈ {0, 1}, for each j ∈ {1, ..., ℓ}.

Let xxx′
i,1 = D(E(xxxi,1)), ...,xxx

′
i,ℓ = D(E(xxxi,ℓ)) be the corre-

sponding values produced by the autoencoder. Then, the last
layer of D is defined to be a softmax, so that

∑ℓ
j=1 xxx

′
i,j = 1

and 0 ≤ xxx′
i,j ≤ 1, for each j ∈ {1, ..., ℓ}. In fact, such values

might be arbitrary far from Boolean values; for instance, the
autoencoder can well produce an output where each value is
close to 1/ℓ. To avoid these circumstances, we use the fol-

2Different methods (i.e., not necessarily based on the nearest
neighbors) can select the starting seeds, leading to different designs
that can be further evaluated and selected by the user.
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Figure 3: GIDNET architecture.

lowing loss function to train the autoencoder:
q∑

i=1

||D(E(xxxi))− xxxi||2 + λ0 · Γ(xxx′
i,1, ...,xxx

′
i,ℓ), (1)

where Γ(xxx′
i,1, ...,xxx

′
i,ℓ) = −((xxx′

i,1)
2 + · · · + (xxx′

i,ℓ)
2). In fact,

the former term is the reconstruction error, while the latter
(whose impact can be tuned via the factor λ0 ≥ 0) is a regu-
larization term leading to configurations where precisely one
of the components in {xxx′

i,1, ...,xxx
′
i,ℓ} approaches to 1. The

second block that emerges from Figure 3 is a network NF sim-
ulating the forward function F. Its weights are trained on D
by considering the loss

∑q
i=1 ||NF(xxxi) − yyyi||2. That is, we

would like that the network is capable of predicting the out-
put yyyi given the input xxxi. In fact, the use of this network is
reminiscent of some of the approaches in Figure 2.

After having discussed E, D and NF, we are now in the po-
sition of appreciating the architecture of GIDNET. Note that
it receives as input k seeds, say xxxj1 , ...,xxxjk . These seeds are
then embedded into the h-dimensional latent space via the
encoder E : Rn → Rh. Then, a selection layer is used to
provide GIDNET with the freedom to pick one of these seeds
(or a combination of them); this is achieved by introducing
the weights w1, ..., wk, and simply defining:

sss =
k∑

ℓ=1

E(xxxjℓ)×
ewℓ

ew1 + · · ·+ ewk
. (2)

Intuitively, sss defines a good point from which starting the ex-
ploration. Indeed, GIDNET includes a conditional generator
Nls which takes care of the exploration of the latent space
(in the inverse computation phase described below); from
the architectural viewpoint, we just note here that it receives
as input sss plus some random noise zzz and produces a value
Nls(sss,zzz) ∈ Rh. This is used to define the output value that
will be returned after decoding via D : Rh → Rn:

x̄xx = D(sss+ Nls(sss,zzz)). (3)

Eventually, to check the quality of x̄xx, the architecture uses NF
to simulate the given forward function F (i.e., yyy = NF(x̄xx)).

3.2 Inverse Computation
After E, D, and NF have been trained over D, we freeze their
weights. Hence, in the inverse computation phase, the train-
able weights are w1, .., wk plus all weights of the conditional
generator Nls. These weights are re-initialized and re-trained
each time an output value ȳyy is given and we look for an input
x̄xx such that ȳyy = F(x̄xx). The algorithm is next discussed.

First, we have to compute the k seeds xxxj1 , ...,xxxjk . To this
end, we define xxxj1 as 000 ∈ Rn (that is, we allow GIDNET
to neutralize the seeds), and we take xxxj2 , ...,xxxjk from the
pairs in D, i.e., {(xxxj2 , yyyj2), ..., (xxxjk , yyyjk)} ⊆ D, in a way
that there is no pair (xxxi, yyyi) ∈ D such that ||yyyi − ȳyy||2 <
maxi∈{2,...k} ||yyyjk − ȳyy||2; in words, we take the k-1 points
whose corresponding forward values are the closest to ȳyy over
all pairs in D—ties are resolved at random.

In fact, the seeds are just constant values that initialize the
starting point sss according to Equation (2). Concerning the
trainable weights, instead, we initialize Nls at random while
we take wi = 1/k, for each i ∈ {1, ...k}, thereby starting the
exploration from the centroid of the k seeds.

Given this initial configuration, we then train GIDNET via
a number of training steps where ȳyy is fixed and where differ-
ent samples zzz from a uniform distribution are given as input
to the conditional generator Nls. Intuitively, by starting from
the seed sss, each time a different value zzz is feed to the network,
we aim at adjusting the weights of the conditional generator
to end up with an output value yyy that gets even closer to ȳyy.
Therefore, the sequence of the training steps corresponds to
a path in the latent space leading to a point that is a good
solution. In fact, we define the loss function LLL(yyy, ȳyy):

||yyy − ȳyy||2 + λ1 · Γ(w1, ..., wk) + λ2 · ε(xxx),

where Γ(w1, ..., wk) = −
(
w2

1 + · · ·+ w2
k

)
is the same reg-

ularization function used for training E and D, and where the
term ε(xxx) = ||D(E(xxx)) − xxx||2 is aimed at minimizing the re-
construction error of the autoencoder on input xxx.

Eventually, w1, ..., wk and the weights in Nls are updated
by minimizing the loss LLL(yyy, ȳyy). Hence, we explore the latent
space while allowing GIDNET to select a different initial con-
figuration sss. The value xxx that is returned as output by GID-
NET is the one computed via Equation (3) during the train-
ing phase, and for which the distance between NF(xxx) and ȳyy is
minimized. Furthermore, given that the blocks E, D, and NF
are trained independently on the number k of seeds, it makes
sense to re-execute the inverse computation step over differ-
ent subsets of seeds by taking the best result obtained over the
various configurations. By doing so, we enlarge the portion
of the latent space that is explored. Similarly, we re-execute
the inverse computation step by changing the learning rates
and taking the best results derived over them.

4 Experiments
To shed lights on the behaviour of GIDNET, we next dis-
cuss the results of a thorough experimental activity, where
we considered all methods discussed in Section 2, except
the multi-branched approach which—as already mentioned—
is often unviable in practice. All network architectures we
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Name Dim(xxx) Dim(yyy) Source
Di fi 3 2 [here]
D5 Ballistics 4 1 [Kruse et al., 2021]
D6 Robotic arm 4 2 [Kruse et al., 2021]
D7 Sine Wave 2 1 [Ren et al., 2020]
D8 Multilayer Stacks 5 256 [Chen et al., 2019]

Table 1: Real-Valued Datasets.

Figure 4: Results on D5,...,D8: mse by varying k on GIDNET, and
T on Neural Adjoint and cVAE (implemented with restarting too).

implemented have been instantiated by means of a model-
selection phase, based on a gridsearch approach over the hy-
perparameter space of the network topologies, the learning
rates in the stochastic gradient descent algorithm, the initial-
ization strategies, and the kernel constraints. For GIDNET as
well as for the other output-dependent methods, in the inverse
computation phase, given the value ȳyy, we considered differ-
ent learning rates in {0.01, 0.05, 0.1, 0.5} to compute x̄xx such
that ȳyy = F(x̄xx), by taking the best result over them.

4.1 GIDNET on Real-Valued Functions
We first discuss the results on the datasets listed in Table 1,
which are all defined on real-valued input spaces.

Datasets D1, ...,D4 are novel in the literature: each one
comprises 10.000 pairs (xxxi ∈ R3, yyyi ∈ R2) defined via clas-
sical functions emerging in physical systems and stressing
the absence of a univocally-defined inverse value. For each
dataset, we used 7.000 samples for training and 2.900 for val-
idation during training; seed computation for GIDNET was
carried out over these 9.900 samples. The remaining 100
samples were, instead, used for assessing the value of the
metrics after the training phase has been completed. In par-
ticular, we consider L2-norm, MAE and RMSE.

A summary of our findings over D1, ...,D4 is reported in
Table 2, from which the improvements provided by GIDNET
over earlier methods clearly emerge. The figure also evi-
dences the impact of varying the number k of seeds and of
disabling the module Nls implementing the conditional gener-
ation approach. The ablation study on k confirms the intuition
that it make sense to enlarge the latent space to be explored by
considering the best results over different number of seeds; in
fact, it also emerges a trend of improvement at the growing
of k. Moreover, it emerges that Nls has a strong positive im-
pact on the quality of the results; in fact, it is responsible of

the exploration in the latent space (cf. Equation 3). And, fi-
nally, it is interesting to observe that GIDNET is rather robust
w.r.t. statistical fluctuations over the different samples.

Datasets D5, ...,D8 instead appeared in earlier works and
have been extensively used to benchmark earlier methods.
Over them, the Neural Adjoint method (e∗) emerged as the
state of the art, together (in some cases) with the cVAE ap-
proach [Ren et al., 2020; Ren et al., 2022; Kruse et al., 2021].
Accordingly, our experiments have been focused on assess-
ing the performances GIDNET in comparison with them (by
precisely adopting their experimental setting). Moreover, we
also conducted an ablation study by selecting random initial-
izations k seeds, rather than by taking the k nearest neighbors.
Results are illustrated in Figure 4, which evidences the good
performances of GIDNET even on these settings where the
use of the latent space is trivialized by the low dimensional-
ity of the input spaces; moreover, the ablation study further
confirms the benefits of appropriately picking the k seeds.

4.2 GIDNET on Categorical Attributes
To assess the behaviour of GIDNET on a function involv-
ing categorical attributes, we considered a photonic scenario
proposed by Lininger et al. (2021), where the goal is to
build a thin-film structure that gives rise to some desired re-
flectance/transmittance spectra.
Dataset Description. Each structure is made of up to 5
layers, each with thickness within the range [1, 60]nm and
whose material can be Ag, Al2O3, ITO, Ni, or TiO2. The
input space is therefore Rℓ×(1+5), with ℓ being the num-
ber of layers—indeed, for each layer, we have to represent
its thickness plus the material as a one-hot encoding over
5 alternatives. Each structure is associated with reflectance
and transmittance spectra, obtained via the transfer matrix
method [Chilwell and Hodgkinson, 1984], for two polariza-
tions, at the incident angles of 25, 45, and 65 degrees, for 200
equally spaced points over the range [450, 950]nm and with
values in [0, 1]. Thus, the output space is R2×2×3×200.

For each ℓ ∈ {1, .., 5}, we use 106.820 samples for train-
ing, 45.780 samples for validation, and 2.000 samples for
computing the metric. The seeds needed by GIDNET are,
as usual, computed over the traning and validation samples.

For a closer look at the dataset of Lininger et al. (2021),
note that about 5% of the samples have very similar spectra,
with a significant portion of them being associated to struc-
tures different from each other.The absence of clearly defined
inverse values on these samples is congenial to stress the ca-
pabilities of inverse design approaches.
Compared Methods and Metric. The GIDNET configura-
tions resulting from the model-selection phase are reported
in Figure 5. During the inverse computation step, GID-
NET explores a space with k ∈ {3, 6, 9, 12, 18, 30, 50} and
learning rates in {0.01, 0.05, 0.1, 0.5}, by taking the best re-
sults achieved over them. A similar exploration over the
learning rates has been implemented for the other output-
dependent methods being tested. Performances of the meth-
ods have been compared via the spectral root mean squared
error [Lininger et al., 2021], srmse for short, between the
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Other methods GIDNET

(a) (c) (d) (e*) (f) k=12 k=7 k=5 k=3 k=1 no Nls

D1

L2 0.030 (±0.022) 0.155 (±0.570) 0.018 (±0.012) 0.004 (±0.0256) 0.112 (±0.286) 0.005 (±0.005) 0.005 (±0.007) 0.004 (±0.004) 0.005(±0.006) 0.083 (±0.304) 0.040 (±0.021)
MAE 0.019 (±0.015) 0.092 (±0.343) 0.012 (±0.009) 0.002 (±0.0166) 0.068 (±0.172) 0.003 (±0.003) 0.003 (±0.005) 0.003 (±0.003) 0.003 (±0.004) 0.055 (±0.198) 0.026 (±0.014)

RMSE 0.037 0.590 0.022 0.0259 0.307 0.006 0.009 0.006 0.007 0.315 0.045

D2

L2 0.009 (±0.011) 0.007 (±0.012) 0.017 (±0.022) 0.007 (±0.0392) 0.009 (±0.014) 0.005 (±0.003) 0.006 (±0.005) 0.006 (±0.005) 0.006 (±0.008) 0.029 (±0.059) 0.054 (±0.023)
MAE 0.006 (±0.008) 0.005 (±0.009) 0.011 (±0.015) 0.004 (±0.0224) 0.006 (±0.009) 0.003 (±0.002) 0.004 (±0.003) 0.004 (±0.004) 0.004 (±0.005) 0.020 (±0.039) 0.035 (±0.015)

RMSE 0.014 0.014 0.028 0.040 0.016 0.006 0.008 0.008 0.010 0.066 0.059

D3

L2 0.010 (±0.021) 0.026 (±0.07) 0.009 (±0.023) 0.016 (±0.073) 0.022 (±0.051) 0.006 (±0.020) 0.005 (±0.019) 0.005 (±0.019) 0.005 (±0.019) 0.033 (±0.116) 0.029 (±0.032)
MAE 0.006 (±0.012) 0.015 (±0.04) 0.005 (±0.013) 0.0094 (±0.0417) 0.013 (±0.029) 0.003 (±0.011) 0.003 (±0.011) 0.003 (±0.011) 0.003 (±0.011) 0.022 (±0.079) 0.018 (±0.018)

RMSE 0.023 0.075 0.025 0.0745 0.056 0.020 0.019 0.019 0.019 0.121 0.043

D4

L2 0.012 (±0.013) 0.006 (±0.015) 0.024 (±0.029) 0.0012 (±0.0057) 0.007 (±0.015) 0.005 (±0.014) 0.013 (±0.047) 0.012 (±0.049) 0.021 (±0.064) 0.586 (±0.688) 0.035 (±0.043)
MAE 0.008 (±0.008) 0.004 (±0.011) 0.016 (±0.020) 0.0007 (±0.0032) 0.005 (±0.010) 0.003 (±0.009) 0.008 (±0.031) 0.008 (±0.032) 0.014 (±0.043) 0.395 (±0.482) 0.023 (±0.030)

RMSE 0.017 0.016 0.038 0.0059 0.016 0.014 0.048 0.051 0.067 0.903 0.055

Table 2: Results on D1,...,D4—the best values are in bold. Since the mean L2-norm of the output values over each dataset is bounded by 2,
such performances range in a relative scale from 59% to about 1%. Ablation on Nls is with k = 12.

Figure 5: GIDNET on the photonic scenario, with varying ℓ. The
architecture of NF consists of 3 fully connected layers, leading to
4 parallel branches each one consisting of 2 convolutional layers;
each branch is used to predict a specific waveform for the design.
The architecture of the autoencoder consists of 3 encoding (fully
connected) layers and of 3 decoding (fully connected) layers. The
architecture of Nls consists of 2 fully connected layers. For each
layer and for each ℓ, the figure also reports—in tabular form—the
corresponding number of neurons.

ℓ 3 4 5
GIDNET 0.009 (±0.024) 0.009 (±0.022) 0.011 (±0.022)

GIDNET no Nls 0.060 (±0.099) 0.046 (±0.072) 0.043 (±0.064)

Table 3: Impact of the exploration of the latent space.

spectra (in R2×2×3×200) associated to the metamaterial de-
signed by the methods and the actual ones.

In particular, to take care of the feasibility of the solutions,
if x̄xx are the values returned by the tested methods, then we
first pre-process them by suitably rounding the components
associated to the one-hot encodings of the materials over the
various layers. Subsequently, for the resulting values (in fact,
correctly encoding some device structures), we use the phys-
ical simulator at hand [Chilwell and Hodgkinson, 1984] to
compute their associated spectra, and the quality of the re-
sults (srmse) is eventually assessed over them.

Figure 6: A snapshot of the latent space for a sample with ℓ = 4
layers, centered in the initial point of the exploration. The plots
report the “distance” between the corresponding point in the latent
space and the given initial point: plots on the top refer to the distance
in terms of the number of layers with different materials, while plots
on the bottom refer to the average squared Euclidean norm. The
latent space has 12 dimensions (see Figure 5), and each setting ((i),
(ii), and (iii)) explores two dimensions among them, while keeping
fixed all the remaining ones.

Figure 7: Histograms of srmse for GIDNET, in the photonic sce-
nario, for different number ℓ of material layers.

A Look at the Latent Space. As the crucial ingredient of
GIDNET is its ability to work at the level of a suitably defined
latent space, we took a closer look at it in Figure 6 by con-
sidering a sample taken from the dataset with ℓ = 4 layers.
In particular, the plots in Figure 6 are centered in the initial
point of the exploration defined by GIDNET (with k = 3);
then, the three settings (i, ii, and iii) in the figure correspond
to an exploration of the latent space over an interval of that
point defined by moving along two different dimensions and
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ℓ (a) (c) (d) (e*) (f) Liniger et al. GIDNET λ0 = 0

1
srmse 0.007 (±0.008) 0.062 (±0.09) 0.132 (±0.21) 0.033 (±0.054) 0.132 (±0.21) 0.009 0.006 (±0.031) 0.019 (±0.051)

one-hot 0.924 (±0.527) 0.236 (±0.023) 0.798 (±0.335) 0.302 (±0.114) 0.798 (±0.335) - 0.999 (±0.017) 0.275 (±0.012)

2
srmse 0.010 (±0.012) 0.098 (±0.117) 0.117 (±0.133) 0.049 (±0.050) 0.117 (±0.133) 0.007 0.008 (±0.032) 0.077 (± 0.057)

one-hot 0.921 (±0.567) 0.233 (±0.020) 0.353 (±0.139) 0.261 (±0.035) 0.353 (±0.139) - 0.992 (±0.037) 0.396 (±0.075)

3
srmse 0.015 (±0.032) 0.084 (±0.104) 0.031 (±0.034) 0.059 (±0.053) 0.083 (±0.09) 0.016 0.009 (±0.024) 0.052 (± 0.047)

one-hot 0.902 (±0.563) 0.225 (±0.022) 0.235 (±0.013) 0.249 (±0.017) 0.230 (±0.065) - 0.974 (±0.053) 0.321 (±0.048)

4
srmse 0.038 (±0.162) 0.078 (±0.100) 0.042 (±0.043) 0.061 (±0.051) 0.078 (±0.081) 0.127 0.009 (±0.022) 0.057 (± 0.040)

one-hot 0.825 (±0.538) 0.226 (±0.021) 0.220 (±0.009) 0.250 (±0.016) 0.232 (±0.068) - 0.940 (±0.068) 0.433 (±0.077)

5
srmse 0.050 (±0.087) 0.053 (±0.065) 0.050 (±0.054) 0.059 (±0.053) 0.069 (±0.071) 0.095 0.011 (±0.022) 0.047 (±0.056)

one-hot 0.663 (±0.267) 0.229 (±0.019) 0.222 (±0.010) 0.251 (±0.013) 0.232 (±0.067) - 0.911 (±0.082) 0.647 (±0.145)

Table 4: Performances of GIDNET, contrasted with earlier approaches in the literature—recall that spectra values are in [0, 1].

Figure 8: Percentage of samples for which the selection layer does
not converge to a specific seed, but to a proper linear combination of
them (at the varying of their number k).

by fixing all remaining ones. For each setting, the top part
reports the number of materials that change compared to the
configuration in the initial point, while those at the bottom
report the average squared Euclidean norm of the encoding
associated with the materials over the various layers. Note
that the latent space changes all (4) materials in the region,
and that the encoding is always very close to a true one-hot
encoding (with a squared Euclidean norm rather close to 1),
except in the tiny regions associated with the frontiers of dif-
ferent configurations of the materials (where the squared Eu-
clidean norm approaches to 0).
A Look at the Selection Layers. The other crucial ingre-
dient of GIDNET is the use of k seeds to define an appro-
priate initial configuration for the exploration (cf. sss in Equa-
tion (3)). Figure 8 illustrates the behaviour of the selection
layer in terms of the percentage of samples for which it con-
verges into a linear combination of the seeds—formally, in
the inverse computation phase, no weight associated with
some seed gets a value greater than the reported threshold. In
some cases, GIDNET converges on some specific seed; but,
in many cases, it retains the ability to explore a large portion
of the search space by converging into a proper linear com-
bination of the seeds; hence, the selection layer cannot be
replaced by an approach that iterates over the seeds, by con-
sidering each of them as a fixed initial configuration for the
exploration. Moreover, note that the higher is the number k
of seeds, the more probable is converging to a proper linear
combination rather than just to a specific seed.
A Look at the Conditional Generator. Finally, the last ar-
chitectural component of interest is the conditional generator
Nls. The significance of its role can be appreciated by look-
ing at Table 3, where the performances of GIDNET are shown
depending on whether the module is enabled. In particular,

ℓ ⋆ GIDNET GIDNET no kNN

3
srmse 0.044 (±0.051) 0.009 (±0.024) 0.024 (±0.035)

one-hot 0.248 (±0.005) 0.974 (±0.053) 0.926 (±0.083)

4
srmse 0.109 (±0.122) 0.009 (±0.022) 0.052 (±0.059)

one-hot 0.229 (±0.01) 0.940 (±0.068) 0.953 (±0.0643)

5
srmse 0.058 (±0.059) 0.011 (±0.022) 0.028 (±0.042)

one-hot 0.205 (±0.004) 0.911 (±0.082) 0.964 (±0.047)

Table 5: Comparison with (⋆) [Gómez-Bombarelli et al., 2018].

ℓ (c) (e) (f) GIDNET

1 8.976 (±0.297) 2.510 (±0.097) 7.621 (±0.113) 7.191 (±0.332)
2 8.876 (±0.151) 2.466 (±0.079) 7.639 (±0.111) 7.605 (±0.263)
3 8.809 (±0.199) 2.504 (±0.103) 7.728 (±0.099) 7.841 (±0.334)
4 13.01 (±0.185) 2.549 (±0.122) 7.588 (±0.103) 7.916 (±0.255)
5 16.16 (±0.198) 2.490 (±0.093) 7.707 (±0.089) 8.074 (±0.175)

Table 6: Average timings (s) per sample required by the output-
dependent methods for inverse computation.

without Nls, GIDNET lacks the ability of searching over the
latent space and it conceptually reduces to optimizing a ran-
dom point (as in [Gómez-Bombarelli et al., 2018]).
Performances. Let us first consider Figure 7 reporting the
histograms of the srmse for ℓ ∈ {3, 4, 5}. It emerges that
GIDNET is capable of designing metamaterials whose spec-
tral responses are quite close to the desired ones; errors are
rather small in general, and negligible in most of the cases.
Moreover, there is a trend of (very mild) deterioration in the
performances at the growing of the complexity (in terms of
number of layers) of the space to be explored by GIDNET.

A summary of the results comparing GIDNET with earlier
approaches is then reported in Table 4—for the domain spe-
cific method, we report the results that are published by the
authors. Note that GIDNET produces solutions with very low
srmse, and improvements are significant given that spectra
values are in [0, 1]. In particular, note that the cases ℓ ∈ {1, 2}
are solved efficiently by all methods, while significant differ-
ences emerge on ℓ ∈ {3, 4, 5}, that is, at the growing of the
complexity of the underlying search space. Eventually, the
summary also reports the feasibly of the solutions in terms of
the quality of the one-hot encodings (prior that the results are
rounded and adjusted for computing the associated spectra),
which confirms the intuition we have derived from Figure 6.

And, finally, it also evidences the significant impact of the
strategy we implemented in the autoencoder to deal with the
categorical features (cf. λ0 = 0 in Equation (1)). Indeed,
by loosing the ability to map the latent space into feasible
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Figure 9: GIDNET performances by averaging on learning rates
(top-left) and number of seeds (top-right). At the bottom, each
heatmap reports the number of samples for which the best solution
has been found for a given combination of k and learning rate.

designs, performances of GIDNET rapidly deteriorates.
In addition to the methods reported in Table 4, we also as-

sessed the performances of the method proposed by [Gómez-
Bombarelli et al., 2018] (and implemented by fine-tuning the
building blocks trained for GIDNET), which has been indeed
specifically conceived to deal with categorical attributes. That
methods works at the level of the latent space (see Section 2),
but lacks of a mechanism to explore that space starting from
a meaningful initialization. Results in Table 5 confirm that
the exploration of GIDNET is crucial to achieve higher levels
of performance and, as in Figure 4, they further confirm the
benefits of picking k nearest neighbors for the initialization
compared to a random initialization (column “no kNN”).

The impact of the number k of seeds and of the learning
rates is then analyzed in Figure 9. Observe that increasing the
number of seeds as well as reducing the learning rate lead to
better performances; in particular, this emerges more clearly
over the most complex scenario with ℓ = 5.

Finally, we shed lights on the time requirements, by con-
ducting comparative experiments, on the same phyton en-
vironment, over an Intel(R) Xeon(R) Processor E5-2670 v3
(2.30GHz), 24 cores single thread and 96GB of RAM—
for training the architectures (before inverse computation),
we also use an NVIDIA 2080 GPU. In fact, GIDNET is
an output-dependent method, which requires some computa-
tional efforts on every structure that has to be designed. While
this is hardly relevant in practical design applications (unless
timings make the approach unviable), for the sake of com-
pleteness, we report in Table 6 such information for GIDNET
and all other output-dependent methods.

5 Conclusions and Discussion
We have proposed a deep-learning architecture improving on
the performance of existing methods by addressing inverse
design by means of a guided exploration of the latent space.
In fact, it is known that search-based approaches are effec-
tive in domains where the space of the parameters is rather
narrow, but they are outperformed by deep learning methods
over high dimensional spaces. An interesting avenue of re-
search is, therefore, to define an hybrid method where GID-
NET is coupled with a genetic algorithm to explore the search
space (in the spirit, e.g.,of [Grantham et al., 2022]).

Similarly, it would be interesting to couple GIDNET with
logic-based reasoning engines, in settings where inverse de-
sign amounts at looking for the (truth) value of some vari-
ables that will eventually lead to satisfy some desired logical
goal; in particular, we are interested in considering cost-based
settings [Dodaro et al., 2022] and precedence constraints to
express temporal properties [Greco et al., 2015].

We conclude by noticing that a different—though related—
problem is sometimes addressed in the context of inverse
design, consisting of learning distributions of existing de-
signs in order to synthesize new designs via sampling
(e.g. [Heyrani Nobari et al., 2021; Banerjee et al., 2021]).
In this case, we do not a-priori enforce complex properties
such as the spectral responses; however, conditioning meth-
ods can be used to enforce that samples meet some scalar re-
quirement, such as a performance metric. A natural avenue of
further research is, therefore, to assess whether GIDNET can
be adapted to effectively address this related problem too.
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