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Abstract

We present two algorithms for generating (resp.
evaluating) abductive explanations for boosted re-
gression trees. Given an instance x and an inter-
val I containing its value F'(x) for the boosted re-
gression tree F' at hand, the generation algorithm
returns a (most general) term ¢ over the Boolean
conditions in F such that every instance x’ satis-
fying ¢ is such that F'(«’) € I. The evaluation al-
gorithm tackles the corresponding inverse problem:
given F',  and a term ¢ over the Boolean conditions
in F' such that ¢ covers «x, find the least interval I;
such that for every instance &’ covered by ¢ we have
F(x') € I;. Experiments on various datasets show
that the two algorithms are practical enough to be
used for generating (resp. evaluating) abductive ex-
planations for boosted regression trees based on a
large number of Boolean conditions.

1 Introduction

The past few years have witnessed the quick development
of a new field, called eXplainable AI (XAI), aroused by
the large spectrum of applications leveraging the stunning
predictive power of machine learning (ML) models, their
opacity, and the tremendous need for gaining trust in such
models, especially when they are used in safety-critical ap-
plications (see for instance [Doshi-Velez and Kim, 2017,
Adadi and Berrada, 2018; Lipton, 2018; Molnar, 2019; Xu
et al., 2019; Arrieta et al., 2020; Caruana et al., 2020;
Rudin et al., 2021]).

So far, most works about XAI have been concerned with
explanation and verification issues about classification func-
tions, i.e., mappings from the set X of instances to a finite set
C of classes. In contrast, in this paper, we consider the gener-
ation and the evaluation of explanations for regression func-
tions, i.e., mappings from X to R. The explanations sought
are abductive ones, i.e., they are intended to explain why the
instances * € X that are considered have been mapped to
their corresponding values f(x) by the regression function
f. In the following, we focus on regression functions given
by boosted regression trees, that are combinatorial and non-
differentiable in essence, and for which the generation of ex-
planations is stimulating.

A major difference between a classification task and a re-
gression one is that in the latter case the exact value taken by
f(x) does not really matter. Would this value be f(x) £ € for
a sufficiently small real number e instead of f(x), this would
not be a big deal. Mathematically speaking, this means that
what does matter is that the value of f(x) belongs to some
interval I. Of course, in the classification setting, things are
much different since two distinct values of f(x) actually in-
dicate two distinct classes, and in the general case, there is no
notion of distance or similarity between classes that would
make sense (C is discrete and typically even not ordered).
Such an interval allows for flexibility in the generation of ab-
ductive explanations since some imprecision about the value
of the instances is tolerated.

The contribution of this paper mainly consists of the de-
sign and the assessment of two algorithms G and E for gener-
ating (resp. evaluating) abductive explanations for regression
functions f represented by boosted regression trees F. Such
abductive explanations are represented by terms ¢, i.e., con-
junctions of literals, over the Boolean conditions occurring
in the boosted regression trees F' that are used to represent
regression functions.

Thus, G returns a most general term ¢ over the Boolean
conditions in F such that every instance &’ satisfying ¢ is such
that F'(z’) € I. When dealing with the classification task and
I = [F(x), F ()], such explanations are referred to as PI-
explanations [Shih et al., 2018], sufficient reasons [Darwiche
and Hirth, 20201, and also as (subset-minimal) abductive ex-
planations [Ignatiev er al., 2019al. The terms derived by our
algorithm are the subset-minimal terms (hence, the logically
weakest ones) covering x and such that all the instances cov-
ered by them have F'-predicted values in the preset interval [.
We call this last condition the coverage condition induced by
the interval I.

The evaluation algorithm E concerns the inverse problem,
that can be defined as follows: given F', x, a term ¢ over the
Boolean conditions in F' such that t covers x, the goal is to
determine the least interval I; that contains the regression val-
ues reached by every instance x’ covered by ¢, i.e., we have
F(a') € I,. E can be used to measure the extent to which t
is imprecise when t is viewed as an explanation of the value
taken by F' for . The imprecision of ¢ simply is the length of
I; (so the smaller the interval the better the precision). Inter-
estingly, a monotonic relationship exists between the general-
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ity of the abductive explanations ¢ covering « and the lengths
of the corresponding intervals I;: the more general the expla-
nations, the larger the intervals.

In the following, we show that the problem of determining
whether a term ¢ is an abductive explanation for x given F’
and I and the problem of determining whether every instance
covered by a term ¢ has an F'-value belonging to a given in-
terval I are CONP-complete. As a direct consequence, there
is little hope that the generation and evaluation problems con-
sidered in the paper can be solved in (deterministic) polyno-
mial time. Indeed, for the generation problem, one tries to
maximize the generality of the explanation that is produced,
while for the evaluation problem, one tries to minimize the
length of the interval that is reported. Accordingly, experi-
ments must be achieved to figure out to which extent the two
algorithms presented in the paper scale up. To this aim, G
and E have been evaluated on various datasets. The experi-
ments made show that they are rather efficient in terms of run
time for being practical enough. Indeed, most of the time, the
algorithms can be used to generate (resp. evaluate) in a few
seconds abductive explanations for boosted regression trees
based on a large number of Boolean conditions (up to 800).
A valuable observation is that most of the time the (subset-
minimal) abductive explanations that are generated are sig-
nificantly smaller than the initial descriptions of the instances
in terms of Boolean attributes.

For space reasons, the proofs of the propositions reported in
the paper are provided as a supplementary material, avail-
able from http://www.cril.fr/expekctation/index.html. Addi-
tional empirical results and the code used in our experiments
are also furnished in this supplementary material.

2 Formal Preliminaries

We consider a finite set A = {A4, ..., A, } of artributes (aka
features) where each attribute A; (i € [n]) takes its value
in a domain D;. Three types of attributes are taken into ac-
count: numerical (the domain D; is a totally ordered set of
numbers, typically real numbers R, or integers Z), categori-
cal (D; is a set of values that are not specifically ordered, e.g.,
D; = {”employed”, "unemployed”, ”self-employed”}), or
Boolean (D; = {0,1}). Thus, A is the union of three pairwise
disjoint subsets Ay, Ac, Ap containing respectively the nu-
merical, categorical, Boolean attributes. We suppose that the
size of any element of D; for any A; is upper bounded by a
preset constant. An instance x is a vector (v1, ..., v,) where
each v; (i € [n]) is an element of D;. Each pair A; = v; is
called a characteristic of the instance . X denotes the set of
all instances.

A regression tree over A is a binary tree T, each of its in-
ternal nodes being labeled with a Boolean condition on an
attribute from A, and leaves are labeled by real numbers. The
conditions are of the form A; > v;» with v} a number when
A; is a numerical attribute, A; = v§ when A; is a categori-
cal attribute, and A; (or equivalently A; = 1) when A; is a
Boolean attribute. The value T'(x) € R of T for an input in-
stance £ € X is given by the real number labelling the leaf
reached from the root as follows: at each internal node go to
the left or right child depending on whether or not the condi-
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tion labelling the node is satisfied by . The size |T'| of T is
the sum of the sizes of its nodes, where the size of a node is
the number of bits required to encode the corresponding con-
dition (this size varies depending on the type of the attribute
used in the condition). min(T) (resp. maxz(T)) denotes the
minimum (resp. maximum) number labelling a leaf of 7.

A boosted regression tree over A is an ensemble of trees
(alias a forest) F' = {T4,--- , Ty, }, where each T; (i € [m)])
is a regression tree over A, and such that the value F'(x) €
R of F for an input instance & € X is given by F(x) =
@, T; (). In the following, @ is the sum operator but other
operators strictly monotonic in each argument could be used
instead. The size |F| of F is the sum of the size of its trees.
F(x) can be computed in time linear in | F'| and |x|.

Let BB denote the set of all Boolean conditions used in F'.
When |B| = p, a boosted regression tree F' over A can be
viewed alternatively as a mapping from {0, 1}? to R. Every
A; € A corresponds to a set of Boolean conditions in B,
noted 7(A;), so that (J, . 4 7(A;) = B. The definition of
7(A;) depends on the type of A;. Thus, if A; is a numer-
ical attribute and D/ = {vi,... , v}, } is the set of values
ordered in ascending way such that the Boolean condition
(A; > v;) (j € [ki]) occurs in at least one tree of F, then

7(A;) = {(Ai > v}) : j € [ki]}. For the sake of simplicity,
(A; > v?) is also noted Bj. If A; is a categorical attribute and

le = {vi, ..., vj, } is the set of values such that the Boolean
condition (4; = v;) (j € [ks]) occurs in at least one tree of

F, then 7(A4;) = {(A; = v}) : j € [ki]}. Bach (4; = )

is also noted B; Finally, if A; is a Boolean attribute, then
7(A;) = {(A; = 1)}. (A; = 1) is also noted B".

An important observation is that the Boolean conditions
used in F' are not necessarily independent. For instance, it
can be the case that the two Boolean conditions (A4; > 1000)
and (A; > 2000) occur in F' when A; € A is a numeri-
cal attribute, and/or that the two Boolean conditions (Ay =
”self-employed”) and (As = “unemployed”) occur in F'
when As € A is a categorical attribute. However, no instance
of X can render (A; > 2000) true and (A; > 1000) false,
or (A1 = ”self-employed”) true and (As = “unemployed”)
true. Thus, some constraints 3 over 3 must be exploited to
characterize the truth assignments over B that actually cor-
respond to instances from X [Gorji and Rubin, 2022]. Es-
pecially, if A; € A is a numerical attribute then X contains
the clauses (A; > v}) V —(A; > vi,,) for j € [k; —1]. If
A; € Ais a categorical attribute then X contains the clauses
(A = v}V ~(4; = v}) for j € [k]and [ € [ki] \ [j]
The size of X is at most quadratic in the size of 3, so at most
quadratic in the size of F.

Example 1. Let us consider a loan application scenario that
will be used as a running example. The goal is to predict
the amount of money that can be granted to an applicant de-
scribed using three attributes (A = {A1, Az, As}). Ay is a
numerical attribute giving the income per month of the appli-
cant, As is a categorical feature giving its employment sta-
tus as "employed”, “unemployed” or ’self-employed”, and
As is a Boolean feature set to true if the customer is mar-
ried, false otherwise. We suppose that the boosted regres-
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Figure 1: A boosted regression tree.

sion tree F' over A depicted in Figure 1 has been learned.
F is built upon Boolean conditions: B = {Bi, B, Ba,
B?, B3, B3,B3}. Bl, Bl and B} represent respectively
the conditions ”A; > 1000$”, ”A; > 20008” and "A, >
30008 7. Similarly, B?, B3 and B3 represent respectively the
conditions Ay = “employed”, Ay = “unemployed” and
Ay = Vself-employed”. Finally, B> represents the condi-
tion (A3 = 1) (”the applicant is married”). By construc-
tion, ¥ = (Bi V =BY) A (B3 V =B3) A (=B? v =B2) A
(~B? V =B3?) A (B3 V —B32). Suppose that the applicant
is described by x., = (22008, "self-employed”1). Then,
F(xer) = 1500 + 250 4 250 = 20008.

A term t over B = {Bi,...,B,} is a conjunctively-
interpreted set of literals over B. T denotes the term asso-
ciated with the empty set of literals. ¢ is canonical when it
contains one literal per Boolean condition in B. Such a term
thus corresponds to a truth assignment over B. Every instance
x € X can be associated with a canonical term ¢, over B
such that for every ¢ € [p], B; (resp. ~B;) belongs to t, if
and only if x satisfies (resp. does not satisfy) the condition
B;. A term t over B covers an instance x € X whenever
t C t,. Deciding whether ¢ covers o can be achieved in time
linear in |¢| and |x|.

Every term ¢ over B that is consistent (i.e., ¢ does not con-
tain both an element of B and its negation) can be simplified
using 3. Thus, each time ¢ contains two distinct literals ¢ and
¢ such that ¢’ is entailed by £ given X, £’ can be removed from
t. The specific nature of X ensures that such a simplification
process is confluent, i.e., the term obtained at the end of the
simplification process (called the simplification of t given X)
is uniquely defined whatever the ordering according to which
the literals are considered (this would not be ensured if > was
any formula over 5). Thus, when simplified, ¢ cannot contain
more than one positive (resp. negative) literal issued from the
same numerical attribute A; and more than one positive literal
issued from the same categorical attribute A; (and if such a
positive literal exists, ¢ does not contain any negative literal
issued from A;). By construction, the simplification of ¢ given
Y is equivalent to ¢ under Y. Furthermore, the simplification
of ¢ given ¥ can be computed in time O(|X] - [¢]?).

3 On Abductive Explanations for Boosted
Regression Trees

Let F' be a boosted tree over .A. Suppose that ¢ is a term over
B that covers « € X. In the classification case, t is viewed as
an abductive explanation for x given F' when every instance
@' covered by t is classified as x by F: F(x') = F(x). Thus,
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any t is (or is not) an abductive explanation for x given F
depending on the evaluation of this condition. In the regres-
sion case, every t is more or less an abductive explanation for
x given F, i.e., the F-value of every instance &’ covered by
t is more or less distant to F'(x). Accordingly, a notion of
imprecision of ¢ can be defined.

Definition 1. Let F' be a boosted regression tree over A and
t a term over B. The imprecision of t is defined as the length
Ly = M; — my of the interval I, = [my, My] induced by t
and defined by my = min({F(x) : « € X, t covers x}) and
M; = maz({F(x) : x € X,t covers x}).

A monotonic relationship exists between the generality of
the terms ¢ over B that can serve as abductive explanations
and the lengths of the corresponding intervals I;:

Proposition 1. Let F' be a boosted regression tree over A,
and t, t' two terms over B. If t C t' holds then I; D I, holds,
so that Ly > Ly

Generating abductive explanations We are interested in
explaining the values predicted by boosted regression trees
using abductive explanations defined as follows:

Definition 2. Let F' be a boosted regression tree over A, x €
X an instance, and I an interval over the reals. A term t over
B is
* an abductive explanation for x given F' and I if and only
if t covers x and for every instance *' € X that is cov-
ered by t, we have F(x') € I.

* a subset-minimal abductive explanation for x given F'
and I if and only if t is an abductive explanation for x
given F and I and no proper subset of t is an abductive
explanation for x given F and I.

Among the abductive explanations for x is its direct rea-
son tf , defined as the union over the trees T; € F’ of the sets
of literals (one per tree T;) containing the literals encountered
in the unique path of 7T; that is compatible with ¢,. By con-
struction, tg C tg4 is an abductive explanation for x given F’
and any I containing F'(x). As every abductive explanation
for « given F and I (whatever I), tL is consistent with 3
(otherwise, it would not cover ). However, t£ can be highly
redundant (i.e., in general, it is not a subset-minimal abduc-
tive explanation for « given F' and I).

Example 2. ¢, = {B}, B, B}, B?, B, B3, B3}.
The simplification of t =t,_, is {B}, B}, B3, B*}.

A standard approach to the generation of a subset-minimal
abductive explanation consists of taking advantage of a
greedy algorithm. Our greedy algorithm G to compute a
subset-minimal abductive explanation for x given F' and [
considers at start the canonical term ¢, over B (actually, any
term ¢ over B that covers & can do the job, thus we could
start with t£ or its simplification instead). G proceeds as fol-
lows. It tries to eliminate successively literals ¢ from ¢. Thus,
each time ¢\ {¢} still satisfies the coverage condition induced
by I, ¢ is removed from ¢, otherwise it is kept. Accordingly,
implementing this approach mainly amounts to deciding the
coverage condition. However, this is a computationally hard
problem:
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Proposition 2. Let F' be a boosted regression tree over A,
x € X aninstance, and I an interval over the reals. Let t be a
term over B. Deciding whether t is an abductive explanation
for x given F and I is CONP-complete.

Therefore, G uses first an incomplete, yet polynomial-time
approximate coverage test, using a method close to the one
used for generating (subset-minimal) abductive explanations
given a boosted classification tree, as described in [Audemard
et al., 2023]. When the approximate coverage test succeeds,
¢ can be removed from ¢ for sure. When the test fails, ¢ is
kept even but this does not imply that ¢ \ {£} necessarily vio-
lates the exact coverage test. What makes those approximate
coverage tests appealing is that they can be achieved very effi-
ciently and that, empirically, they often lead to the removal of
many literals from the term ¢ one started with. Then, a second
pass of G over the remaining literals, using this time expen-
sive, but exact, coverage tests, ensure that the resulting term
is a subset-minimal abductive explanation for & given F' and
1. Each exact coverage test is achieved using a constraint-
based encoding of the coverage condition and the use of a
solver on the encoding. Each of the two passes takes account
for the constraint ¥ about the attributes from B so that any
truth assignment over 5 that violates X is discarded, as in
[Gorji and Rubin, 2022]. Notably, G exhibits an anytime be-
haviour. At each step after the initialization, the current term
t provably is an abductive explanation for & given F' and I.
When more time is allocated to the algorithm, the generality
of ¢t may only increase and if the algorithm is not interrupted,
a subset-minimal abductive explanation for « given F' and
I is returned. Furthermore, it is guaranteed that the subset-
minimal abductive explanation produced by G whenever it
terminates normally is simplified.

A constraint-based model for the exact coverage test Let
us now explain how to build a constraint-based model M,
that can be used to achieve an exact coverage test, i.e., to de-
cide whether a given term ¢ is an abductive explanation for x
given I and I. M, contains MILP constraints and indicator
constraints (which are supported by the solver used, namely
CPLEX [Cplex, 2009]). We start by defining a set of MILP
constraints over B encoding the corresponding domain the-
ory X:

VAZ'GAN,V].‘G[kj—l},B;:—B;+IZ‘O A 1)
WA; € Ao, ¥Bi, Bl € 7(A;),j # k, Bl + BL <1

t is represented by the following MILP constraints:

VB;i €t, B; =1
VB €t,B. =0 @
P
Each tree T; of F' is represented by its set of terms
{ti,... ,t;i}, where each term gathers the literals represent-
ing the conditions that are true in a root-to-leaf path of T;.
Each t} (j € [pi]) characterizes a unique path of 7T; and w}
is the real number labelling the leaf of the j** path. With
each tree T; (i € [m]) we associate a set of Boolean vari-
ables £; = {L! Li; }, such that L, (j € [p;]) is true
(2 J

HERRES
when the conditions given by t; are met. For all ¢ € [m)], the

3435

following set of MILP constraints indicates how each L, is
J

connected to the Boolean variables of 3:

Vi eT, > Bit+ > (1-Bj)— Ly <l —1 (3)
Bjet; Biet]

Because T; is a decision tree, the terms in {t{,...,t} }

are orthogonal (i.e., pairwise inconsistent). This implies that

exactly one L}, must be set to true, which is ensured by the

following set of MILP constraints:

Vi€ ml, > Lf;,_ =1 (4)

t; eT;

We also consider a set of continuous variables W =
{W4,...,W,,} and some constraints that associate with each
tree T; (¢ € [m]) the real number W; that corresponds to the
value of T for a selected root-to-leaf path made precise by a
truth assignment over £;. Each W; (i € [m]) is defined by the
following MILP constraints:

Vi€ [m], > Ly xwh=W, (5)
seli]
Let F'W be a continuous variable that represents the value

of the regression tree for any truth assignment over 3. The
following linear constraint computes F'W:

> Wi=FW (6)
wi,ew

Given a non-empty interval I = (b, ub), a term ¢ over B is
an abductive explanation for x given F' and I when it is im-
possible to find a truth assignment over B that extends ¢ and
such that such that (FW < [b) or (FW > ub) holds. This
disjunction is represented using the following constraints, in-
volving two binary variables I L and IU which serve as indi-

cator variables:

(IL =1) = (FW < Ib) (7
(IU = 1) = (FW > ub) (8)
IL+IU =1 )

By construction, ¢ is an abductive explanation for « given
F and I if and only if the model M gathering all the con-
straints above is inconsistent. Note that when I = @, no
computation is required since no abductive explanation for x
given F' and I may exist. Finally, when [ is a singleton (e.g.,
I ={F(x)}), wecanuse (F(x) — ¢, F(x) + €) as the initial
interval, where € > 0 is a preset threshold that is as small as
expected.

Example 3. Consider I, = [1750,2250] and I = [1500,
2500], which contain the F-value (2000) of x., = (22008,
self-employed”, 1).

T ey has two subset-minimal abductive explanations given I
and I,: {B3, B3, B3} and {B}, B}, B3}. This means that
to get an amount of loan granted between 1750$ and 2250%
the applicant’s incomes must exceed 20008, he/she has to be
self-employed and married, or the applicant’s incomes must
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exceed 2000$ but not exceed 30008 and he/she has to be self-
employed.

Ty has a unique subset-minimal abductive explanation given
F and Iy: {B3}. This means that to get an amount of loan
granted between 15008 and 25008 the applicant’s incomes
must exceed 20009.

Evaluating abductive explanations Once an abductive ex-
planation ¢ for « given F and an interval I has been computed
(or a candidate ¢ covering x and consistent with X is pointed
out by the human user who wants to get some explanations -
aka the explainee [Miller, 2019]), it is interesting to be able to
evaluate its imprecision. Indeed, it can be the case that I # ;.
To be more specific, if ¢ is an abductive explanation ¢ for @
given F' and I, then only I; C I is ensured. Computing I;
and its length is thus a valuable approach to determine to
which extent the actual imprecision L, of the explanation ¢
differs from the admissible imprecision considered initially
by the explainee (the length of ). However, identifying I; is
computationally demanding in general, as a consequence of
the following proposition, which is close to Proposition 2 but
considers different inputs (no instance x is considered as an
input in Proposition 3).

Proposition 3. Let F' be a boosted regression tree over A,
and I an interval over the reals. Let t be a term over B such
that t \ X is consistent. Deciding whether every instance x €
X covered by t is such that F(x) € I is CONP-complete.

In our algorithm E, the problem of deriving I is tackled us-
ing binary search (finding the two bounds m;, M; of I;). At
each step, in order to determine whether a given value is an
admissible lower bound of m; (or an upper bound of M;), a
constraint-based encoding of the condition is produced and a
solver is used to address the corresponding decision problem.
To ensure the termination of the search, a preset threshold e
is used when the distance between the two successive values
that have been computed is lower than e. By construction, E
also has an anytime behaviour: if E is stopped then the inter-
val I given by the current lower (resp. upper) bound of m;
(resp. M) is such that I; C I. I can then be viewed as an
upper approximation of [;.

A constraint-based model for finding bounds for I; Let
us explain how to determine m; or a lower bound of it (iden-
tifying M; or an upper bound of it is similar). Let M, be
the constraint-based model containing every constraint from
My, but Equation (9). We consider two variables lower and
lowery, such that at each step of the binary search, m; prov-
ably belongs to [lowery, lower]. At start, lowery, is set to
mp = Y., min(T;) and lower is set to F(x;) where x;
is any instance over B that satisfies ¢ A X. Note that x; can
be computed in linear time from ¢ and 3 because t A ¥ is a
2-CNF formula [Even et al., 1976]. Let mid = %
If M. A (FW < mid) is inconsistent, then mid is an accept-
able lower bound of my, so that lower;, can be set to mzd.
In the remaining case when M. A (FW < mid) is consis-
tent, instead of setting lower to mid, lower can be safely set
to F'W, since F'W is an upper bound of m; that is at least
as good as mid given that FW < mid holds. Then, the bi-
nary search resumes using the updated bounds. Clearly, using
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FW instead of mid in the case when M. A (FW < mid) is
consistent leads to boost the binary search.

Example 4. Here are some terms t over B covering the in-
stance x., considered in the running example and the corre-
sponding least intervals I,.

ty = {B}, B}, B3, B} I, = [2000,2000]

ty = {Bi, B3, B3} I, = [500, 2000]

ts = {B4, B3, B3} I, = [2000, 2250]
ty = {B3, B}, B3} I, = [1650, 1650]
ts = {B3, B}, B3} I, = [1850,2250]
ts=T I, = [~100,2500]

ts and ts are the subset-minimal abductive explanations for
Tey given F and I = [1750, 2250]. We have both Iy, C I and
I;, C I

4 Empirical Evaluation

The generation algorithm G and the evaluation algorithm E
have been assessed on several datasets in order to figure out
the extent to which they are practical.

Experimental setup The empirical protocol we consid-
ered was as follows. We have focused on 10 datasets
for regression, which are standard benchmarks found on
the web sites kaggle (https://www.kaggle.com/), UC Irvine
Machine Learning Repository (https://archive.ics.uci.edu/ml/
index.php) or openML (https://www.openml.org/). These
datasets are described in Table 1.

For each dataset, the algorithms XGBoost [Chen and
Guestrin, 2016] and LightGBM [Ke et al., 2017] have been
used to learn boosted regression trees. Numerical attributes
have been binarized on-the-fly by the boosted tree learning al-
gorithms. Categorical attributes have been one-hot encoded.
All the hyper-parameters of the two learning algorithms have
been set to their default values (100 trees per forest, with a
depth at most 6 for XGBoost and a number of leaves at most
31 for LightGBM). Thus, no tuning has been performed. In-
deed, our purpose is to evaluate the performance of G and
E, whatever the quality of the boosted regression trees we
started with. Hence, our experiments have concerned both ac-
curate predictors, and predictors exhibiting rather low accu-
racies. For each dataset, each boosted tree has been learned

Name #A #N  #C  #B #1
Winequality-red 11 0 0 11 1599
Winequality-white 11 0 0 11 4898
CreditcardFraudDet. 29 0 0 29 284807
14d2-player-stats-final 112 111 1 0 20830
Houses-prices 46 26 20 0 2919

Steel ind. energy cons. 9 6 3 0 35040
Bike sharing: hour 15 13 0 2 17379
Bike sharing: daily 13 11 0 2 731
NASA airfoil self-noise 5 5 0 0 1503
abalone 9 8 1 0 4177

Table 1: Description of the datasets used. #A is the number
of attributes per instance in the considered dataset. #N, #C,
and #B are respectively the number of numerical, categorical
and Boolean attributes. #I is the number of instances in the
dataset.
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Dataset / Boosted Tree Instance / Direct Reason I ?,: ‘;’D I 127',5m

Name R2 #Cond Sizer Sizep Sizeg TOg Timeg %Red TOEg Timeg Sizeg TO¢g Timeg %Red TOpg Timeg
Winequality-red 0.42 666 21.5(+0.8) 21.4(£0.9) 21.2(£1.2) 0 2.2(£0.3) 20.9(423.2) 0 0.8(£0.0) 19.9(%£1.5) 0 2.5(£0.3) 18.6(£12.1) 0 0.9(£0.1)
Winequality-white 0.46 764 21.8(£0.6) 21.8(£0.6) 21.4(£0.8) 0 2.2(£0.2) 20.2(£16.8) 0 0.8(£0.0) 19.9(%£1.2) 0 2.5(£0.3) 18.1(£12.1) 0 0.9(£0.1)
CreditcardFraudDet. 0.96 1506 56.0(%1.8) 39.9(£2.0) 25.7(£3.9) 4216(4244) 8.9(£6.0)  22258(£301) 18.8(£24) 90 770(£207) 25.1(£11.8) 97 806(+97.6)
14d2-player-stats-final -2.62 1378 171(%18.9) 95.4(£10.9) 56.2(£7.1) 98 4.8(£0.3) 18.1(£7.6) 96 172(£175) 15.6(+2.6) 100 - 522(£7.9) 100 -
Houses-prices 0.88 897 61.8(£6.8) 62.2(£8.0) 49.5(£8.6) 0 59(£1.0) 5.6(x4.7) 0 2.2(%0.7) 33.9(%10.1) 072.2(£132) 2.6(£2.3) 0 52.0(198.3)
Steel ind. energy cons. 0.99 533 13.5(£2.4) 11.2(£1.5) 7.0(%£2.0) 0 1.5(%0.2) 36.8(£15.7) 0 1.0(£0.2) 5.0(%1.5) 0 1.6(£0.3) 44.6(+17.7) 0 1.9(£0.5)
Bike sharing: hour 0.99 603 20.0(£2.0) 11.2(£2.1) 3.7(£0.7) 0 1.5(%0.3) 42.6(£19.2) 0 1.4(£02) 3.2(£0.7) 0 1.4(£0.2) 33.0(%13.1) 0 2.0(£0.3)
Bike sharing: daily 0.99 618 19.3(+1.2) 18.1(+1.4) 10.9(%1.6) 0 1.8(£0.5) 16.9(£9.1) 0 1.5(£0.8) 4.0(%0.8) 0 4.0(£3.5) 30.7(+10.6) 061.9(%65.1)
NASA airfoil self-noise 0.92 149 8.8(£0.8) 8.8(£0.8) 8.5(£1.0) 0 1.2(%0.3) 68.5(£21.0) 0 0.8(£0.0) 7.3(£l.1) 0 1.2(£0.3) 48.1(%18.8) 0 1.0(£0.2)
abalone 0.99 456 17.0(+0.3) 16.8(%0.7) 2.1(x£0.6) 0 1.6(0.4) 90.1(£8.3) 0 0.9(£0.0) 2.0(%0.1) 0 1.5(£0.5) 97.5(£8.1) 0 1.1(£0.2)

Table 2: Statistics about the computations of our algorithms on boosted regression trees learned using Light GBM.

from a training set containing 80% of the dataset, and its ac-
curacy was measured as its mean R2 score [Ling and Kenny,
1981] over the remaining 20% of the dataset.

In order to evaluate G, we needed to consider intervals I.
To this purpose, for each dataset and each boosted tree F', we
have first estimated the range of values that can be reached
by F = {T\,...,T,,}. This estimate is given by the inter-
val Ir = [mp, Mp] where Mp = Y. maz(T;) echoes
mp =Y, min(T;). Ir can be computed in time linear in
|F'|. Note that while the image F'(X) and its superset given
by the interval I+ are guaranteed to be included in 1 .1 inter-
val I does not coincide with It in general2 (the minimal or
maximal leaves over the trees of F' may easily correspond to
incompatible paths). The length Ly = Mg — mp of I gave
us a range of values that can be used to define intervals I of
various lengths containing F'(x) (whatever x) and reflecting
various imprecision levels about the F'-predicted value of x.
Thus, for any € X and any r € [0, 100], we defined

r r
Itpg = [F(@) = (ro= - Lr), F

100 100 2l

Centered intervals I} ., have been considered for the ease

() +(

of empirical protocol, only.®> Indeed, our algorithm G can
take any interval I as input, provided that F'(x) € I. Then,
for each dataset, each boosted tree F' and a pool of 100 in-
stances * € X drawn uniformly at random from the test
set, we have computed the simplification of the direct rea-
son t£ and we have run G in order to derive a subset-minimal
abductive explanation ¢ for « given I and If, , where r €
{0.5,1,2.5,5,10}. We took advantage of the CPLEX solver
[Cplex, 2009] in this computation.

Finally, in order to assess the performance of E, we started
from the subset-minimal abductive explanations ¢ for x given
Fand Iy, (where r € {0.5,1,2.5,5,10}) that have been
computed by G, and derived from them using the evaluation
algorithm the corresponding intervals I; and we measured
their lengths. Using the terms ¢ computed by G in our ex-
periments was a natural choice, but other alternatives were
possible (the two algorithms E and G are completely inde-

"Let us recall that T denotes the empty conjunction of literals.

Note that, unlike what happens in the general case, we have
Ir = I+ for the running example.

*Instead of T F,z» We could have considered intervals generated
from prediction interval estimators (see Section 5).

pendent and they can be used separately). The parameter e
used in E has been set to 0.01 in our experiments.

For each dataset, each boosted tree F', we counted the num-
ber of instances € X (out of 100) for which a subset-
minimal abductive explanation has been computed in due
time given F' and each of the 5 intervals I, , that have been
considered (a time-out (TO) of 900s has been considered per
instance and interval). For each instance for which the com-
putation has been successful, we measured the time needed
to get the result and the size of the resulting subset-minimal
abductive explanation ¢. Then we counted the number of re-
sulting terms ¢ for which the evaluation algorithm terminates
in due time (using a TO of 600s for each bound). We mea-
sured the time required to derive I, and the length L; of this
interval in order to compare it with the length % - Ly of the
interval Iy, . that has been considered when computing ¢. Es-
pecially, we measured the reduction of the imprecision that is
obtained. This reduction is defined by 0 when Ly = 0 and by
2 Lp—Ly

12076 ‘L
been conducted on a computer equipped with Intel(R) XEON
E5-2637 CPU @ 3.5 GHz and 128 Gib of memory.

Experimental results Table 2 presents some empirical re-
sults obtained for the ten datasets that have been considered.
The leftmost column of Table 2 gives the name of the dataset
b. Columns R2, #Cond, Size; and Sizep give, respectively,
the R2 score of the boosted tree F' learned using Light GBYM,
the number of distinct Boolean conditions occurring in it, the
mean and standard deviation of the lengths of the simplified
instances over B3, and finally, the mean and standard devia-
tion of the lengths of the associated simplified direct reasons.
Then, for each interval If; ;. considered (r = 0.5 and r = 2.5
in Table 2), we report the mean and standard deviation of the
sizes of the abductive explanations ¢ (that have been com-
puted using G), and the mean and standard deviation of the
reductions of the interval considered for deriving ¢ (the reduc-
tions are computed using E), the number of timeouts and the
mean time and standard deviation of the computation times
(in seconds) when the corresponding algorithm (G or E) ter-
minated in due time.*

In light of the experiments, G and E appear as practical
for boosted trees involving a significant number of Boolean

in the remaining case. All the experiments have

“For space reasons, more detailed results including results about
the boosted trees learned using XGBoost and/or concerning other
values of r are not reported here, but they can be found in the sup-
plementary material.
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Figure 3: Empirical results about algorithm G on the credit-
card dataset.

conditions (up to 800). This corresponds to the boosted trees
computed using LightGBM on every dataset but the larger
ones, namely /4d2-player-stats-final, creditCardFraudDetec-
tion, and houses-prices. Thus, for the seven other datasets, no
timeout has occurred during the computations and the mean
computation times for deriving a subset-minimal abductive
explanation for any of the instance (out of 100) never ex-
ceeded 90 seconds (and most of the time, only a couple of
seconds was required). A valuable observation is that both G
and E provide useful outputs even when they are interrupted
before a normal termination.

In practice, the sizes of the explanations generated using G
can be much smaller than the sizes of the instances they ex-
plain, and much smaller than the sizes of the corresponding
direct reasons. For instance, considering the line associated
with the dataset bike sharing: daily and the columns Size;,
Sizep and Sizeg (for » = 0.5) in Table 2, we can check
that the subset-minimal abductive explanations that have been
computed are of average size 3.7, while the corresponding in-
stances are of average size 20 and their direct reasons are of
average size 11.2. Table 2 also shows that the the reduction
of the imprecision that is achieved by E is significant most of
the time.

Our experiments have also permitted to assess on a qual-
itative, yet empirical basis the connections between the gen-
erality of the explanations (given by their sizes) and the im-
precision considered at start for generating them using G. We
illustrate them on two datasets: houses-prices and creditcard.
Figure 2 (left) (resp. Figure 3 (left)) gives box plots synthe-
sizing the distribution of sizes of the subset-minimal abduc-
tive explanations that have been generated for various val-
ues of r for the boosted tree trained on houses-prices (resp.
creditcard) using Light GBM. Figure 2 (right) (resp. Figure
3 (right)) is about the corresponding computation times. Fig-

3438

]

w
S
o
® o
S 9o
s S

@
S
)

% of reduction
& ]
3 S

~
=1
S

Computation time (s)
N
8
3

ﬂ*

il

rs r_10 ro0.s r r 2.5 rS r 10

)
°

105

mw
o

~ Imp r ision - ImDreusmn

Figure 4: Empirical results about algorithm E on the houses-
prices dataset.
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Figure 5: Empirical results about algorithm E on the credit-
card dataset.
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ure 4 and Figure 5 report similar results about the reductions
of the intervals considered as input by G (left) and the corre-
sponding computation times (right).

We can observe on Figure 2 (left) that the sizes of the
explanations significantly decrease when the admissible im-
precision increases. Contrariwise, the computation times (see
Figure 2 (right)) increase when the admissible imprecision in-
creases (more literals must be removed by the greedy genera-
tion algorithm to get subset-minimal abductive explanations).

Figure 4 (left) and Figure 5 (left) show that the reduction
of the imprecision that is achieved by E can be important,
and Figure 4 (right) and Figure 5 (right) show that the com-
putation times typically increase when the generality of the
term considered at start increases (this can be easily explained
by the fact that the number of instances covered by the term
increases as well). For each of G and E, we observed that
the standard deviation of the computation times is sometimes
high (larger than the mean). Similar observations can be done
for the other datasets.’

5 Other Related Work

Most existing work about XAI for regression exploits so-
lutions developed for the classification task, reducing re-
gression into (multi-class) classification. This is typically
achieved through a partitioning of the reals into intervals,
requiring the elicitation of decision boundaries that can be
more or less arbitrary. Once done, popular XAl techniques
for classification can be leveraged. Thus, [Strumbelj and
Kononenko, 2011] presents an approach to explanation based
on the notion of feature importance. [Kontokosta, 2019;

3 Additional box plots are provided in the supplementary mate-
rial.
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Moore and Bell, 2022] use Shapley values and take advan-
tage of them in the context of two applications (energy effi-
ciency of buildings and prediction of myocardial infarction).
What makes such XAI approaches appealing is that they are
model-agnostic and scalable, so they can be used to explain
predictions achieved by very powerful ML models (e.g., deep
neural nets). The (heavy) price to be paid is that they do not
offer any formal insurance of rigor [Ignatiev, 2020].

Contrariwise, our approach to XAl is specific to boosted
regression trees. However, the (subset-minimal) abductive ex-
planations that are generated by G and evaluated by E are
provably correct. This correctness guarantee comes from the
logical setting considered for representing boosted trees and
the use of automated reasoning tools for deriving (and evalu-
ating) explanations. This makes our work relevant to formal
XAI [Marques-Silva and Ignatiev, 2022].

Prior work in formal XAI that have been concerned with
tree ensembles have mainly focused on the computation of
contrastive explanations (see, for instance, [Cui et al., 2015;
Kanamori et al., 2020; Parmentier and Vidal, 2021; Hada
and Carreira-Perpifidn, 2021]) and on the classification is-
sue (see, for instance, [Choi ef al., 2020; Izza and Marques-
Silva, 2021; Audemard et al., 2022; Ignatiev et al., 2019b;
2022]). Thus, they are significantly different from our own
work, centered on abductive explanations for regression.

Estimating prediction intervals is a well-established topic
in Machine Learning (or even in traditional statistics), and
is widely used in practice. A number of approaches for esti-
mating prediction intervals have been pointed out so far (e.g.,
via quantile regression [Koenker, 2005]) and they are based
a variety of techniques (e.g., the jacknife method [Barber et
al., 2021]). The main goal is to measure the robustness of the
predictor and to control the use of the predictor by exploiting
statistical guarantees. Accordingly, those approaches are fo-
cused on instances, not on explanations for instances, while
our algorithm E is about the evaluation of abductive explana-
tions, with logic-based guarantees, which is quite a different
perspective. Note nevertheless that the output of prediction
interval estimators could be used to define intervals used as
inputs by our algorithm G.

Finally, [Letzgus et al., 2022] identifies important condi-
tions about the regression problem that should be considered
when developing dedicated XAI approaches, but are not al-
ways guaranteed by XAl approaches to classification. One of
them states that explanations should be produced relative to
some reference value. Our algorithm G takes such a refer-
ence value into account, represented by an interval /. As we
have shown both in theory and in practice, the choice of I
may substantially affect the subset-minimal abductive expla-
nations that are derived.

6 Conclusion

We have presented and assessed two anytime algorithms G
and E for generating (resp. evaluating) abductive explana-
tions for boosted regression trees. The datasets used for learn-
ing the boosted trees can be based on data of mixed type
(including categorical and numerical attributes). This leads
to boosted trees containing Boolean conditions that are not
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independent in general. In our approach, the underlying do-
main theory is used to ensure that the abductive explanations
that are generated are not unnecessarily specific, but also to
simplify the explanations. Most of the time, our algorithms
can be used to generate (resp. evaluate) in a few seconds ab-
ductive explanations for boosted regression trees based on a
large number of Boolean conditions (up to 800). A valuable
observation is that, in general, the (subset-minimal) abduc-
tive explanations that are generated using G are significantly
smaller than the initial descriptions of the instances in terms
of Boolean attributes. Furthermore, the reduction of the im-
precision that is achieved by E can be very significant as well.

Notably, the correctness of G (resp. E) does not require any
specific assumption on the way the ensemble of regression
trees F' used as input has been learned. Thus, G and E are ap-
plicable to general regression forests, and not only to boosted
regression trees, and provide the same guarantees for general
regression forests as the ones offered for boosted regression
trees. Especially, it does not matter if bagging has been used
instead of boosting as an ensemble learning method, so that F’
actually is a random forest. Note nevertheless that for random
forests, the computation of a prediction interval that could be
used as an input of G is much easier than for boosted trees,
since trees in a random forest are independently generated.

As illustrated by our experiments, it can be the case that the
size of the explanations produced by G is quite large. In such
a case, pieces of knowledge (when available) can be lever-
aged to try to simplify the explanations further. However, it
may happen that simplified explanations are still too large to
be viewed as intelligible enough by the explainee. It is impor-
tant to keep in mind that such a situation does not reflect a
drawback of the XAI approach (which aims at explaining the
behaviour of the predictor as it is, and not as it could be), but
a feature of the predictor itself. Indeed, the fact that the expla-
nations are large indicates that many attributes are needed to
explain the regression value that has been computed. Know-
ing it, the explainee is free to decide what to do with the value
and the predictor (trust in it or not).

This work calls for a number of perspectives. One of them
is to focus on a specific application where the expertise of a
human user can be exploited to assess the quality of the ex-
planations that are generated. We are confident that the possi-
bility of computing I; given ¢ and F' can be leveraged to de-
sign interaction protocols with an explainee, in the objective
of providing explanations that achieve a good generality/pre-
cision trade-off and fitting the expectations of the explainee
[Doshi-Velez and Kim, 2017; Narayanan et al., 2018]. An
example of such a process (with the explainee-in-the-loop)
would be as follows: starting from « and an interval [ fur-
nished by the explainee, one first computes a subset-minimal
explanation ¢ for  and I using G and then evaluates it using
E by computing I;. If the explainee finds ¢ too specific, then
one asks her/him for a subset of literals ¢’ to be removed from
t in order to make ¢ more general and evaluate the term ¢\ ¢'. If
the precision L\ is fine with the explainee, we can stop the
interaction and return ¢ \ ¢. If it is deemed too large, one can
resume at the first step and look for another subset-minimal
explanation for  and I.
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