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Abstract

We give polynomial time algorithms for escaping
from high-dimensional saddle points under a mod-
erate number of constraints. Given gradient access
to a smooth function f : Rd → R we show that
(noisy) gradient descent methods can escape from
saddle points under a logarithmic number of in-
equality constraints. While analogous results exist
for unconstrained and equality-constrained prob-
lems, we make progress on the major open question
of convergence to second-order stationary points in
the case of inequality constraints, without reliance
on NP-oracles or altering the definitions to only ac-
count for certain constraints. Our results hold for
both regular and stochastic gradient descent.

1 Introduction
Achieving convergence of gradient descent to an (approxi-
mate) local minimum is a central question in non-convex opti-
mization for machine learning. In recent years, breakthrough
progress starting with the work of [Ge et al., 2015] has led
to a flurry of results in this area (see e.g. [Jin et al., 2017;
Du et al., 2017; Mokhtari et al., 2018; Jin et al., 2018; Car-
mon et al., 2017; Carmon and Duchi, 2018; Staib et al., 2019;
Carmon and Duchi, 2020; Jin et al., 2021]), culminating in al-
most optimal bounds [Zhang and Li, 2021]. However, despite
this success a key open question of [Ge et al., 2015] still re-
mains unanswered – can gradient methods efficiently escape
from saddle points in constrained non-convex optimization?
In fact, even basic linear inequality constraints still remain an
obstacle: “Dealing with inequality constraints is left as future
work” [Ge et al., 2015]1. This is due to the NP-hardness of
the related copositivity problem [Murty and Kabadi, 1987],
which corresponds to the case when the number of constraints
is linear in the dimension. In this paper, we make progress on
this open question in the case when the number of constraints
depends moderately on the dimension.

Consider a feasible set defined by k linear inequality con-
straints: S = {x ∈ Rd | Ax ≤ b}, where A ∈ Rk×d and

1Using Lagrangian multipliers, equality constraints can be seen
as reducing the dimension of the otherwise unconstrained problem.

b ∈ Rk. Let Bd(x, r) be a d-dimensional closed ball of ra-
dius r centred at x. We write B(x, r) when the dimension is
clear from the context and drop x when x = 0. Our goal is to
find minx∈S f(x) for the objective function f : Rd → R over
S. We first introduce the standard smoothness assumption.
Assumption 1 (Smoothness). The objective function f satis-
fies the following properties:

1. (First order) f has an L-Lipschitz gradient (f is L-
smooth): ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥, ∀x,y ∈ Rd.

2. (Second order) f has a ρ-Lipschitz Hessian: ∥∇2f(x)−
∇2f(y)∥ ≤ ρ∥x− y∥, ∀x,y ∈ Rd.

Definition 1 (Local minimum). For S ⊆ Rd, let f : Rd →
R. A point x⋆ is a local minimum of f in S if and only if there
exists r > 0 such that f(x) ≥ f(x⋆) for all x ∈ S∩B(x⋆, r).

Since finding a local minimum is NP-hard even in the un-
constrained case (see e.g. [Anandkumar and Ge, 2016] and
the references within) the notion of a local minimum is typi-
cally relaxed as follows.
Definition 2 (Approximate local minimum). For S ⊆ Rd

and f : Rd → R a point x⋆ is a (δ, r)-approximate local
minimum if f(x) ≥ f(x⋆)− δ for all x ∈ S ∩ B(x⋆, r).

For smooth functions, one can define stationary points in
terms of the gradient and the eigenvalues instead:
Definition 3 ([Nesterov and Polyak, 2006; Jin et al., 2021]).
A point x is an ε-second-order stationary point (ε-SOSP) if
∥∇f(x)∥ < ε and λmin(∇2f(x)) > −√ρε, where λmin

denotes the smallest eigenvalue.
When applying this definition to the constrained case,

eigenvectors and eigenvalues are not well-defined since there
might be no eigenvectors inside the feasible set, while an es-
caping direction might exist. Moreover, for f(x) = − 1

2∥x∥
2

and any compact feasible set, the Hessian is −I at any point
with λmin(−I) = −1. Hence an ε-SOSP doesn’t exist ac-
cording to the Definition 3, even though a local minimum
exists. In fact, Definition 3 arises from the Taylor expansion,
which justifies the choice of

√
ρϵ as the bound on the smallest

eigenvalue. If the function has a ρ-Lipschitz Hessian:∣∣∣∣f(x+ h)− f(x)− h⊤∇f(x)− 1

2
h⊤∇2f(x)h

∣∣∣∣ ≤ ρ

6
∥h∥3

To guarantee that the discrepancy between the function and
its quadratic approximation is small relative to δ (from Def-
inition 2), a natural choice of r is 3

√
δ/ρ, which bounds the
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discrepancy with Θ(δ). Therefore, based on the quadratic ap-
proximation, one can distinguish a (δ, r)-approximate local
minimum from not a (cδ, r)-approximate local minimum for
c < 1. By setting this r and selecting ε = 3

√
δ2ρ, we have

√
ρε = 3

√
δρ2 and for any h ∈ B(x, r) (see the full version):

f(x+h)−f(x) ≥ h⊤∇f(x)+1

2
h⊤∇2f(x)h−ρ

6
∥h∥3 ≥ −2δ

Using the ball radius discussed above we arrive at the follow-
ing version of Definition 2:
Definition 4 (Approximate SOSP). For S ⊆ Rd, let f :
Rd → R be a twice-differentiable function with a ρ-Lipschitz
Hessian. A point x⋆ is a δ-second-order stationary point (δ-
SOSP) if for r = 3

√
δ/ρ:

inf
x∈S∩B(x⋆,r)

f(x) ≥ f(x⋆)− δ

Note that, while Definition 4 doesn’t seemingly use
second-order information, our choice of the ball radius guar-
antees that the function is close to its quadratic approxima-
tion. In particular, we can determine whether f is a cδ-SOSP
for a constant c by only using second-order information.

1.1 Our Contribution
Our results hold for stochastic gradient descent (SGD):
Assumption 2. Access to a stochastic gradient oracle g(x):

1. (Unbiased expectation) E[g(x)] = ∇f(x).
2. (Variance) E[∥g(x)−∇f(x)∥2] ≤ σ2.
Our main result is the following theorem which quantifies

the complexity of finding an approximate SOSP under a mod-
erate number of linear inequality constraints, showing that
this problem is solvable in polynomial time for k = O(log d).
We refer to a function as (L, ρ)-smooth if it satisfies Assump-
tion 1 and simply second-order smooth if both smoothness
parameters are constant.
Theorem 5. Let S be a set defined by an intersection of k
linear inequality constraints. Let f be a second-order smooth
bounded function. Given access to a stochastic gradient ora-
cle satisfying Assumption 2, there exists an algorithm which
for any δ > 0 finds a δ-SOSP in Õ( 1δ (d

32k + d2σ2

δ4/3
)) time

using Õ(dδ (1 +
dσ2

δ4/3
)) stochastic gradient oracle calls. In the

deterministic gradient case (σ = 0), the time complexity is
Õ(d

32k

δ ) and the number of gradient oracle calls is Õ(dδ ).
The exponential dependence of time complexity on k in

our results (not required in the oracle calls) is most likely un-
avoidable due to the following hardness result, which implies
that when k = d then the complexity of this problem can’t be
polynomial in d under the standard hardness assumptions.
Remark 6 (Matrix copositivity [Murty and Kabadi, 1987]).
For a quadratic function f(x) = xTMx subject to con-
straints xi ≥ 0 for all i, it is NP-hard to decide whether there
exists a solution with f(x) > 0.

Related results in convex optimization are covered
in [Boyd and Vandenberghe, 2004; Bubeck and others, 2015].
Among related results in non-convex optimization, here we
only focus on the algorithms using only gradient information.

1.2 Related Work
Unconstrained optimization. Recall that an ϵ-first-order
stationary point (ϵ-FOSP) is defined so that ∥∇f(x)∥ ≤ ϵ.
Analyses of convergence to an ε-FOSP are a cornerstone
of non-convex optimization (see e.g. classic texts [Bert-
sekas, 1997; Nocedal and Wright, 1999]). Quantitative anal-
ysis of convergence to an ϵ-SOSP (Definition 3) started with
the breakthrough work by [Ge et al., 2015] further refined
in [Jin et al., 2017; Carmon and Duchi, 2018; Jin et al., 2018;
Carmon and Duchi, 2020; Jin et al., 2021] and most recently
in [Zhang and Li, 2021], who show an almost optimal bound.
Due to the prevalence of SGD in deep learning, stochas-
tic methods have attracted the most attention (see [Allen-
Zhu, 2018; Allen-Zhu and Li, 2018; Fang et al., 2018;
Tripuraneni et al., 2018; Xu et al., 2018; Zhou and Gu, 2020;
Zhou et al., 2020] for the case of Lipschitz gradients and [Ge
et al., 2015; Daneshmand et al., 2018] for non-Lipschitz gra-
dients). For an in-depth summary of the previous work on
unconstrained non-convex optimization we refer the reader
to [Jin et al., 2021].

Constrained optimization. The case of equality con-
straints is typically reducible to the unconstrained case by us-
ing Lagrangian multipliers (see e.g. [Ge et al., 2015]). How-
ever, the general constrained case is substantially more chal-
lenging since even the definitions of stationarity require a sub-
stantial revision. For first-order convergence a rich literature
exists, covering projected gradient, Frank-Wolfe, cubic regu-
larization, etc (see e.g. [Mokhtari et al., 2018] and the refer-
ences within). For second-order convergence, the landscape
of existing work is substantially sparser due to NP-hardness
(Remark 6, [Murty and Kabadi, 1987]). A large body of
work focuses on achieving convergence using various forms
of NP-oracles (see e.g. [Bian et al., 2015a; Cartis et al., 2018;
Mokhtari et al., 2018; Haeser et al., 2019; Nouiehed and
Razaviyayn, 2020]), while another approach is to define sta-
tionarity in terms of tight constraints only [Avdiukhin et al.,
2019; Lu et al., 2020].

Relationship with other definitions of SOSP. As dis-
cussed in Remark 6, second-order constrained optimization
is NP-hard due to the hardness of the matrix copositivity
problem. Definitions of constrained SOSP in the previous
work fall into two categories: 1) definitions of scaled station-
ary points, 1) definitions that only consider active constraints
(“active constraints only” definitions), 2) definitions that pre-
serve the NP-hardness of the problem and rely on NP-oracles
to achieve polynomial-time convergence:

1. (Scaled) For the constraints x ≥ 0, [Bian et al., 2015b;
O’Neill and Wright, 2020] consider the definition of
scaled SOSP. The idea is to scale i-th coordinate by xi:
i.e. instead of bounding ∇f(x) it bounds X∇f(x),
where X = diag(x1, . . . , xd), and instead of eigen-
values∇2f(x) it considers eigenvalues of X∇2f(x)X .
For this definition, x ≥ 0 restricts possible applications.

2. (“Active constraints only”) In [Avdiukhin et al., 2019;
Lu et al., 2020] definitions analogous to Definition 3,
and the second-order conditions are given with respect
to the set of active (i.e. tight for the current iterate) con-
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straints. This bypasses the NP-hardness since the point
at which the hardness of the copositivity problem applies
now becomes a stationary point by definition.

3. (NP-hard) In the results relying on NP-oracles
(e.g. [Bian et al., 2015a; Mokhtari et al., 2018; Haeser
et al., 2019; Nouiehed and Razaviyayn, 2020]) the com-
plexity is shifted on solving black-box quadratic opti-
mization problems of a certain type. A key advantage
of these types of approaches is that they can handle an
arbitrary number of constraints and hence promising in
certain machine learning applications.

What is currently lacking in the state of the art is a quanti-
tative analysis of the complexity of convergence to a second-
order stationary point, which shows full dependence on both
the dimension and accuracy while defining stationarity with
respect to the full set of constraints, instead of just active con-
straints only2. Our goal in Theorem 5 is to address this gap
and give such an analysis.

1.3 Technical Overview
We address the NP-hardness of the copositivity problem by
focusing on the case of a moderate number of constraints and
arguing that it can be addressed using gradient-based meth-
ods. In order to streamline the presentation we first focus on
the key challenge of escaping from a saddle point in a cor-
ner defined by the constraints when the underlying function
is simply quadratic (Section 2). This is already enough to
capture some of the key contributions, while more technical
details and the full algorithm are given in Section 3.

Quadratic corner saddle point (Section 2). In this simpli-
fied scenario, the NP-hardness comes from the fact that the
point we aim to find can lie in the intersection of an arbitrary
subset of constraints. By doing an exhaustive search over this
set of constraints (Algorithm 1) and enforcing them through-
out the search process we are able to reduce to a setting sim-
ilar to the equality-constrained case (Algorithm 2). We show
different subsets of constraints enforced by the algorithm in
an example in Figure 1. The key challenge is making this
argument formal and arguing that this process converges to
a constrained approximate SOSP as in Definition 4. This re-
lies on performing a robust analysis of the properties of the

2While unrefereed manuscripts ([Hsia and Sheu, 2018] and
[Nouiehed et al., 2020], relying on [Hsia and Sheu, 2018] as a sub-
routine) do contain related results, our work differs in a number of
important aspects. [Hsia and Sheu, 2018] and [Nouiehed et al.,
2020] require access to the exact gradient and Hessian. We only
assume access to the stochastic gradient oracle. Furthermore, [Hsia
and Sheu, 2018] assumes access to matrix diagonalization. How-
ever, the diagonalization can only be found approximately, which
compromises the stability of this approach, especially with respect
to the linear term transformations. Our approach handles this is-
sue by appropriate perturbation and using known results for ma-
trix diagonalization. Finally, compared with [Hsia and Sheu, 2018],
our main contribution is focused on solving a substantially different
problem. While [Hsia and Sheu, 2018] find a global minimum of
a quadratic problem, we find an approximate local minimum of an
arbitrary smooth non-convex function.
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(a) Feasible set with two in-
equalities: x ≤ 0, y ≤ 0.
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(b) Active constraint y = 0
(green) with no escape direc-
tion.
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(c) Active constraint x = 0
(green) with an escape direc-
tion (0,−1). As shown in
Lemma 10, out of two escape
directions (0,−1) and (0, 1)
in this constraint, at least one
(0,−1) (blue) lies in the feasi-
ble set, and is found by the al-
gorithm.
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(d) When no constraints are ac-
tive, the algorithm finds red
directions (negative eigenvec-
tors) outside the feasible set.
Note that escape directions
with no active constraints exist
(blue). Lemma 10 guarantees
that we find them in some con-
strained space (Figure 1c).

Figure 1: Function f(x, y) = (
√
3

2
x + 1

2
y)2 − (− 1

2
x +

√
3

2
y)2

(composition of x2 − y2 and rotation by π/6).

points which lead to the hardness of copositivity. In partic-
ular, we show that after we guess the set of constraints cor-
rectly, the problem reduces to finding the smallest eigenvec-
tor (Lemma 9). Exact error analysis of the eigenvector pro-
cess (Lemma 10, Lemma 11) is then required to complete the
proof of the main theorem (Theorem 8).

General case (Section 3). In the algorithm for the general
case, we address the three assumptions made in the quadratic
corner saddle point case, while also handling the stochasticity
in the gradient. The latter part is standard and is handled via
variance reduction (see the full version). The full algorithm
iterates the escape subroutine (Algorithm 3) until an escaping
point is found. The escape subroutine first approximates the
Hessian matrix using the gradient oracle and then performs
an exhaustive search over the set of active constraints at the
escaping point in a way similar to the quadratic corner case.
After the correct subset of constraints is fixed the current it-
erate needs to be projected on this set of constraints, which
also necessitates a recomputation of various related parame-
ters. When this is done the problem is solved by a subroutine
Algorithm 4, analogous to Algorithm 2 from the quadratic
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corner case.
However, since the function is no longer quadratic and the

gradient can be large, several modifications are required. The
algorithm tries to find an escaping direction within a ball
of radius r, within which the function is well approximated
by a quadratic by the smoothness assumption (as discussed
above). First, the algorithm tries to escape using the gradi-
ent term. If that doesn’t work then we consider two cases:
1) the solution is inside the ball of radius r = 3

√
δ/ρ (from

Definition 4), 2) the solution is on the boundary of this ball.
In the first case, the solution is a critical point and hence can
be found using the Newton step. In the second case, we diag-
onalize the Hessian using an orthogonal transformation. This
gives a quadratic function with a linear term whose critical
points on the boundary of the ball can be found explicitly (up
to the required precision) as roots of the corresponding poly-
nomial. We note that the diagonalization performed in this
case is the most computationally expensive step in the algo-
rithm, resulting in polynomial dependence on the dimension.
Notation. For a set S let IntS be its interior and ∂S be
its boundary. For x ∈ Rd and S ⊆ Rd, ProjS(x) =
argminy∈S ∥x − y∥ is the projection of x on S. For a
square matrix M with eigenvalues λ1 ≤ . . . ≤ λd, we de-
note λmin(M) = λ1 and λ|max|(M) = max(|λ1|, |λd|). For
S = {x ∈ Rd | Ax ≤ b} and x ∈ S, we say that i-th
constraint is active at x if A⊤

i x = bi, where Ai is the i-th
row of A. Õ notation hides polylogarithmic dependence on
all parameters, including error probability.

2 Quadratic Corner Saddle Point Case
We introduce the key ideas of the analysis in a simplified set-
ting when: 1) the function f is quadratic, 2) the gradient is
small, 3) the current iterate is located in a corner of the con-
straint space. Intuitively, this represents the key challenge of
the constrained saddle escape problem since its NP-hardness
comes from the hardness of the matrix copositivity problem
in Remark 6 (i.e. the function is exactly quadratic and has no
gradient at the current iterate which lies in the intersection of
all constraints). We refer to this setting as the Quadratic Cor-
ner Saddle Point problem defined formally below. By shifting
the coordinate system, w.l.o.g. we can assume that the saddle
point is 0 and f(0) = 03. If 0 is a (δ, r)-QCSP (as defined
below), the objective can be decreased by δ within a ball of
radius r.
Definition 7 (Quadratic Corner Saddle Point). Let S = {x |
Ax ≤ 0}. For δ, r > 0 and function f(x) = 1

2x
⊤Mx, we

say that a point 0 is a:
• (δ, r)-Quadratic Corner Saddle Point ((δ, r)-QCSP) if
minx∈B(r)∩S f(x) < −δ.

• (δ, r)-boundary QCSP if minx∈B(r)∩∂S f(x) < −δ.

In this section, we show how to escape from a (δ, r)-QCSP
(see the full version for the full proof):
Theorem 8 (Quadratic Corner Saddle Point Escape). Let
δ, r > 0. Let f(x) = 1

2x
⊤Mx with λ|max|(M) ≤ L and

3Algorithms 1 and 2 don’t require saddle point x to be 0. All the
statements are trivially adapted for the case when x is not 0

Algorithm 1: HOUDINIESCAPECORNER: Escaping
from a corner for a quadratic function
input: Starting point x, feasible set

S = {y | A(y − x) ≤ 0 ∈ Rk}
parameters: δ and r from definition of (δ, r)-QCSP
for I ∈ 2[k] – every subset of constraints do

1 A ← {y | A⊤
i (y − x) = 0 for i ∈ I}, where Ai

is the i-th row of A // Optimize in A
2 y← FINDINSIDECORNER(x,A)
3 if y ∈ S and f(y) < f(x)− δ

2 then
4 return y

5 return ⊥

Algorithm 2: FINDINSIDECORNER(x,A)
input: Corner x, affine subspace A with x ∈ A
parameters: δ and r from Definition 7, step size
η = 1

L , number of iterations T = Õ(Lr2

δ )
1 Sample ξ ∼ N (0, I), x0 ← ProjA(x+ ξ)
2 for t = 0, . . . , T − 1 do
3 // Power method step
4 xt+1 ← ProjA(xt − η(∇f(xt)−∇f(x)))
5 e← r xT−x

∥xT−x∥
6 return x+ e

let S = {x | Ax ≤ 0} be defined by k linear inequalities. If
0 is a (δ, r)-QCSP, then Algorithm 1 with probability at least
1 − ξ finds a point x ∈ S ∩ B(r) with f(x) < −Ω(δ) using

O
(

Lr2k2k

δ log 1
ξ

)
deterministic gradient oracle calls.

For the rest of the section, we assume that 0 is a (δ, r)-
QCSP, i.e. minx∈S∩B(r) f(x) < −δ. We consider two cases
depending on whether 0 is a (δ, r)-boundary QCSP.

Case 1: 0 is a (δ, r)-boundary QCSP. For a subset of in-
equality constraints I ⊆ [k] we define the subspace where
these constraints are active: AI = {x | A⊤

i x = 0 for all i ∈
I}. Let I be a maximal4 subset of constraints such that
minx∈AI∩B(r) f(x) < −δ. If P is a projection operator on
AI , it suffices to optimize g(x) := f(Px) = 1

2x
⊤(PMP)x.

Therefore, we reduced the original problem to minimizing
a different quadratic form in the same feasible set. For any
i ∈ I , A⊤

i Px ≤ 0 holds trivially, since A⊤
i y = 0 for any

y ∈ A, and hence constraints from I can be ignored. If a con-
straint not from I is active in Px, then f(Px) ≥ −δ, since I
is a maximal subset of constraints with minx∈AI∩B(r) < −δ.
Therefore, this reduces Case 1 to the next case.

Case 2: 0 is not a (δ, r)-boundary QCSP. In this case,
we show that any x ∈ B(r) with f(x) < −δ must lie in
S, and for f(x) = 1

2x
⊤Mx it suffices to find the eigenvector

corresponding to the smallest eigenvalue of M. We first show
that there exists an eigenvector improving the objective.

4As we don’t know I, Algorithm 1 tries all subsets of constraints.
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Lemma 9. Let f(x) = 1
2x

⊤Mx and S = {x | Ax ≤ 0}.
If 0 is not a (δ, r)-boundary QCSP for δ, r > 0, then the
following statements are equivalent:

1. 0 is (δ, r)-QCSP, i.e. minx∈S∩B(r) f(x) < −δ.
2. There exists an eigenvector e of M such that e ∈ IntS∩

∂B(r) and f(e) < −δ.
Finding an exact eigenvector might be impossible. Hence,

we show that finding x ∈ B(r) with f(x) < −δ suffices,
since either x or −x are in S.
Lemma 10. Let f(x) = 1

2x
⊤Mx and S = {x | Ax ≤ 0}.

For δ, r > 0 and x̂ ∈ ∂B(r), if f(x̂) < −δ and the following
conditions hold, then either x̂ ∈ S or −x̂ ∈ S:

1. minx∈S∩B(r) f(x) < −δ, i.e. 0 is a (δ, r)-QCSP,
2. minx∈∂S∩B(r) f(x) ≥ −δ, i.e 0 is not a (δ, r)-boundary

QCSP,
To show Lemma 10, we use the fact that, by Lemma 9,

there exists an eigenvector e with e ∈ IntS ∩ ∂B(r) and
f(e) < −δ. For the sake of contradiction, if both −x̂ and
x̂ are not in S, at least one of them has a non-negative inner
product with e. W.l.o.g. we assume x̂⊤e ≥ 0, and we con-
sider an arc on ∂B(r) connecting x̂ and e. Since e ∈ S and
x̂ /∈ e, the arc intersects ∂S at some point. We show that any
point x on the arc has f(x) < −δ, and hence this also holds
for the point on the boundary, contradicting the assumption
that 0 is not a (δ, r)-boundary QCSP, finishing the proof.

The main idea behind the algorithm is that Algorithm 2
emulates the power method on matrix I − M

L . Hence, for any
ε it allows us to find a vector x such that∣∣x⊤(I − M

L )x
∣∣

∥x∥2
≥ (1− ε)λ|max|

(
I − M

L

)
.

Since λ|max|(M) ≤ L, all eigenvalues of I−M
L are positive,

and hence the power method approximates the eigenvector
corresponding to the largest eigenvalue of I − M

L , and hence
to the smallest eigenvalue of M.

We know that f(x) < −δ, and we aim to find x ∈ B(r)
with f(x) < −(1− ε)δ for a constant ε. Since there exists an
eigenvector e ∈ ∂B(r) of M with 1

2e
⊤Me < −δ, we have

λmin(M) < −2δ
∥e∥2 = −2δ

r2 , and hence the largest eigenvalue of

I − M
L is at least 1 − λmin(M)

L ≥ 1 + 2δ
Lr2 . Finding x with

1
2x

⊤Mx < −(1−ε)δ is equivalent to finding x with x⊤(I−
M
L )x ≥ (1 + 2(1−ε)δ

Lr2 )∥x∥2, and the power method achieves
this in O(log d + Lr2

εδ ) iterations (see proof of Lemma 11 in
the full version).
Lemma 11. Let δ, r > 0, x ∈ Rd and ε ∈ (0, 1). Let f(x) =
1
2x

⊤Mx with λ|max|(M) ≤ L. Let A be a linear subspace
of Rd. If minx∈A∩B(r) f(x) < −δ, then Algorithm 2 finds

x ∈ A ∩ ∂B(r) with f(x) ≤ −(1− ε)δ after T = Õ
(

Lr2

εδ

)
iterations w.h.p.

Finally, we now prove Theorem 8. First, by exhaustive
search, we guess a maximal subset of active constraints I
such that subspace AI formed by these linear constraints has
x ∈ B(r) ∩ S with f(x) < δ. Using Algorithm 2, we find
y ∈ B(r) ∩ AI with f(y) < −(1 − ε)δ. Then y ∈ S by
Lemma 11, since I is a maximal subset of constraints with
an escape direction.

Algorithm 3: HOUDINIESCAPE(x, S, δ): Escaping
from a saddle point

input : Saddle point x, δ from definition of δ-SOSP,
feasible set S = {y | Ay ≤ b ∈ Rk}

output: either reports that x is a δ-SOSP or finds
u ∈ S ∩ B(x, r) with f(u) < f(x)− Ω(δ)

1 Construct f ′(x+ h) – quadratic approximation of
f(x+ h) – using stochastic gradient oracle calls

2 for I – every subset of constraints do
3 A ← {y | A⊤

i x = bi, i ∈ I}, where Ai is the
i-th row of A // Optimize in A

4 Let p be the projection of x on A
5 Let O ∈ Rd×dimA be an orthonormal basis of A
6 Define g(y) := f ′(p+Oy)
7 Algorithm 4 tries to find an escape direction for g
8 if Algorithm 4 finds direction y then
9 return p+Oy

10 Didn’t find escape direction: report that x is a
δ-SOSP

Algorithm 4:
FINDINSIDE(x, δ, (M⊥,v⊥), (r⊥, S⊥))

input : δ from definition of δ-SOSP,
g(y) = 1

2y
⊤M⊥y + y⊤v⊥ – objective in

RdimA,
S⊥ ∩ B(r⊥) – feasible set in RdimA

output: Escaping direction, if exists

1 If any of the following candidates lies in the feasible
set and decreases the objective by Ω(δ), return it:

2 Case 1. Large gradient: argminy∈S⊥∩B(r⊥) y
⊤v⊥

3 Case 2. Solution in the interior: y← −M−1
⊥ v⊥

4 Case 3. Solution on the boundary:

5 Find orthogonal Q and diagonal
Λ = diag(λ1, . . . , λdimA) such that
M⊥ ≈ Q⊤ΛQ

6 Let ṽ← Qv

7 We consider points with coordinates yi ← ṽi

µj−λi

for some µ
8 Find the values of µ for which the points have norm

r⊥
9 The candidates are the points corresponding to

these values of µ

10 If no candidate satisfies the condition, return ⊥

3 Main Result
Our main result is the following theorem that shows how to
find a δ-SOSP.
Theorem 12. Let S = {x | Ax ≤ b} be a set defined
by an intersection of k linear inequality constraints. Let f
satisfy Assumptions 1 and 2 and let minx∈S f(x) = f⋆. Then
there exists an algorithm which for δ > 0 finds a δ-SOSP in
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Õ( f(x0)−f⋆

δ d3(2k+ σ2

δ4/3
)) time using Õ( f(x0)−f⋆

δ (d+ d3σ2

δ4/3
))

stochastic gradient oracle calls.

Our approach is outlined in Algorithms 3 and 45:

• If x is not a δ-SOSP, Algorithm 3 finds an escape direc-
tion, i.e. a point y ∈ S ∩ B(x, r) which significantly
decreases the objective value: f(y) < f(x) − Ω(δ).
Therefore, if x0 is the initial point, our algorithm re-
quires O( f(x0)−f⋆

δ ) calls of Algorithm 3.

• Algorithm 3 enumerates all possible sets of active con-
straints

Recall that we aim to find a δ-SOSP, i.e. x ∈ S such that
f(y) ≥ f(x)− δ, ∀y ∈ S ∩ B(x, r), where r = 3

√
δ/ρ.

Similarly to Section 2, we use a quadratic approximation
and consider two cases depending on whether the minimizer
y lies in the interior or on the boundary of S. The second case
can be reduced to the first in a way similar to Section 2. To
find the minimizer in the interior, we consider the following
cases in Algorithm 3:

Case 1. When the gradient is large, we ignore the quadratic
term, and optimize the function based on the gradient. This
covers the situation when the objective is sensitive to the
change in the argument.

Case 2. When the optimum lies in IntB(x, r), none of
the constraints are active, and hence we can find the unique
unconstrained critical point directly.

Case 3. When the optimum lies in ∂B(x, r), the only ac-
tive constraint is c(y) = ∥y − x∥2 − r2 = 0. By KKT
conditions, for y to be the minimizer, there must exist µ such
that ∇f(y) = µ∇c(y). We show that for each µ, there ex-
ists a unique y(µ) satisfying the condition above, and only
for O(d) values of µ we have y(µ) ∈ ∂B(x, r), resulting in
O(d) candidate solutions.

We now outline the proof of Theorem 12 (full proof is in
the full version). As shown in Section 3.1, we can consider a
quadratic approximation of the objective. By guessing which
constraints are active at the minimizer x⋆ and enforcing these
constraints, we restrict the function to some affine subspace
A. By parameterizing A, we eliminate enforced constraints,
and, since the rest of the constraints are not active at x⋆, we
need to optimize a quadratic function in the intersection of a
ball and linear inequality constraints (see the full version).

3.1 Algorithm 3: Quadratic Approximation
The goal is to build a quadratic approximation of the objective
with some additional properties (see below). To simplify the
presentation, w.l.o.g. (by shifting the coordinate system) we
assume that the current saddle point is 0 and consider the
quadratic approximation of the function:

f(x) ≈ f(0) + x⊤∇f(0) + 1

2
x⊤∇2f(0)x.

Since f is ρ-Lipschitz and r = 3
√

δ/ρ, in B(r) the quadratic
approximation deviates from f by at most δ

6 (see derivation

5Algorithm 3 and 4 are simplified versions of rigorous algo-
rithms in the full version

before Definition 4). For a small value ξ (to be specified
later), we instead analyze a noisy function

f ′(x) = f(0) + x⊤v +
1

2
x⊤Mx,

where:

1. v is a perturbed approximation of∇f(0). The perturba-
tion guarantees that w.h.p. all coordinates of v are suffi-
ciently separated from 0 and linear systems of the form
(M − µI)x = v with rank(M − µI) < d don’t have
any solutions, simplifying the analysis. To approximate
the gradient, we use algorithm VRSG (see the full ver-
sion), which w.h.p. estimates the gradient with precision
σ̃ using Õ(σ

2

σ̃2 ) stochastic gradient oracle calls.

2. M is a perturbed approximation of∇2f(0). The pertur-
bation guarantees that M is non-degenerate with proba-
bility 1. Since the i-th column of∇2f(0) is by definition
lim
τ→0

∇f(τei)−∇f(0)
τ , using a sufficiently small τ and ap-

proximating∇f(τei) and∇f(0) using VRSG, we find
good approximation of the Hessian.

Combining this with the derivation before Definition 4, we
show the following:

Lemma 13. Let f satisfy Assumptions 1 and 2. Let f ′(x) =
f(0) + x⊤v + 1

2x
⊤Mx, where v and M are as in Algo-

rithm 3. For δ > 0, r = 3
√

δ/ρ we have ∥f ′(x)− f(x)∥ < δ
2

for all x ∈ B(r) w.h.p.

Reducing Case x⋆ ∈ ∂S to Case x⋆ ∈ IntS. Similarly
to Section 2, we reduce the case x⋆ ∈ ∂S to the case x⋆ ∈
IntS. If x⋆ ∈ ∂S, then there exist a non-empty set I of
constraints active at x⋆. Consider the iteration of Algorithm 3
where constraints from I are active. These active constraints
define an affine subspace A, which e parameterize: if p =
ProjA(x) and O ∈ Rd×dimA is an orthonormal basis of A,
then any point in A can be represented as p + Oy for y ∈
RdimA. Defining g(y) = f ′(p + Oy), minimizing f ′ in
A ∩ S ∩ B(r) is equivalent to minimizing g in S⊥ ∩ B(r⊥),
where:

1. S⊥ is a set of points y ∈ RdimA such that p+Oy ∈ S,
namely S⊥ = {y | Ai(p +Oy) ≤ bi, i /∈ I}. Hence,
S⊥ is defined by linear inequalities, similarly to S.

2. r⊥ is a radius such that condition y ∈ B(r⊥) is equiv-
alent to p + Oy ∈ B(r). Since p is the projection of
0 on A, we have O⊤p = 0, and hence ∥p + Oy∥2 =
∥p∥2 + ∥Oy∥2. Since O is an orthonormal basis of A,
∥Oy∥ = ∥y∥, and hence r⊥ =

√
r2 − ∥p∥2.

For y⋆ such that x⋆ = p+Oy⋆, no constraints from S⊥ are
active, and hence x⋆ ∈ IntS⊥.

3.2 Algorithm 4: Escaping When y⋆ ∈ IntS⊥
In this section, we the find minimizer y⋆ of function g(y) =
1
2y

⊤M⊥y+y⊤v⊥+C in S⊥ ∩B(r⊥), while assuming that
y⋆ ∈ IntS⊥. Since the solutions we find can be approximate,
we have to guarantee that the objective is not too sensitive to
the change of its argument. It suffices to consider the case
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(a) Case 0: the minimizer is on
∂S. We handle this case when
processing the corresponding
set of active constraints in Al-
gorithm 3.

(b) Case 1: large linear term.
We optimize the objective us-
ing only the linear term. This
case is separate to avoid nu-
merical issues in other cases

(c) Case 2: the minimizer is
in the interior. We can find
the critical point analytically,
by solving a linear equation.

(d) Case 3: the minimizer is on
the boundary. Then, there are
at most O(d) candidates with
norm r⊥

Figure 2: Cases of Algorithm 4

when ∥v⊥∥ is bounded, since for any y ∈ B(r⊥) and pertur-
bation h there exists τ ∈ [0, 1] such that:

|g(y)− g(y + h)| = |(∇g(y + τh))⊤h|
≤ (∥∇g(0)∥+ L∥y + τh∥)∥h⊥∥
≤ (∥v⊥∥+ L(r⊥ + ∥h∥))∥h∥,

where we used that the objective is L-smooth and hence
∥∇g(y + τh)∥ ≤ ∥∇g(0)∥ + L∥y + τh∥. We consider the
situation when ∥v⊥∥ is large as a separate case. Otherwise,
for y⋆, there are only two options: either y⋆ ∈ IntB(r⊥) or
y⋆ ∈ ∂B(r⊥). Algorithm 4 handles these cases, as well as
the case when ∥v∥ is large, separately.
Case 1: ∥v⊥∥ is large. If ∥v⊥∥ is large and we can find
y with small y⊤v⊥, the linear term alone suffices to im-
prove the objective. We show that, if such y doesn’t ex-
ist, then g(y⋆) requires y⋆ ∈ ∂S⊥, which contradicts that
y⋆ ∈ IntS⊥. Below we assume that ∥v⊥∥ is bounded.
Case 2: y ∈ IntB(r⊥). In this case, y⋆ is an unconstrained
critical point of g, and hence it must satisfy ∇g(y) = 0,
implying M⊥y + v⊥ = 0 which gives the unique solution
y = −M−1

⊥ v⊥. since M is a perturbed matrix, so is M⊥,
and hence M⊥ is non-degenerate with probability 1. It re-
mains to verify that y ∈ B(r⊥) ∩ S⊥ and y decreases the
objective by Ω(δ).
Case 3: y ∈ ∂B(r⊥). Since the only active constraint at y⋆

is c(y) = 1
2 (∥y∥

2 − r2⊥) = 0, by the KKT conditions, any
critical point must satisfy∇g(y) = µ∇c(y) for some µ ∈ R,
which is equivalent to M⊥y + v⊥ = µy. Hence, for any
fixed µ, y must be a solution of linear system (M⊥−µI)y =
−v⊥. When M⊥ − µI is degenerate (i.e. µ is an eigenvalue
of M⊥), due to perturbation of v⊥, the system doesn’t have
any solution with probability 1. It leaves us with the case
when M⊥−µI is non-degenerate, when there exists a unique
solution y(µ) := −(M⊥ − µI)−1v⊥.

Diagonalization. Dependence of (M⊥ − µI)−1 on µ
is non-trivial, but for a diagonal M⊥, the inverse can be
found explicitly. Hence, we perform diagonalization of M⊥:
we find orthogonal Q and diagonal Λ such that ∥M⊥ −
Q⊤ΛQ∥ < ε in time O(d3 log 1/ε) [Pan and Chen, 1999].
Setting ε = O(δ/r2⊥), we guarantee that the function changes
by at most O(δ) inB(r⊥). The function y(µ) = −(Q⊤ΛQ−
µI)−1v⊥ can be written as Qy(µ) = −(Λ − µI)Qv⊥, and
hence we work with rotated vectors ỹ(µ) := Qy(µ) and
ṽ := Qv⊥.

Finding candidate µ. Since ỹ(µ) = −(M⊥−µI)−1ṽ, for
the i-th coordinate of ỹ(µ) we have ỹi(µ) =

ṽi

µ−λi
. Since we

are only interested in y(µ) ∈ ∂B(r⊥) and Q is an orthogonal
matrix, we must have:

∥r⊥∥2 = ∥y(µ)∥2 = ∥ỹ(µ)∥2 =
d∑

i=1

ỹi(µ)
2 =

∑
i

ṽ2i
(µ− λi)2

After multiplying the equation by
∏

i(µ − λi)
2, we get an

equation of the form p(µ) = 0, where p is a polynomial of
degree 2d. We find roots µ1, . . . , µ2d of the polynomial in
time O(d2 log d · log log 1/ε) [Pan, 1987], where ε is the re-
quired root precision. For each i, we compute y(µi) and ver-
ify whether it lies in B(r⊥) ∩ S⊥ and improves the objective
by −Ω(δ).

Precision. We find the roots of the polynomial approxi-
mately, and when µ is close to λi for some i, even a small
perturbation of µ can strongly affect yi(µ) = ṽi

µ−λi
. We

solve this as follows: since ∥ỹ(µ)∥ = r⊥, for all i we have
|ỹi(µ)| ≤ r⊥, implying |µ − λi| ≥ |ṽi|

r⊥
. Therefore, µ must

be sufficiently far from any λi, where the lower bound on the
distance depends on r⊥ ≤ 3

√
δ/ρ and on |ṽi|. Noise added to

v is preserved in ṽ, and each coordinate is sufficiently sep-
arated from 0 w.h.p. This reasoning is formalized in the full
version.

4 Conclusion
In this paper, we have shown that it’s possible to escape from
a constrained second-order stationary point with the logarith-
mic number of constraints within polynomial time and using
only a polynomial number of stochastic gradient oracle calls.
We provide experimental results in the full version.

An open question is to determine the conditions that on one
hand guarantee escaping from a saddle point in polynomial
time even for the linear number of constraints, and on the
other hand hold in practice. One such condition can be strict
complementarity.

Another open question is handling non-linear constraints.
We believe that it can be straightforwardly achieved using
techniques from [Ge et al., 2015] by using assumptions on
curvature and linear independence of the constraints. Finally,
an interesting question would be a simpler algorithm for the
general case, e.g. an algorithm resembling the approach from
Section 2.
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Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, De-
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