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Abstract
Multistep prediction models are essential for the
simulation and model-predictive control of dynam-
ical systems. Verifying the safety of such models
is a multi-faceted problem requiring both system-
theoretic guarantees as well as establishing trust
with human users. In this work, we propose a
novel approach, ReLiNet (Recurrent Linear Param-
eter Varying Network), to ensure safety for mul-
tistep prediction of dynamical systems. Our ap-
proach simplifies a recurrent neural network to a
switched linear system that is constrained to guar-
antee exponential stability, which acts as a surro-
gate for safety from a system-theoretic perspec-
tive. Furthermore, ReLiNet’s computation can be
reduced to a single linear model for each time step,
resulting in predictions that are explainable by def-
inition, thereby establishing trust from a human-
centric perspective. Our quantitative experiments
show that ReLiNet achieves prediction accuracy
comparable to that of state-of-the-art recurrent neu-
ral networks, while achieving more faithful and ro-
bust explanations compared to the model-agnostic
explanation method of LIME.

1 Introduction
Multistep prediction of dynamical systems is a key challenge
in the automation of physical systems. A multistep prediction
model f given a window of w initial outputs y1:w and control
inputs u1:w, as well as a horizon of h future control inputs
uw+1:w+h, predicts a sequence of future outputs ŷw+1:w+h:

ŷw+1:w+h = f(y1:w,u1:w,uw+1:w+h) (1)

Such models are employed for various purposes such as
model-predictive control [Wu et al., 2020], simulation [Ma
and Qu, 2020], and position estimation in navigation systems
[Mohajerin and Rohani, 2019].

Verifying the safety of these models is critical for their use
in autonomous systems. We consider two types of safety
verification: formal guarantees and explainability. From a
system-theoretic perspective, the stability of a model can act
as a surrogate for formal safety guarantees. A stable model
has bounded outputs, converges when inputs are constant,

and has diminishing responses to older control inputs. Ac-
cordingly, a stable model guarantees that predictions will stay
within known bounds and that any bad inputs will have lim-
ited impact on future predictions. Stability of multistep pre-
diction models is of interest to control applications. For ex-
ample, assuming stability of the system model can simplify
the optimization problem solved by model-predictive control
algorithms [Mayne et al., 2000].

Explaining how a prediction at each time step is computed
given a sequence of control inputs and an initial window helps
in establishing trust in the model and allows manual verifica-
tion of the model’s safety. Explanations assign importances
to each input of the model for a specific prediction. Human
experts can then use these importances for debugging of mod-
els, such as identifying which inputs cause poor predictions
or whether inputs have unexpected contributions to the pre-
diction, e.g. caused by data leakage.

Deep neural networks are a popular choice for multi-
step prediction due to their high prediction accuracy over
large sequences in various domains [wei Gao et al., 2021;
Mohajerin and Waslander, 2019; Wei et al., 2022]. However,
neural networks are not explainable by default and offer no
safety guarantees. Providing formal safety guarantees is chal-
lenging, as current approaches either only provide soft guar-
antees via regularization or trade prediction accuracy for for-
mal guarantees [Pauli et al., 2022; Revay et al., 2021]. Addi-
tionally, explaining neural networks with model-agnostic ex-
planation methods does not yield explanations faithful to the
neural network and therefore might misrepresent the learned
behavior of the network [Chattopadhyay et al., 2022].

We propose Recurrent Linear Parameter-Varying
Networks (ReLiNet) for multistep prediction with faith-
ful explanations and stability guarantees. Our method
employs a recurrent neural network to generate a lin-
ear model at each time step, which is then used to
perform a prediction. This is equivalent to a linear
parameter-varying system, e.g., [Bamieh and Giarré, 2002;
Turk et al., 2018], where the hidden state of the recurrent
network acts as the switching signal used to determine the
subsystem at each step. ReLiNet is explainable-by-default
and, therefore, fully faithful, as its predictions are computed
by linear models at each time step. Additionally, we propose
StableReLiNet, an extension of ReLiNet, which guarantees a
strong type of stability called exponential stability. Hence,
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the main contributions of this work are:
• Recurrent Linear Parameter-Varying Networks for ex-

plainable multistep prediction, as well as StableRe-
LiNet, an exponentially stable extension of ReLiNet.

• prediction performance of ReLiNet comparable to state-
of-the-art multistep prediction models and outperform-
ing traditional linear and switched linear models.

• improved explanation faithfulness and robustness of
ReLiNet compared to LIME, an established model-
agnostic explanation method.

Our software including proposed models is available online
[Baier et al., 2023; Baier and Frank, 2023].

2 Related Work
2.1 Switched Linear Systems
Linear and switched linear systems are popular in the mod-
eling of dynamical systems thanks to their theoretical prop-
erties and inherent explainability due to their linear input-
output dependencies. Methods for proving system-theoretic
properties, such as stability, are well understood and often
computationally inexpensive [Lin and Antsaklis, 2009]. We
define a switched linear system with d subsystems as follows:

xt = Aσ(t)xt−1 +Bσ(t)ut (2)

ŷt = Cxt (3)

with time step t ∈ {w + 1, . . . , w + h}, system state xt, pre-
dicted output ŷt, control ut and switching function σ : Z+ →
{1, . . . , d}, as well as output matrix C, system matrices Ai

and control matrices Bi for i = 1, . . . , d.
Many switched systems methods, for example, [Hojjatinia

et al., 2020; Sefidmazgi et al., 2015], assume that the switch-
ing function is dependent on an external switching signal or
time. However, to use switched systems for multistep pre-
diction, their switching function cannot depend on time or
an external switching signal, as most dynamic systems are
time-invariant and not controlled by an external switching
signal. Therefore, the switching must be computable from
the state and control input alone. Piecewise affine systems
fulfill this requirement, as their switching function usually
depends on the system state [Lauer, 2013; Massucci et al.,
2021]. A switch occurs whenever the system state moves
from one learned subset in the state space to another sub-
set. Identification of piecewise affine systems is difficult be-
cause, in theory, identifying the correct switch labeling re-
quires an exponential runtime with regards to dataset size re-
sulting in an NP-hard identification problem [Lauer, 2015].
Linear parameter-varying systems are a potential alternative
to discrete switching. Instead of performing a discrete switch-
ing decision, the parameters of the linear subsystem are varied
at each prediction step. However, existing work on such sys-
tems assumes the existence of an external process signal to
determine the parameter variation [Bamieh and Giarré, 2002;
Turk et al., 2018] or reduce the linear parameter-varying sys-
tem to a piecewise affine system [Mejari et al., 2020]. Our
approach of ReLiNet is, at its core, a linear parameter-varying
system in which the external process signal is generated by a
recurrent neural network.

2.2 Deep Neural Networks
Deep neural networks achieve very good multistep predic-
tion accuracy for various dynamical systems, such as un-
manned aerial vehicles [Mohajerin and Waslander, 2019;
Punjani and Abbeel, 2015], cars [Ma and Qu, 2020; Mo-
hajerin and Rohani, 2019], ships [Wei et al., 2022; Woo
et al., 2018], engines [Schürholz et al., 2019], aerodynam-
ics [Li et al., 2019], and energy consumption [Genc, 2017;
Jinil and Reka, 2019]. Most of these works employ recurrent
neural networks [wei Gao et al., 2021; Jinil and Reka, 2019;
Li et al., 2017; Li et al., 2019; Ma and Qu, 2020; Moha-
jerin and Waslander, 2019; Mohajerin and Rohani, 2019;
Schürholz et al., 2019; Wei et al., 2022; Woo et al., 2018]
and specifically long short-term memory (LSTM) networks
show state-of-the-art performance, with dense feedforward
networks [Punjani and Abbeel, 2015] and convolutional neu-
ral networks [Chen et al., 2017; Genc, 2017] as other al-
ternatives. However, while prediction accuracy of these ap-
proaches is generally high, they do not provide formal stabil-
ity guarantees or yield explanations.

2.3 Stability and Robustness of Neural Networks
Stability guarantees on neural networks as proposed, for ex-
ample, by [Bonassi et al., 2021] and [Weigand et al., 2021]
require the solving of constrained optimization problems to
learn a suitable weights, which has only been shown to work
for small networks. Alternatively, enforcement of such con-
straints via regularization can fail during training due to the
increasing complexity of the loss function [Krishnapriyan et
al., 2021] or non-fulfillment of required guarantees, as regu-
larization only acts as a soft constraint. Robustness guaran-
tees, such as upper limits on a network’s Lipschitz constant,
are still considered to be similarly problematic, as they incur
performance penalties in exchange for the formal robustness
guarantee [Pauli et al., 2022; Revay et al., 2021].

2.4 Explainability
Explainability of deep neural networks is heavily researched
for classification and computer vision tasks. On the other
hand, explainability for regression, and especially time-series
regression, are still sparsely researched [Letzgus et al., 2022].

Feature importance-based explanation methods, such as
Local Interpretable Model-agnostic Explanations (LIME)
[Ribeiro et al., 2016] and SHapley Additive exPlanations
(SHAP) [Lundberg and Lee, 2017], explain predictions by as-
signing an importance weight to each input of the model. The
importance weight represents the impact of the input to the
prediction of the model. A good explanation method yields
explanations that are faithful to the behavior of the original
model, robust to noise in the input, and simple to understand
for humans [Alvarez Melis and Jaakkola, 2018].

Faithfulness. Faithfulness is measured by reconstructing a
model’s prediction from an explanation and comparing this
reconstruction to the original prediction [Alvarez Melis and
Jaakkola, 2018; Yeh et al., 2019]. High faithfulness thus cor-
responds to a small difference between the reconstructed pre-
diction and the actual prediction.
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Robustness. Explanation robustness measures to what de-
gree changes in the input alter the explanation. Since an ex-
plainer should yield similar explanations for similar inputs, it
is desirable for the explainer to be robust towards such input
perturbations [Guidotti and Ruggieri, 2019].

Simplicity. Simplicity measures the number of normalized
feature importances with significantly large values. An expla-
nation is simple if only a few features are assigned large im-
portances, while an explanation is complex when many fea-
tures are considered important to a prediction [Bhatt et al.,
2020]. Simplicity counteracts faithfulness since it is harder
to fully replicate a model’s prediction with fewer features.

Model-agnostic explanations. LIME [Ribeiro et al., 2016]
and SHAP [Lundberg and Lee, 2017] are model- and task-
agnostic and therefore also able to explain time-series regres-
sion models. Specific to time-series tasks, [Schlegel et al.,
2021] propose Time Series Multivariate and Univariate Lo-
cal Explanations (TS-MULE), an extension of LIME for time
series, which is specifically designed to explain time-series
regression and classification methods while remaining model
agnostic. While TS-MULE is applicable to some time-series
tasks, it does not consider the impact of initial states on the
prediction and is therefore not applicable to multistep predic-
tion. Model-agnostic explanation methods typically struggle
with faithfulness as their explanation is derived from a lo-
cal estimate of the model rather than the actual model [Chat-
topadhyay et al., 2022].

Explainable-by-definition models. A recent approach to
improving the faithfulness of explanations is explainable-by-
definition models, which yield explanations as part of their
prediction. Such approaches typically consist of a com-
plex architecture that is reduced to a simple model for each
prediction. For example, various methods for classification
in computer vision reduce a deep neural network to a lin-
ear model for each prediction [Brendel and Bethge, 2019;
Bohle et al., 2021; Böhle et al., 2022; Chen et al., 2019;
Marcos et al., 2020]. Other approaches induce tree struc-
tures into neural networks such that the neural network re-
sembles a decision tree [Nauta et al., 2021; Wu et al., 2021]
or decompose predictions into sets of rules [Chattopadhyay
et al., 2022]. Similar to our proposed method, B-cos net-
works are reduced to a single linear layer for each prediction
[Böhle et al., 2022]. B-cos layers replace dense network lay-
ers and are therefore applicable to a variety of feedforward
networks. However, B-cos layers are not applicable to most
recurrent neural network architectures, such as LSTMs and
GRUs, since B-cos layers do not allow for the gating mecha-
nism necessary in these architectures. At the time of writing,
we could not identify explainable-by-definition architectures
directly applicable to multistep prediction.

3 ReLiNet: Recurrent Linear
Parameter-Varying Networks

ReLiNet consists of a recurrent neural network (RNN) and
a linear parameter-varying system (Eq. 2). The parameter-
varying system depends on the RNNs hidden state ht (Eq. 4).

ht is mapped to the system matrix At (Equation 5) and con-
trol matrix Bt (Eq. 6) at each time step. The system state xt

at each time step is computed given the previous state xt and
control ut via At and Bt (Eq. 7). Finally, the predicted out-
put yt is computed given the state xt using the output matrix
C (Eq. 8). The indirection introduced by using a linear model
for prediction has some advantages over a regular neural net-
work. The architecture can easily be modified to guarantee
exponential stability (see Section 3.1). Furthermore, ReLiNet
also provides faithful explanations with each prediction due
to its architecture (see Section 3.2). However, the indirec-
tion may reduce the model’s prediction accuracy. We address
this issue by setting the system state xt to a larger dimension
than the output ŷt, which overparameterizes the system ma-
trix At and control matrix Bt. This allows the system state to
represent latent dynamics not represented by the output. The
forward computation of our model is defined as follows:

ht = RNN(ut,ht−1;θ) (4)
At = reshapes×s(Wht) (5)
Bt = reshapes×c(V ht) (6)
xt = Atxt−1 +Btut (7)
ŷt = Cxt (8)

for t ∈ {w + 1, w + h}, with system state dimension s, con-
trol dimension c, output dimension o ≤ s, trainable weights
θ, W , V and C, as well as the initial hidden state hw and ini-
tial system state xw. We initialize xw with the initial output
and zero padding [yw 0]

⊤, as the system state is unknown.
reshapes×c denotes the reshaping of a vector to a matrix,
such that a vector of shape Rs·c is mapped into a matrix of
shape Rs×c.

This model given by
ŷw+1:w+h = ReLiNet(y1:w,u1:w,uw+1:w+h;

(θ,W ,V ))
(9)

is then trained via backpropagation-through-time over the
mean squared error loss with n samples and a horizon of h
steps:

L((θ,W ,V )) =
1

n · h

n∑
i=1

h∑
t=1

||y (i)
w+t − ŷ

(i)
w+t||22 (10)

We follow the approach from [Mohajerin and Waslander,
2019], which proposes encoding the initial window of states
and control inputs in the hidden state hW to improve the mul-
tistep prediction accuracy of RNNs. This is done by employ-
ing an initializer RNN, which receives this window as input
and is trained to predict the next state for each time step in
the initial window. The final hidden state of this RNN is then
used to initialize the predictor in Equation 4.

3.1 Guaranteeing Exponential Stability
In this section, we will introduce StableReLiNet, an exten-
sion of ReLiNet with exponential stability guarantees. We
consider exponential stability for our method as it is a strong
type of stability that not only implies asymptotic stability but
also ensures that effects of any input and input perturbations
will decay exponentially with time. Exponential stability is
defined as follows by [Zhai et al., 2002]:
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Definition 1. A switched system is globally exponentially sta-
ble with stability degree 0 < λ < 1 if

∥xt∥2 ≤ c · λt ∥x0∥2 (11)

holds for all t > 0, with some initial state x0, ut = 0, and a
constant c > 0.

[Zhai et al., 2002] shows that a switched system (Eq. 2) is
exponentially stable under arbitrary switching if all of its sub-
systems are Schur stable and the respective system matrices
Ai are pairwise commutative. Schur stability is defined as:

Definition 2. A discrete-time linear system xt = Axt−1 +
But is Schur stable, if the eigenvalues of A lie in the open
unit disk, i.e. all eigenvalues λi of A fulfill the inequality
|λi| < 1.

The theorem by [Zhai et al., 2002] is then given as follows:

Theorem 1. A switched linear system as defined in Equa-
tion 2 is exponentially stable, if all system matrices Ai for
i ∈ {1, . . . , d} are pairwise commutative, i.e. AiAj =
AjAi ∀i, j ∈ {1, . . . , d}, and all system matrices Ai are
Schur stable.

We can modify the mechanism of our method (Section 3)
to fulfill the required properties given by Theorem 1. Given a
non-singular matrix T , simultaneously diagonalizable matri-
ces Ai := T−1DiT and Aj := T−1DjT are always pair-
wise commutative and their diagonal matrices Di and Dj

consist of their respective eigenvalues.
Using this observation, we can restrict the structure of our

method to always yield Schur stable and simultaneously di-
agonalizable system matrices At and thereby generate an ex-
ponentially stable switched linear system. StableReLiNet is
then defined as follows:

ht = RNN(ut,ht−1; θ) (12)
Dt = diag(tanh(Wht)) (13)

At = T−1DtT (14)
Bt = reshapen×m(V ht) (15)
xt = Atxt−1 +Btut (16)
ŷt = Cxt (17)

with trainable weights θ, W , V , C, and T . We do not en-
force T to be non-singular during training and instead let
training fail if there is no inverse, which did not occur dur-
ing any of our experiments. In general, it is not necessary to
enforce non-singularity of T , as the probability of a randomly
initialized matrix to be singular is 0. This is because the set
of singular matrices corresponds to a hyperplane in the set of
all matrices of the same dimension.

Based on Theorem 1, it follows that the switched system
generated by our method is exponentially stable:

Theorem 2. The switched system given by Equations 12–17
is exponentially stable.

Proof. The subsystem matrices Ai are given by Ai =
T−1DiT with Di = diag(tanh(W (D)hi)) for all hi.
Accordingly, every matrix Ai is Schur stable, as their
eigenvalues lie in the open unit disk. Additionally, all

pairs of matrices Ai and Aj are pairwise commutative,
since AiAj = T−1DiTT−1DjT = T−1DiDjT =
T−1DjTT−1DiT = AjAi. As all subsystem matri-
ces are Schur stable and pairwise commutative, it follows
that the switched system is exponentially stable [Zhai et al.,
2002].

Since our model is by definition exponentially stable, it re-
quires no further regularization or constraints during training.

3.2 Explaining Multistep Predictions
ReLiNet faithfully explains each of its predictions, as the gen-
erated linear parameter-varying system acts as both predictor
and explanation for each time step. An explainer for mul-
tistep prediction is a function Φ, which given an input con-
sisting of initial window y1:w and u1:w, as well as control
sequence uw+1:w+h and a corresponding multistep model f
(see Equation 1), produces an explanation as follows:

F =
[
F

(y)
1 . . . F

(y)
w F

(u)
1 . . . F

(u)
w+h

]
= Φ([y1:w,u1:w,uw+1:w+h] , f)

(18)

Each F
(u)
t and F

(y)
t corresponds to the importance of the re-

spective input. We also require that an explanation can be
used to reproduce the original prediction ŷw+h by comput-
ing the inner product between feature importances and inputs
with some degree of accuracy:

∗
yw+h =F

(y)
1 y1 + · · ·+ F (y)

w yw

+F
(u)
1 u1 + · · ·+ F

(u)
w+huw+h

(19)

An explanation method is faithful to the model f , if model
prediction ŷw+h and explanation prediction ∗

yw+h are similar
for every input.

We write the prediction of ReLiNet for a horizon h as:
ŷw+h = C · (Aw+h · · ·Aw+1xw

+Aw+h · · ·Aw+2Bw+1uw+1

+ · · ·+Bw+huw+h)

(20)

Given this representation of ReLiNet, the feature importances
are given by the matrices attached to the initial output yw and
control inputs uw+1:w+h. ReLiNet then fulfills the explainer
definition given in Equation 18 as follows:
Φ([y1:w,u1:w,uw+1:w+h] ,ReLiNet) =

[0, . . . ,0︸ ︷︷ ︸
×(w−1)

,CAw+h · · ·Aw+1︸ ︷︷ ︸
×1

,

0, . . . ,0︸ ︷︷ ︸
×w

,CAw+h · · ·Aw+2Bw+1, . . . ,CBw+h︸ ︷︷ ︸
×h

]

(21)

Accordingly, an explanation for time step w + h summarizes
all feature importances from previous time steps and, conse-
quently, is a meaningful explanation for multistep prediction.

Other than guaranteeing exponential stability, StableRe-
LiNet should also yield simpler explanations, since feature
importance of control inputs and the initial state decays ex-
ponentially over time. Therefore, only recent control inputs
will have a significant impact on the prediction, and conse-
quently, few features are needed to explain a prediction. We
show these benefits in the evaluation in Section 5.
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4 Experimental Setup
4.1 Datasets
Ship maneuvering (SHIP-IND/OOD). A dataset for a 4
degrees-of-freedom ship maneuvering under environmental
disturbances is provided by [Baier and Staab, 2022]. The
dataset consists of 450,000 time steps with a sampling rate
of 1Hz and is split into a 60%-10%-30% training-validation-
test split. In addition to the regular test set, an out-of-
distribution test set with 104,400 time steps is provided. We
refer to the in-distribution test set as SHIP-IND and the out-
of-distribution test set as SHIP-OOD. The control input is 4-
dimensional consisting of a propeller speed, 2 rudder angles,
and a wind speed in the inertial frame, while the output is 7-
dimensional consisting of 2 linear and 2 angular velocities,
the ship’s roll angle, and the wind’s angle of attack decom-
posed into a longitudinal and a lateral component.
Industrial robot (ROBOT). A dataset for a 6 degrees-of-
freedom industrial robot arm is provided by [Weigand et al.,
2022]. The dataset consists of 43,624 time steps with a sam-
pling rate of 10Hz and is split into a 90%-10% training-test
split. We perform an additional split for validation on the
training set, such that the final split is 70%-20%-10%. We
follow the suggestion from [Weigand et al., 2022] to measure
multistep prediction accuracy with the NRMSE (cf. Eq. 22)
averaged over every state and refer to this test set as ROBOT.
Finally, the control input consists of 6 motor torques while
the output consists of 6 joint angles.

4.2 Multistep Prediction Models and Explainers
Models. We compare our proposed approaches of ReLiNet
and StableReLiNet against linear and switched linear mod-
els, as well as neural networks. As a linear model, we em-
ploy QLag, which serves as a baseline as proposed by [Pun-
jani and Abbeel, 2015]. QLag is an autoregressive model
that includes a quadratic feature mapping of control inputs.
As a switched system, we employ k-LinReg as proposed by
[Lauer, 2013], which implements a k-Means inspired algo-
rithm to identify the linear models and their respective subsets
in parallel. Then, as a state-of-the-art neural network, we use
an LSTM model with hidden state initialization [Mohajerin
and Waslander, 2019]. ReLiNet also employs an LSTM as a
predictor and uses their proposed initialization scheme. Hy-
perparameters are selected via grid search on the validation
set. The hyperparameters performing best on the validation
set are used for testing.
Explainers. We evaluate explanation performance by com-
paring ReLiNet and StableReLiNet to the well known model-
agnostic explanation method LIME [Ribeiro et al., 2016].
Here, LIME serves as a sanity check to show that our method
yields reasonably simple and robust explanations, while be-
ing faithful by definition.

4.3 Evaluation Metrics
We employ a window size and horizon size of w = h = 60
for both datasets during model inference. Prediction accuracy
is measured for singlestep prediction h = 1 and multistep
prediction h = 15, 30, 45, 60. Explanation metrics are com-
puted with regards to the last prediction ŷw+h for h = 60.

Accordingly, each explainer explains 60 · o · (o+2c) features
with output dimension o and control dimension c. Accord-
ingly, there are 5040 and 6480 features to explain per predic-
tion for SHIP-IND/OOD and ROBOT respectively.
Prediction accuracy. We measure prediction accuracy
with the Normalized Root Mean Squared Error (NRMSE) av-
eraged over each state variable [Du et al., 2020; Lauer, 2013;
Weigand et al., 2022]:

NRMSE =
1

o

o∑
j=1

√√√√ 1

n · h · σ2
j

n∑
i=1

h∑
t=1

(
y

(i)
w+t,j − ŷ

(i)
w+t,j

)2

(22)

with n true and predicted output sequences y
(i)
w+1:w+h and

ŷ
(i)
w+1:w+h, as well as standard deviations σj on the test set

for each output dimension j.
Faithfulness. We measure faithfulness by computing the
infidelity similar to [Yeh et al., 2019], where a higher in-
fidelity indicates lower faithfulness. Infidelity measures the
local error of the explainer predictions compared to the true
model for various inputs:

INF =
1

o

o∑
j=1

√√√√ 1

n · σ2
j

n∑
i=1

(
x̂

(i)
w+h,j −

∗
x

(i)
w+h,j

)2
(23)

with n test samples, explainer predictions ∗
y

(i)
w+h and model

predictions ŷ (i)
w+h,j defined as

∗
y

(i)
w+h,j =

(
F

(i)
j,:

)⊤
·
([

y
(i)
1:w,u

(i)
1:w,u

(i)
w+1:w+h

])
(24)

ŷ
(i)
w+h =f

([
y
(i)
1:w,u

(i)
1:w,u

(i)
w+1:w+h

])
(25)

F (i) =Φ
([

y
(i)
1:w,u

(i)
1:w,u

(i)
w+1:w+h

]
, f

)
(26)

Robustness. We measure the robustness of an explainer by
estimating the explainer’s Lipschitz constant similar to the
maximum sensitivity method proposed by [Yeh et al., 2019].
A smaller Lipschitz constant indicates better robustness. The
Lipschitz estimate is then defined as follows:

LIP = max
i∈{1,...,n},
k∈{1,...,e}

∣∣∣∣∣∣v (i,k)
dist − v

(i)
orig

∣∣∣∣∣∣
2∣∣∣∣ϵ (i,k)

∣∣∣∣
2

(27)

with

v
(i,k)

dist =

flatten
(
Φ
([

y
(i)
1:w,u

(i)
1:w,u

(i)
1:W+H

]
+ ϵ (i,k), f

)) (28)

v
(i)

orig = flatten
(
Φ
([

y
(i)
1:w,u

(i)
1:w,u

(i)
1:w+h

]
, f

))
(29)

with e disturbances per test sample and flatten denoting the
flattening of a matrix to a vector. The disturbances ϵ (i,k)

are drawn from a Gaussian distribution with zero mean. The
standard deviation is derived from the standard deviation of
the respective variables in the training data.
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Model h = 1 h = 15 h = 30 h = 45 h = 60

QLag 0.054 ± 0.000 0.152 ± 0.000 0.199 ± 0.000 0.235 ± 0.000 0.267 ± 0.000
k-LinReg 0.190 ± 0.003 0.756 ± 0.045 3.456 ± 1.934 89.06 ± 111.0 176.9 ± 286.4
LSTM 0.127 ± 0.002 0.173 ± 0.001 0.190 ± 0.001 0.200 ± 0.002 0.208 ± 0.001
ReLiNet 0.090 ± 0.002 0.164 ± 0.003 0.188 ± 0.003 0.203 ± 0.002 0.216 ± 0.002
StableReLiNet 0.092 ± 0.002 0.183 ± 0.001 0.200 ± 0.001 0.210 ± 0.001 0.220 ± 0.002

(a) SHIP-IND

Model h = 1 h = 15 h = 30 h = 45 h = 60

QLag 0.157 ± 0.000 0.286 ± 0.000 0.360 ± 0.000 0.423 ± 0.000 0.475 ± 0.000
k-LinReg 0.491 ± 0.016 2.074 ± 0.279 8.200 ± 3.242 36.23 ± 24.22 361.7 ± 538.4
LSTM 0.271 ± 0.006 0.316 ± 0.004 0.329 ± 0.005 0.342 ± 0.006 0.354 ± 0.006
ReLiNet 0.240 ± 0.006 0.287 ± 0.006 0.291 ± 0.006 0.301 ± 0.008 0.319 ± 0.011
StableReLiNet 0.216 ± 0.003 0.324 ± 0.003 0.342 ± 0.003 0.356 ± 0.004 0.369 ± 0.005

(b) SHIP-OOD

Model h = 1 h = 15 h = 30 h = 45 h = 60

QLag 0.006 ± 0.000 0.049 ± 0.000 0.206 ± 0.000 0.493 ± 0.000 0.808 ± 0.000
k-LinReg 0.055 ± 0.031 0.215 ± 0.007 0.496 ± 0.017 0.791 ± 0.029 0.975 ± 0.032
LSTM 0.068 ± 0.002 0.178 ± 0.004 0.283 ± 0.006 0.364 ± 0.006 0.409 ± 0.011
ReLiNet 0.076 ± 0.038 0.355 ± 0.015 0.464 ± 0.018 0.528 ± 0.021 0.565 ± 0.021
StableReLiNet 0.038 ± 0.002 0.262 ± 0.029 0.400 ± 0.025 0.543 ± 0.020 0.548 ± 0.017

(c) ROBOT

Table 1: NRMSE for each model on the ship maneuvering (SHIP-IND/OOD) and industrial robot (ROBOT) dataset. Prediction accuracy is
evaluated for single-step prediction with horizon h = 1 and multistep prediction with horizons h = 15, 30, 45, 60 respectively. The best,
second and third best scores per column are marked in bold, bold+italics, and italics respectively. 95% confidence intervals are computed by
repeating training and inference 10 times per model.

Simplicity. We measure explanation simplicity by count-
ing the number of relevant features. A feature is relevant if
its absolute normalized value exceeds a predefined threshold.
[Nguyen and Martı́nez, 2020] defines this as effective com-
plexity. For a threshold p ∈ [0, 1], we define simplicity as:

SIM = 1− 1

n · o ·m

n∑
i=1

o∑
j=1

m∑
k=1

t
|F (i)

j,k |∑m
l=1 F

(i)
j,l |

≥ p

|

(30)

with number of input features m = w(o+ c) + hc, output di-
mension o, and control dimension c. J·K denotes the indicator
function returning 1 if the proposition is true and 0 otherwise.
For the evaluation, we use p = 1%. This threshold is chosen,
as it is the largest threshold for which the evaluated explainers
show differences in their simplicity scores.

5 Evaluation
5.1 Multistep Prediction
The results for single- and multistep prediction on the ship
datasets (SHIP-IND and SHIP-OOD), as well as the industrial
robot dataset (ROBOT), are summarized in Table 1.

Based on the results, we can see that QLag achieves
the highest singlestep prediction accuracy across all three
datasets, but the results diverge for larger horizons. k-LinReg
produces relatively accurate estimates for single-step predic-
tion on ROBOT but otherwise its accuracy is relatively low.

We also observe that k-LinReg hugely diverges for increas-
ing prediction horizons with errors aggregating over multiple
prediction steps, yielding a less accurate predicted state with
each step. Accordingly, the switching decision of k-LinReg,
which is dependent on the predicted state, is more likely to
select a bad subsystem, resulting in even worse predictions.

LSTM and ReLiNet produce comparable prediction errors
across SHIP-IND and SHIP-OOD and are either the best or
second-best performing models for larger prediction hori-
zons. That is, for SHIP-IND, ReLiNet achieves more ac-
curate predictions for lower horizons h = 1, 15, 30, while
LSTM slightly outperforms ReLiNet for h = 45, 60. Fur-
thermore, ReLiNet outperforms LSTM for every horizon in
SHIP-OOD, which demonstrates its ability to deal with out-
of-distribution data. In ROBOT, the ReLiNet and StableRe-
LiNet results are slightly worse than LSTM overall. However,
StableReLiNet performs second-best for h = 1 and h = 60.
Otherwise, StableReLiNet yields the third best prediction er-
ror for larger horizons for SHIP-IND and SHIP-OOD outper-
forming QLag and k-LinReg.

The results show that ReLiNet is competitive to LSTM on
all datasets, while providing faithful explanations. StableRe-
LiNet usually trades a small reduction in prediction accuracy
for exponential stability. This trade-off is also seen in related
work (Section 2.3), where other system-theoretic guarantees
result in decreased prediction accuracy.
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Model INF ↓ LIP ↓ SIM ↑
LIME 2959.4 0.80 99.82%
ReLiNet 0.0 0.04 99.83%
StableReLiNet 0.0 0.16 99.60%

(a) SHIP-IND

Model INF ↓ LIP ↓ SIM ↑
LIME 1371.5 0.78 99.82%
ReLiNet 0.0 0.01 99.83%
StableReLiNet 0.0 0.02 99.60%

(b) SHIP-OOD

Model INF ↓ LIP ↓ SIM ↑
LIME 7.6 1.72 99.63%
ReLiNet 0.0 0.42 99.59%
StableReLiNet 0.0 1.32 99.55%

(c) ROBOT

Table 2: Infidelity (INF), Lipschitz estimate (LIP), and simplicity (SIM) for each explanation method, and for each evaluated dataset. LIME
explains the predictions of LSTM. All explanations are evaluated for a horizon of h = 60.
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joint angle 1

Figure 1: Example of a ReLiNet explanation on the ROBOT dataset.
ReLiNet predicts ŷ60,1, which is the angle of the first robot arm
joint at horizon h = 60. The matrix shows the contribution of each
control variable at each time step to the predicted angle. Summing
over the matrix and adding the offset yields the angle predicted by
ReLiNet. ⊙ denotes element-wise multiplication.

5.2 Explainability
Table 2 summarizes the explanation results for LIME applied
to LSTM, ReLiNet, and StableReLiNet for the longest pre-
diction horizon of h = 60 across all three datasets.

From the results, we can see that ReLiNet and StableRe-
LiNet produce an infidelity score of INF = 0.0, which sug-
gests both of them are fully faithful. This is because their
linear model at each time step acts as both a predictor and
an explanation. In comparison, LIME yields non-zero infi-
delity scores for all datasets, which is expected for a model-
agnostic explanation method. Since the infidelity metric is
the NRMSE between model prediction (LSTM) and explainer
prediction, we also note that the infidelity of LIME is very
high for SHIP-IND and SHIP-OOD compared to the predic-
tion errors shown in Table 1. This indicates that LIME strug-
gles with faithfully explaining multistep prediction models.

Secondly, we found that ReLiNet and StableReLiNet
achieve lower Lipschitz estimates (LIP) and therefore better
robustness than LIME across all three datasets. These results
demonstrate the explanation robustness of our approaches.

Additionally, we find that all three explainers yield similar
simplicity scores (SIM). This is within expectations, as LIME
and StableReLiNet employ mechanisms to reduce the num-
ber of significant feature importances. LIME uses a Lasso re-
gressor as its local estimator, which enforces sparseness on its
weights and therefore sparseness on the feature importances.
StableReLiNet is exponentially stable and therefore provides

exponentially diminishing importances to older inputs. Re-
LiNet does not explicitly implement a mechanism to ensure
simple explanations. However, it is plausible to assume that
ReLiNet is inferring this behavior from data, as most physical
systems have diminishing responses to older control inputs.

Figure 1 shows an explanation generated by ReLiNet for
the ROBOT dataset. The displayed matrix indicates the con-
tribution of each control variable at each time step to the pre-
dicted joint angle. As hypothesized in the previous paragraph,
ReLiNet assigns higher importance to the most recent inputs,
improving explanation simplicity. Additionally, we observe
that the motor attached to the first joint also has the largest im-
pact on the corresponding angle of the joint, which matches
our expectation of the actual system and accordingly indicates
that ReLiNet learns physically plausible behavior.

In summary, we observe that ReLiNet yields more faithful
and robust explanations compared to LIME without a reduc-
tion in explanation simplicity.

6 Conclusion
In this work, we show the competitive multistep prediction
accuracy of our proposed method, ReLiNet, in comparison
to LSTM, a state-of-the-art multistep prediction model, while
providing explanations that are more faithful and robust than
the model-agnostic explainer LIME. Additionally, we have
proven that StableReLiNet, an extension of ReLiNet, is expo-
nentially stable by definition. StableReLiNet sacrifices pre-
diction accuracy for exponential stability performing worse
than ReLiNet and LSTM but still outperforming the linear
model, QLag, and switched linear model, k-LinReg.

Explainable-by-definition models are a promising direc-
tion of research for multistep prediction of dynamical systems
under system-theoretic constraints. By reducing a neural net-
work to a simpler model for each prediction, it is possible to
enforce constraints on the simpler model, thereby providing
provable guarantees on the neural network. We have shown
this with StableReLiNet, where we reduce an LSTM to a con-
strained linear parameter-varying system and thereby guaran-
tee the exponential stability of the model. Existing research
on the stability of switched linear systems, such as [Lin and
Antsaklis, 2009], could enable further variants of ReLiNet for
different classes of stability, which might yield better trade-
offs with regards to prediction accuracy.
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Grégoire Montavon. Toward Explainable Artificial In-
telligence for Regression Models: A methodological per-
spective. IEEE Signal Processing Magazine, 39(4):40–58,
2022.

[Li et al., 2017] Guoyuan Li, Bikram Kawan, Hao Wang,
and Houxiang Zhang. Neural-network-based modelling
and analysis for time series prediction of ship motion. Ship
Technology Research, 64, 2017.

[Li et al., 2019] Kai Li, Jiaqing Kou, and Weiwei Zhang.
Deep neural network for unsteady aerodynamic and aeroe-
lastic modeling across multiple mach numbers. Nonlinear
Dynamics, 96:1–21, 2019.

[Lin and Antsaklis, 2009] Hai Lin and Panos J. Antsaklis.
Stability and stabilizability of switched linear systems: A
survey of recent results. IEEE Trans. Automatic Control,
54(2):308–322, 2009.

[Lundberg and Lee, 2017] Scott M Lundberg and Su-In Lee.
A unified approach to interpreting model predictions. In
NeurIPS, volume 30. Curran Associates, Inc., 2017.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3468

https://doi.org/10.18419/darus-3455
https://doi.org/10.18419/darus-3455
https://doi.org/10.18419/darus-2905
https://doi.org/10.18419/darus-2905
https://doi.org/10.18419/darus-3457
https://doi.org/10.18419/darus-3457
https://arxiv.org/abs/2207.00938
https://arxiv.org/abs/2207.00938


[Ma and Qu, 2020] Lijing Ma and Shiru Qu. A se-
quence to sequence learning based car-following model
for multi-step predictions considering reaction delay.
Transportation Research Part C: Emerging Technologies,
120:102785, 2020.

[Marcos et al., 2020] Diego Marcos, Ruth Fong, Sylvain Lo-
bry, Remi Flamary, Nicolas Courty, and Devis Tuia. Con-
textual semantic interpretability. In ACCV, November
2020.

[Massucci et al., 2021] Louis Massucci, Fabien Lauer, and
Marion Gilson. Regularized switched system iden-
tification: a statistical learning perspective. IFAC-
PapersOnLine, 54(5):55–60, 2021. 7th IFAC Conference
on Analysis and Design of Hybrid Systems ADHS 2021.

[Mayne et al., 2000] D.Q. Mayne, J.B. Rawlings, C.V. Rao,
and P.O.M. Scokaert. Constrained model predictive con-
trol: Stability and optimality. Automatica, 36(6):789–814,
2000.

[Mejari et al., 2020] Manas Mejari, Vihangkumar V. Naik,
Dario Piga, and Alberto Bemporad. Identification of hy-
brid and linear parameter-varying models via piecewise
affine regression using mixed integer programming. Int. J.
Robust and Nonlinear Control, 30(15):5802–5819, 2020.

[Mohajerin and Rohani, 2019] Nima Mohajerin and Mohsen
Rohani. Multi-step prediction of occupancy grid maps
with recurrent neural networks. In CPVR, June 2019.

[Mohajerin and Waslander, 2019] Nima Mohajerin and
Steven L. Waslander. Multistep prediction of dynamic
systems with recurrent neural networks. IEEE TNNLS,
30(11):3370–3383, 2019.

[Nauta et al., 2021] Meike Nauta, Ron van Bree, and
Christin Seifert. Neural prototype trees for interpretable
fine-grained image recognition. In CVPR, pages 14933–
14943, June 2021.

[Nguyen and Martı́nez, 2020] An-phi Nguyen and
Marı́a Rodrı́guez Martı́nez. On quantitative aspects
of model interpretability. CoRR, abs/2007.07584, 2020.

[Pauli et al., 2022] Patricia Pauli, Anne Koch, Julian
Berberich, Paul Kohler, and Frank Allgöwer. Training
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