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Abstract
Reinforcement Learning’s (RL) ubiquity has in-
stigated research on potential threats to its train-
ing and deployment. Many works study single-
learner training-time attacks that ”pre-programme”
behavioral triggers into a strategy. However, at-
tacks on collections of learning agents remain
largely overlooked. We remedy the situation by
developing a constructive training-time attack on
a population of learning agents and additionally
make the attack agnostic to the population’s size.
The attack constitutes a sequence of environment
(re)parameterizations (poisonings), generated to
overcome individual differences between agents
and lead the entire population to the same target
behavior while minimizing effective environment
modulation. Our method is demonstrated on pop-
ulations of independent learners in ”ghost” envi-
ronments (learners do not interact or perceive each
other) as well as environments with mutual aware-
ness, with or without individual learning. From the
attack perspective, we pursue an ultra-blackbox set-
ting, i.e., the attacker’s training utilizes only across-
policy traces of the victim learners for both at-
tack conditioning and evaluation. The resulting un-
certainty in population behavior is managed via a
novel Wasserstein distance-based Gaussian embed-
ding of behaviors detected within the victim popu-
lation. To align with prior works on environment
poisoning, our experiments are based on a 3D Grid
World domain and show: a) feasibility, i.e., despite
the uncertainty, the attack forces a population-wide
adoption of target behavior; b) efficacy, i.e., the at-
tack is size-agnostic and transferable. Code and
Appendices are available at ”bit.ly/github-rb-cep”.

1 Introduction
Reinforcement learning (RL) has proliferated most AI ap-
plications that investigate unexplored spaces and has be-
stowed these applications with remarkable capabilities, su-
perhuman at times [Mnih et al., 2013; Mnih et al., 2015;
Lample and Chaplot, 2017]. Alas, there is no Superman with-
out Kryptonite. RL methods are subject to a variety of attacks

that can degrade a policy’s performance during deployment;
introduce behavior triggers into it or force an agent to learn
an a priori non-optimal target strategy [Chen et al., 2019;
Ilahi et al., 2021]. To achieve this, an adversarial system is
constructed that encompasses an RL agent, its environment,
and its task. In these systems, the RL agent is regarded as
the victim, its RL environment, the victim environment, and
the task, the victim task. In addition to the victim, the system
includes an adversary, tasked with attacking the victim agent.
Since the attacker’s task is no easier than the victim’s, ma-
chine learning solutions (and RL, in particular) have been de-
ployed on the attacker’s side as well. All attack solutions are
commonly classified by 3 features: the form of attack (Train
vs Test), the mode of attack (Reward vs Observation vs Envi-
ronment), and the level of access (Whitebox vs Blackbox) to
the victim’s inner workings granted to the attacker.

In this paper, we focus on training-time, environment-
poisoning attacks. That is we seek to influence the train-
ing/optimization of the victim agent’s policy by means of al-
tering the victim environment’s dynamics akin to [Xu et al.,
2021; Behzadan and Munir, 2017; Rakhsha et al., 2020]. The
goal of the attack is to introduce ”backdoors” or behavioral
triggers into the victim’s learned strategy by means encapsu-
lated within the environment mechanics while avoiding ac-
cess to the victim’s inner workings. Furthermore, following
this line of reasoning, we favor a blackbox setting, wherein an
attacker estimates the victim’s behavior policy by observing
the victim’s interaction with its environment and then condi-
tions the attack on this estimated behavior. In fact, we expand
this notion. Normally, during the attacker’s training, the sys-
tem would have access to a proxy victim’s inner workings.
Such a proxy victim’s actual strategy would be used to gener-
ate an extrinsic reward signal for the attacker. In contrast, this
paper adopts an Ultra-Blackbox (UB) setting, where the re-
ward signal is intrinsic, i.e., generated based on the observed
and perceived behavior of the (proxy) victim without any ac-
cess to its inner workings.

There exists some progress in attacking Multi-agent RL
(MARL) systems (e.g., [Chen et al., 2022; Pham et al., 2022;
Liu et al., 2023; Chelarescu, 2021; Lin et al., 2020]). How-
ever, to the best of the authors’ knowledge, none have yet
studied the question of multiple RL agents being attacked
simultaneously with an environment poisoning attack. Eye-
ing social and collective learning settings (e.g., [Parisotto et
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al., 2019; Marthi et al., 2005; Dimakopoulou et al., 2018;
Lupu and Precup, 2020; Yang et al., 2020]), we seek to at-
tack a population of learners without having the luxury of
access to any individual’s inner workings or to the inter-agent
relationships. To begin, we adopt scenarios with simplified
collectives: a) an Implicit Collective, where agents are un-
aware of each other (essentially inhabit copies of the same
environment), and practice individual learning; b) a Swarm
Collective, where agents are aware of each other’s existence,
but are anonymous to each other, and practice social learning;
c) a True Collective, where agents are aware of each other’s
existence, and learn via individual as well as social learning.
We describe these in greater detail in Appendix A.

In order to finalize our approach and define an optimal se-
quence of environment poisonings, we would need the capa-
bility to efficiently capture the distribution of policies used
by the victim collective and measure the effect a poisoned
environment has on such a distribution. Technically, our ap-
proach to these issues is structurally more related1 to the Op-
timal Transport Kernel Embedding (OTKE) [Mialon et al.,
2020], than any other set representation method, such as [Qi
et al., 2017; Zaheer et al., 2017; Skianis et al., 2020]. Specif-
ically, we use a two-step representation for the set of all poli-
cies found in a population: a) representing uncertainty in each
agent’s policy, given the agent’s interaction trace across mul-
tiple policies (across-policy interaction trace); b) capturing
the distribution of behaviors at the population level. The
former is achieved by application of VAE, and the latter by
construction of the Wasserstein barycenter in the resultant la-
tent space. At this research stage we somewhat presume that
environment poisoning is effective and thereby use a single
barycenter; disregarding a potential behavior sub-structure in
the population. In particular, we address two hypotheses: H1)
Wasserstein distance-based Gaussian embedding is capable
of capturing the behavior of different-sized victim popula-
tions; and H2) Attack strategy learned on a given population
is transferable to other populations of different sizes.

To sum up, we introduce: a) Collective Environment Poi-
soning (CEP) framework, which we experimentally instanti-
ate for three scenarios: implicit collectives, swarm collectives
and true collectives; b) Size-Agnostic Population Behavior
Representation based on a Wasserstein distance-based Gaus-
sian embedding; c) Ultra-Blackbox (UB) Adversarial Set-
ting, wherein across-policy behavior traces of the victim pop-
ulation are used to both condition and evaluate the attack.

2 Methodology
This section describes the developed methodology in increas-
ing levels of detail. First, the overall interaction structure
between the attacker and a population of victim learners is
presented. Then, the specifics of encoding a distribution of
behaviors within a population are described. Finer details of
the attacker’s intrinsic reward are delegated to Appendix C.

2.1 Bi-Level System Architecture
We formalize our method as a bi-level hierarchical framework
wherein the attacker as well as each member of the victim

1An explicit related works section is delegated to Appendix B.

Figure 1: Bi-Level Attack Framework (Implicit Collective Scenario)

Figure 2: Attack Deployment

population is an independent reinforcement-learning agent
with its individual learning algorithm, memory, and policy.
The victim population is a collection of learners where each
member trains to learn the given task in a common environ-
ment under the Swarm and True Collective scenarios; and in
an environment copy that instantiates the common blueprint,
in the Implicit Collective scenario. In order to learn the given
task, each agent trains to maximize its individual cumulative
discounted rewards, which correspond to its individual task.
The attacker on the other hand observes the interaction of the
population of victims with their environment and, based on
the set of observed behaviors, takes an action that modifies
the victim environment/blueprint. The goal of the attacker
is to sequentially and minimally modify the victim environ-
ment’s dynamics to drive the victim population to adopt the
attacker-desired target behavior. Therefore, the overall sys-
tem is formed by two nested closed-loop learning processes,
wherein the attacker and members of the victim population
are modeled as Markov Decision Processes (MDPs).
Victim Population MDP: The victim population’s Markov
process can be denoted by the tuple < S,A, Tui , Rv, q0, γv >
where S = s1, s2, ..., and A = a1, a2, ... are the victims’
states and actions respectively; Rv : S×A×S → R is the re-
ward function which encodes each victim’s task; γv ∈ (0, 1)
is the discount factor, q0(S) is the distribution over initial
states; and, Tui

: S × A × S → [0, 1] is the probabilistic
transition function, where ui denotes the environment param-
eterization that has resulted from the first i interventions on
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the environment, by the attacker. In particular, Tu0 refers to
the original, unaltered dynamics of the victim environment. A
single attack action modifies the victim environment dynam-
ics for the entire victim population. The objective of each
member of the victim population is to find an optimal policy
within the experienced environment.

Attacker MDP: The attacker’s Markov process can be
represented by the tuple < Θ, U, F,Ra, τ

∗, γa >, where:
Θ = [Tui

, ϕui
] is the attacker’s state space comprising the

victim environment’s dynamics, Tui
and the victim popula-

tion’s behavior, ϕui
that emerged in response to those dy-

namics; U is the attacker’s action space, i.e., the set of all
permissible changes that can be applied to the victim en-
vironment’s dynamics, such that action ui when applied on
the environment with dynamics Tui−1 results in an environ-
ment with dynamics Tui . It is important to note here that
environment dynamics at attack time step i are a result of
accumulated changes caused by attack actions u1, u2, ..., ui.
F : Θ × U × Θ → [0, 1] is the probabilistic transition func-
tion that describes the response of the victim population to
environmental experiences, i.e., how the distribution of be-
haviors within the population changes in response to changes
in the environment dynamics; Ra : Θ × U × Θ → R is the
attacker’s reward function that describes the combined accu-
racy (how concentrated is the victim population’s behavior
distribution around the ideal behavior, τ∗) and effort of (how
small is) the accumulated environment modifications; where
τ∗ is the attacker-desired target victim policy. The attacker
optimizes these dual objectives of accuracy (maximize) and
effort (minimize) to learn the best attack generation strategy
of the form σ : Θ → U , σ(ui|Θi−1). I.e., the attacker seeks
the most efficient way to force all individual behaviors within
the victim population to converge to the target policy τ∗.

2.2 Population Behavior Representation
Development of an attack generation function that is capa-
ble of pushing victim populations of different sizes towards
a target behavior using a single, constrained attack action at
every attack time step, under (Ultra-)Blackbox setting, en-
tails two major challenges, as mentioned in Section 1. The
first challenge is accurate approximation of individual behav-
iors present inside the victim population. Due to the (Ultra-
)Blackbox nature of settings, individual victim behaviors can
only be approximated (through observation of across-policy
behavior traces) and never be captured completely with 100%
certainty. The second challenge is to make the attack genera-
tion function agnostic to the size of the victim population.

The attacker observes the actions taken by the victims in
different states, as they train to learn their tasks in the vic-
tim environment. As the victim population is under training,
victims update their internal policies periodically. Depending
on the frequency of these updates, each state-action pair of
a behavior trace can potentially be generated by a different
policy. In this paper, we work with a highly interactive set-
ting wherein the victims update their policies after each in-
teraction with their environment. In prior works, the attacker
strives to capture a victim’s behavior by noting its trajecto-
ries in the victim environment and conditioning each attack

action on the last trajectory observed prior to the attack ac-
tion [Xu et al., 2021; Xu et al., 2022]. The last trajectory
however on one hand, does not capture information about
frequently visited states that were not visited in the last tra-
jectory; and on the other hand, does not retain any informa-
tion about states/regions that are entirely unvisited and hence
unimportant to the victim. Storing multiple recent trajecto-
ries can help add information regarding other frequently vis-
ited states as well as help capture the stochastic behaviors
of a victim. However, in the Blackbox/Ultra-Blackbox set-
tings, it is impossible for the attacker to discern between dis-
carded (old) behaviors and stochastic (current) behaviors of
a victim. Moreover, this uncertainty is further exacerbated in
multi-agent victim settings wherein victim identities are not
stored by the attacker. To do away with this uncertainty, re-
duce memory requirements, and retain information regarding
unvisited (and hence unimportant) states; in this work, the at-
tacker stores the last observed victim action corresponding
to each victim state and uses a ”no-action” symbol to de-
marcate unvisited states. Information regarding environment
configurations that are unimportant with respect to a victim
agent’s objectives, can prove crucial to the attacker while de-
ciding stealthy and efficient environment modifications that
push the complete victim population towards the attacker-
desired target behavior. This individual behavior information
corresponding to a given victim k will hereafter be denoted as
τk,ui

= {s1, a1; s2, a2; ...; sN , aN}∀sn ∈ S, an is the latest
action taken by victim k in state n or a no-action symbol in
case state sn was never visited by the victim, and N is the
total number of states in the given environment with dynam-
ics Tui . As τk,ui contains the latest action / no-action sym-
bol corresponding to all environment configurations, τk,ui ’s
size can become extremely large in high-dimensional envi-
ronments. Furthermore, in size-agnostic multi-victim attacks,
the attacker needs a mechanism to generate a uniform-sized
representation of all behaviors present inside the victim pop-
ulation. In this work, these two problems are solved by the
attacker by learning a distributional low-dimensional latent
space, Φ of individual behaviors using a variational auto-
encoder model. The latent behavior distribution correspond-
ing to a given victim’s individual behavior τk,ui is denoted
by ϕk,ui . Herein the dimensionality of τk,ui >> ϕk,ui . The
variational model consists of an encoder qe that takes a given
victim agent’s τk,ui

as input and outputs parameters to it’s la-
tent behavior distribution ϕk,ui

; and a decoder qd that takes
two inputs, a sample z from the latent distribution ϕk,ui

and a
victim environment state sn, and outputs the probability with
which victim k will take each available action in the given
state sn. The prior distribution p(z) on the latent variables
is the standard normal N(z; 0, I) while the evidence lower
bound, to be maximized over all k is:

IEz∼ϕk,ui
[ log qd(an|z, sn)]−Dkl (ϕk,ui

|| p(z)) (1)

The generative capability of the variational individual-
behavior model is crucial in solving the second challenge of
developing a size-agnostic attack strategy that is transferable
across different victim populations of varied sizes. We exploit
the regularity of the distributional latent space and utilize the
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Figure 3: Experiment H1: Accuracies & Effort of attacks trained and tested on same-sized Implicit Collective victim populations

Wasserstein distance [Vaserstein, 1969] to generate a latent
distribution that is representative of all individual behaviors
approximated from the victim population. Wasserstein dis-
tance respects the underlying geometry of the metric space
in which the distributions reside. Therefore, unlike other dis-
tances like Euclidean, Total Variation, Hellinger etc, Wasser-
stein distance provides an aggregation mechanism (Barycen-
ter) that preserves the structure of individual behavior distri-
butions; enabling the attacker to understand prevalent victim
behaviors and thereby learn an efficient attack strategy for
the population. Secondly, Wasserstein distance is insensitive
to small changes in distributions which is a crucial property
for this work as τk,uis are approximate representations of the
actual policies of the victims and hence inherently possess a
sizable margin of error. Lastly, Wasserstein distances can be
computed between two discrete, two continuous as well as
a discrete and a continuous distribution. This property sup-
ports scalability of the developed methodology to large, con-
tinuous/discrete environments as the developed approach re-
mains agnostic to the nature (discrete/continuous) of ϕk,ui

.
In this work we use a fixed-point approach for fast com-
putation of the Wasserstein barycenter (Fréchet mean), ϕui

[Álvarez-Esteban et al., 2016] of the individual latent behav-
ior distributions ϕk,ui

corresponding to all K agents present
in the victim population; [ϕ1,ui

, ϕ2,ui
, ..., ϕK,ui

]. In formula
2 given below, W stands for L2-Wasserstein distance and λ
corresponds to importance of a particular latent behavior dis-
tributions ϕk,ui . Herein λk is assigned the value of 1/K for
all k as the behavior of each victim is equally important for
the attacker to consider.

K∑
k=1

λkW
2(ϕk,ui

, ϕui
) = min

ϕ∈Φ

{
K∑

k=1

λkW
2(ϕk,ui

, ϕ)

}
(2)

3 Experiments
One of the primary cognitive capabilities is the ability to nav-
igate in a new environment. This work tests and establishes
the quality of the proposed methodology by training an at-
tacker to learn to attack a population of navigational agents

in a stochastic grid environment titled 3D Grid World [Rabi-
novich et al., 2010]. This environment simulates an uneven
terrain on a grid of 2 dimensional cells. The unevenness cor-
responds to the 3rd dimension of the grid and is due to the
elevation/altitude associated with each grid cell. The relative
elevation between two cells decides the transition probabil-
ity between them. A change in this relative elevation thus
changes the manner in which the environment responds to
a navigating agent’s actions. The navigating agent’s task is
to find the shortest path from the start cell to the goal cell
and its state is its position inside the grid world in Implicit
Collective scenario and its position along with the position
of all other members of the population, in Swarm and True
Collective scenarios. At each time step, the navigating agent
observes its state and takes one step in any of the four car-
dinal directions (N,S,E,W). The agent receives a reward of
-1 for every action it takes until it reaches the goal state. A
given victim training episode terminates once all agents in
Implicit Collective scenario and at least one agent in Swarm
and True Collective scenarios, reaches the goal state or max-
imum time has elapsed. This pushes the agents to find the
shortest path(s) to the goal cell. This environment also allows
the presence of an additional agent, the elevation expert who
can view the altitude of each grid cell and take a constrained
action to modify it. The elevation expert’s state space com-
prises of the grid cells’ altitudes along with the navigational
population’s behavior, while its action space is a vector of real
numbers [x1, x2, x3, ..., xM ], x ∈ [−1.0, 1.0] where M is the
total number of cells in the grid. In this work, each member
of the victim population is a navigating agent while the at-
tacker is the elevation expert. The attacker’s objective is to
efficiently force the victims to follow a target path to the at-
tacker’s desired destination. The target path is not an optimal
path in the original environment and thus is not the optimal
choice for the victims under default environment dynamics.

The performance of the attacker is measured in terms of the
accuracy (Attack Accuracy) and degree of adherence (Attack
SoftMax Accuracy) with which the victim population (un-
knowingly) adopts the target behavior; as well as the changes
brought about in the victim environment by the attacker (At-
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Figure 4: Experiment H1: Accuracies & Effort of attacks trained and tested on same-sized Swarm Collective victim populations

Figure 5: Experiment H1: Accuracies & Effort of attacks trained and tested on same-sized True Collective victim populations

tacker Effort). Attack Accuracy (abbreviated as @Acc) rep-
resents the level of adoption of the target behavior by the vic-
tim population i.e. the extent to which the victim popula-
tion assigns the highest probability to target actions (attacker-
desired victim-actions) in target states (states included in the
target path). The rate of convergence of @Acc reflects the
speed with which the attack results in target behavior’s adop-
tion in the victim population. Attack SoftMax Accuracy
(@SoftAcc) constitutes the probabilities assigned to the tar-
get actions by the victim population and encapsulates the pop-
ulation’s degree of adherence to the target behavior. Attacker
Effort (@Effort) represents the magnitude to which the at-
tacker modifies the victim environment and is computed as
the mean of the absolute difference between the previous and
current attack time step’s grid cells’ altitudes. These perfor-
mance metrics are mathematically described in Appendix F.

Plots visualizing these performance metrics are presented
for each experiment conducted in this study. The attacker
training episodes are 15-step sequential attacks on freshly ini-
tialized victim populations wherein attack step 0 corresponds
to the original environment with default dynamics. After each
episode, the attack strategy employed in that episode is saved

if it is better or equal to the best attack strategy found so far,
with respect to last-timestep, mean or cumulative value of at
least one strategy quality criterion. A given strategy’s qual-
ity is approximated using 3 internal and 5 external quality
criteria which are described in detail in Appendix G. Herein
criteria that are approximated by the attacker are referred to
as internal while criteria computed by the external system for
the purpose of training the attacker are termed external.

The experiment graphs demonstrate performance of the
best attack strategies found by the different models. These
best strategies are selected by prioritizing @Acc, as the main
goal of this work is to find strategies that push victim popu-
lations to adopt the target behavior, while, adherence to the
target behavior (@SoftAcc) and magnitude of changes made
to the environment (@Effort) in order to achieve this adop-
tion demonstrate additional/secondary capabilities of the at-
tack strategies. @Acc and @SoftAcc are measured along the
victim timescale to observe how the accuracies change (and
thereby understand how the victim population behaves) in-
between attack actions. @Effort on the other hand can only
be measured corresponding to each attack action and hence is
measured along the attacker timescale. Due to this difference,
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Figure 6: Experiment H2: Accuracies & Effort of Barycenter attacks tested on victim collectives of sizes 3, 10, and 20

accuracy plots begin from attack step 0 while effort plots be-
gin from attack step 1. Each graph corresponds to attacks
carried out on 20 separate victim populations.

Given that this is the first work that studies a multi-
victim attack via a common attack strategy, we have con-
structed a high-performance artificial baseline for comparison
by extending the single-agent SOTA environment-poisoning
model, TEPA [Xu et al., 2021] to the multi-agent setting.
TEPA is an auto-encoder-based model that has been shown
capable of extracting the behavior of a single victim agent
in whitebox and proxy-blackbox adversarial settings. TEPA
uses an agent’s state, action trajectory to capture its behav-
ior. In this work, TEPA becomes capable of attacking a pop-
ulation by utilizing the concatenation of latent representa-
tions of individual behavior trajectories as the population’s
behavior representation. This population behavior represen-
tation includes all available information from individual be-
havior representations, in its entirety, which on one hand em-
powers the attacker with more information but on the other
hand, does not support size-agnostic attacks and/or attacks
transferable to different-sized populations (size-transferable
attacks). The method of concatenation is utilized for com-
parison in order to demonstrate the performance of an ap-
proach that makes use of maximum available information
compared to our approach that utilizes less information but
has size-agnostic capabilities. Two experiments, based on
the two hypotheses outlined in Section 1 are conducted un-
der each multi-victim collective scenario. Experiment H1
- Concatenation vs Barycenter demonstrates the capability
of Wasserstein distance-based Gaussian embedding in cap-
turing the behavior of different-sized victim populations in
contrast to the concatenation-based baseline. In this experi-
ment, attack strategies are trained and tested on populations
of same size. Each strategy is tested on 20 populations. In
Implicit Collective scenario with Q-learning victim agents,
10 test populations use the same seed as the one used by
the victim populations during training, while each agent in
each of the remaining 10 populations uses a different seed.
In Swarm and True Collective scenarios with DQN victim
agents, neural networks corresponding to 10 test populations

are initialized using random numbers from the same range as
used during training, while the remaining 10 test populations
are initialized using a different range. Experiment H2 - Size
Agnosticity of Behavior Barycenter demonstrates the size-
agnostic and size-transferable capabilities of the developed
barycenter-based approach. The attacker learns attack strate-
gies on populations of sizes 3,5,10, and 20. Each of these
strategies is tested on 4 sets of 20 populations of sizes 3,5,10,
and 20 respectively. Each set of 20 populations is generated
in the same manner as under Experiment H1.

Experiment H1 under Implicit Collective scenario pre-
sented in Figure 3 encapsulates the feasibility study of this
work wherein the proposed and artificially-constructed base-
line methods are used to attack populations of sizes 1,2, and
3. The concatenation-based baseline performs perfectly in
terms of @Acc while attacking populations of size 1 (Concat
Popsize=1) with convergence to 1.0 @Acc within 3 attack ac-
tions. However, as the size of the victim population increases,
the @Acc decreases while its variance increases. Moreover,
the @Acc of attack on size-3 populations initialized using
different seeds is much lower than that on populations ini-
tialized using the same seed (see Appendix H). This shows
that the baseline attack strategy finds it harder to attack larger
populations as well as populations with greater differences
from the ones used during training, suggesting that complete
information regarding multiple victim trajectories confuses
the attacker, especially when those trajectories correspond
to very differently initialized victim agents. Population be-
havior barycenter based attack on the other hand displays
the opposite trend. Attack strategy trained on populations of
size 1 performs worse than those trained on populations of
sizes 2 and 3; in terms of variance as well as rate of conver-
gence of @Acc. Also, interestingly, attacks on populations
initialized with different seeds converge slightly faster than
those initialized with the same seed (Appendix H). @SoftAcc
graph shows that barycenter-based attacks result in stronger
adherence to target behavior as the victim populations end
up assigning higher probabilities to attacker-desired actions.
The @Effort graph shows that at the beginning of the attack,
concatenation-based strategies modify nearly all cells by al-
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most maximum permissible amount exerting @Effort be-
tween 0.8 and 1.0. Barycenter-based approaches on the other
hand begin the attack with almost half the level of modifica-
tion, between 0.4 and 0.6. By the end of the attack, all strate-
gies are able to bound environment modifications between 0.0
and 0.2. This experiment, therefore, demonstrates the feasi-
bility of multi-victim attacks under Blackbox setting by car-
rying out successful and efficient attacks on different-sized
Implicit Collectives using two population behavior represen-
tation methods. Experiment H1 under Swarm Collective sce-
nario presented in Figure 4 expands the feasibility study by
including attacks on size-5 populations. As seen in Implicit
Collective scenario, here too the barycenter-based approach
performs better than the baseline and is able to drive @Acc
and @SoftAcc to above 0.9 by the end of the attack. This per-
formance degrades only slightly with increase in victim pop-
ulation size. Moreover, barycenter-based approach bounds
@Effort to below 0.2 in all strategies, unlike concatenation-
based approach where certain strategies exert higher @Effort
(in spite of achieving lower @Acc and @SoftAcc). Experi-
ment H1 under True Collective scenario presented in Figure 5
demonstrates the capabilities of the proposed and artificially-
constructed baseline methods by testing them on large popu-
lations of sizes 10 and 20. Under this scenario, the baseline
achieves high @Acc only while attacking small populations
of size 3. On the other hand, all barycenter-based strategies
achieve high @Acc by the end of the attack. The final @Acc
achieved by the last attack time step decreases with increas-
ing population size but remains roughly above 0.8. Simi-
lar trends are visible for @SoftAcc. Therefore barycenter-
based approach (under all three scenarios) not only pushes
the victim populations to assign the maximum probability to
attacker-desired target actions but also ensures that this prob-
ability itself is large. Under True Collective scenario, @Ef-
fort of most concatenation-based strategies begins near 1.0
and ends below 0.1 while that of barycenter-based strategies
begins between 0.5 and 0.8 and ends between 0.0 and 0.1
for smaller populations and between 0.3 and 0.4 for larger
populations. This observation implies that with increasing
population size, concatenation-based approach minimizes ef-
fort without achieving high accuracy while barycenter-based
approach finds strategies that continue to exert certain effort
until the end of the attack in order to achieve high accuracy.
It is interesting to note that @Acc and @SoftAcc plots of all
barycenter-based attacks exhibit a sawtooth shape as a func-
tion of victim learning epochs. This is due to the fact that an
attack action causes a re-parameterization of the victim en-
vironment but persists over multiple victim training epochs.
When victims first experience this re-parameterization, their
current policy cannot affect a behavior as well as it used to.
As victims’ learning continues, their experiences shape the
policy, and behavioral accuracy grows. This cycle repeats ev-
ery time a new attack action is actuated, and is more promi-
nent for more attack-resilient populations. Attack actions are
learned in a way that maximizes the sawtooth global incline.

Experiment H2 presented in Figure 6 demonstrates size-
agnosticity of the barycenter-based approach. Strategies
trained on size-3 populations under all three collective scenar-
ios are tested on larger populations of sizes 10 and 20. Under

Implicit Collective scenario performance of barycenter-based
approach is agnostic to the testing population size across all
three metrics and converges to the perfect @Acc of 1.0, high
@SoftAcc of 0.5, and low @Effort of 0.1, by the end of the
attack. Under Swarm and True Collective scenarios, for each
strategy, accuracy decreases with increasing test population
size. However, this decrease reduces with increasing training
population size as demonstrated in Appendix H. Therefore,
barycenter-based approach is not entirely size-agnostic under
Swarm and True Collective scenarios but its performance de-
grades gracefully when strategies trained on very small pop-
ulations are tested on large populations. Furthermore, strate-
gies trained under Swarm Collective achieve higher accuracy
and lower degradation compared to True Collective scenario.
This implies that barycenter-based strategies are more effec-
tive at attacking collectives that practice individual (Implicit
Collective) or social (Swarm Collective) learning than at at-
tacking collectives that exploit both (True Collective).

4 Conclusion, Limitations and Future Work
This paper develops an extension of environmental poi-
soning attacks to populations of reinforcement (RL) agents
and introduces the Collective Environment Poisoning (CEP)
framework that constitutes; a) Implicit Collective (Black-
box); b) Swarm Collective (Ultra-Blackbox); and c) True
Collective (Ultra-Blackbox) scenarios. The authors show
that concatenation-based population behavior representation,
not only creates attack strategies that are non-transferable
to different-sized populations but also overloads the attacker
with information inhibiting it from finding strategies that
achieve high attack accuracy with low attacker effort. In con-
trast, barycenter-based population behavior representation
achieves both of the aforementioned feats in Implicit Collec-
tive scenario wherein population members practice individual
learning. In Swarm and True Collective scenarios wherein
victim agents learn via social and individual+social learn-
ing respectively, barycenter-based attack strategies achieve
high accuracies with bounded attacker effort when trained
and tested on same-sized populations. These strategies are
transferable to different-sized populations except for strate-
gies trained on very small populations (∼3) and tested on
very large populations (∼20). However, even in such cases,
the performance degrades gracefully.

The current methodology approximates each individual
victim’s policy using the last action taken by the victim in
each environment state. This data can however only be cap-
tured for victims training in a discrete environment. Simi-
larly, KLR that is used to create the extrinsic (Blackbox) and
intrinsic (Ultra-Blackbox) attacker reward signals requires
the underlying MDP to be based on environments with dis-
crete state and action spaces. Our next step entails expansion
of the proposed methodology to continuous environments, for
e.g., by utilizing discrete latent space encoders. Furthermore,
the developed CEP framework does not include provisions
for attacking heterogeneous victim populations or open multi-
victim systems wherein victims can freely enter/exit the sys-
tem. Future work constitutes expanding CEP to study attacks
on heterogeneous, open multi-victim systems.
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