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Abstract
In recent years, spectral clustering has become
a well-known and effective algorithm in machine
learning. However, traditional spectral clustering
algorithms are designed for single-view data and
fixed task setting. This can become a limitation
when dealing with new tasks in a sequence, as it
requires accessing previously learned tasks. Hence
it leads to high storage consumption, especially
for multi-view datasets. In this paper, we address
this limitation by introducing a lifelong multi-view
clustering framework. Our approach uses view-
specific knowledge libraries to capture intra-view
knowledge across different tasks. Specifically, we
propose two types of libraries: an Orthogonal Ba-
sis Library that stores cluster centers in consecu-
tive tasks, and a Feature Embedding Library that
embeds feature relations shared among correlated
tasks. When a new clustering task is coming, the
knowledge is iteratively transferred from libraries
to encode the new task, and knowledge libraries are
updated according to the online update formulation.
Meanwhile, basis libraries of different views are
further fused into a consensus library with adaptive
weights. Experimental results show that our pro-
posed method outperforms other competitive clus-
tering methods on multi-view datasets by a large
margin.

1 Introduction
The classical spectral clustering algorithm was first proposed
by [Ng et al., 2001], which performs dimensionality re-
duction by using the spectrum of the similarity matrix con-
structed from data before clustering. In the past decades,
it has been used in many areas, such as web classifica-
tion [Zhou and Burges, 2007], text mining [Janani and Vija-
yarani, 2019], image segmentation [Chahhou et al., 2014],
speech recognition [Lin et al., 2019] and machine learn-
ing [Sun et al., 2020b]. However, most methods are only
applicable to single-view data, while as the number of sensors
grows on the Internet-of-Things, data from different sources
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or styles are more common and publicly available [Huang et
al., 2021]. Another key issue is that they usually rely on a
fixed set of tasks. When encountering an online environment
with unknown amounts of consecutive tasks, they need to re-
peatedly access data from previous tasks. In real-world appli-
cations, like mobile apps or web servers, this may bring high
memory consumption and computing work. In this paper, we
focus on applying a lifelong multi-view clustering framework
to common spectral clustering, enabling it to overcome the
shortcomings mentioned above.

The lifelong machine learning model is trained over a se-
quence of tasks, which utilizes knowledge from past tasks
to help future tasks [Thrun and Mitchell, 1995], mean-
while, alleviates catastrophic forgetting on past tasks. It
could be broadly categorized into three categories [De Lange
et al., 2019; Masana et al., 2020]: Architecture-based,
Regularization-based, and Memory-based methods. In the
past decade, It has been successfully adopted into super-
vised learning [Ruvolo and Eaton, 2013], unsupervised learn-
ing [Liu et al., 2016], semi-supervised learning [Mitchell et
al., 2018], and reinforcement learning [Ammar et al., 2015].
Inspired by [Sun et al., 2020a], a memory-based method
is applicable to solve continuous clustering tasks. A school
website clustering problem on text-image web data could be
an example. The semantic meaning of teacher web is dif-
ferent from student web, so they should be divided into two
clusters. Tasks from different schools can be considered as
sequence tasks, the correlation information of teacher or stu-
dent websites between two schools is similar, so knowledge
learned from the past task could be beneficial for future tasks.
Although the concept has been proposed for more than 20
years, research in multi-view clustering, a topic in data min-
ing, has not been extensive.

Inspired by the scenario mentioned above, we consider es-
tablishing a lifelong multi-view clustering method based on
spectral clustering tasks. The problem is how to use the accu-
mulated knowledge to improve performance on future tasks
and update knowledge over lifetime. There are two assump-
tions considered in our paper: 1) Cluster Space Correlation,
multiple clustering tasks should have a consistent latent clus-
ter space. For instance, there are two cluster centers(teacher,
student) on the website of school A, while school B obvi-
ously has the same centers; 2) Feature Embedding Corre-
lation, which sharing between different tasks should be the
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Figure 1: The demonstration of our multi-view lifelong spectral
clustering model, where dogs are in the same cluster and pots are
in the other. When a new clustering task Xm

v arrives, the knowledge
is iteratively transferred from fusion basis library D, view-specific
basis libraries Bm−1

v and feature embedding libraries Lm−1
v to en-

code the new task.

same. In particular, the feature embedding of the teacher web-
site should be the same, because the semantic meaning of the
web(teacher or student) is similar between schools A and B.

In this paper, we propose a lifelong multi-view spectral
clustering framework (LMSC) as shown in Figure 1. Ac-
cording to the mentioned two correlations, we use two view-
specific knowledge libraries to transfer knowledge among
consecutive tasks and alleviate catastrophic forgetting. They
are the Orthogonal Basis Library and Feature Embedding Li-
brary respectively. The former contains a set of latent or-
thogonal cluster centers, and each sample of cluster tasks
can be effectively assigned to multiple clusters with differ-
ent weights. The latter can be modeled by introducing bipar-
tite graph co-clustering, which is able to not only discover
the shared manifold information among cluster tasks but also
maintain the data manifold information of each individual
task. When the model encounters a new multi-view cluster-
ing task, it first encodes the new task from each view via the
knowledge of both two libraries. Meanwhile, libraries are up-
dated and basis libraries of all views are fused into one. An
alternating direction strategy is applied for model optimiza-
tion, and finally obtains the task-specific representation and
Multi-view Fusion Library with clustering center. In sum-
mary, this paper makes the following contribution:

• We focus on the lifelong clustering paradigm, which
learns and transfers knowledge from previous tasks to

a new task. Shared knowledge among multiple tasks is
effectively mined and stored via two libraries.

• A multi-view model is proposed to learn view-specific
Orthogonal Basis Library and Feature Embedding Li-
brary, which can simultaneously preserve the latent clus-
tering centers and capture the feature embedding among
different tasks, respectively. It also learns a Fusion Basis
Library with adaptive weights.

• Various experiments on multi-view datasets certificate
the effectiveness and superiority of our method by com-
paring it with state-of-the-art algorithms

2 Related Work
The three most relevant topics are multi-task clustering,
multi-view clustering, and lifelong learning.

The aim of multi-task clustering (MTC) is to leverage use-
ful information contained in multiple related tasks to help im-
prove the clustering performance of all the tasks [Zhang and
Yang, 2021]. Multi-task spectral clustering (MTSC) [Yang
et al., 2014] first attempts to apply the multi-task learning
paradigm in spectral clustering. It assumes that all related
tasks share a low-dimensional representation and use a ℓ2,p-
norm regualrizer to constrain the coherence among all tasks.
Self-adapted multi-task clustering (SAMTC) [Zhang et al.,
2016] points out that tasks are usually partially related in the
real world, and automatically identify and transfer reusable
instances among the tasks to avoid a negative transfer. Par-
tially related multi-task clustering (PRMC) [Zhang et al.,
2018b] extends SAMTC with a manifold regularized coding,
which uses a more stable way to learn the related instances.
However, in real applications, task sets are not fixed and the
model may encounter new tasks at any time. Multi-task does
improve clustering performance but also costs high storage
and computation consumption.

With the development of data collection, more and more
data are gathered from different sources or styles. Multi-
view clustering (MVC) has also attracted increasing atten-
tion in recent years [Xu et al., 2013; Zhao et al., 2017;
Huang et al., 2019]. It exploits complementary and consensus
information across multiple views to improve clustering per-
formance. Co-regularized multi-view spectral clustering (Co-
MVC) [Kumar et al., 2011] applies classical spectral clus-
tering framework to multi-view data. By co-regularizing the
clustering hypotheses across views, Co-MVC combines mul-
tiple kernels (or similarity matrices) for the clustering prob-
lem. One-step multi-view spectral clustering (OMSC) [Zhu
et al., 2018] outputs the common affinity matrix learned from
low-dimensional data as the final clustering result, thus avoid-
ing the negative influence of the two-step processing in clas-
sical spectral clustering. For the problem of spectral cluster-
ing doesn’t work well with high dimensional data in complex
distribution, [Wang et al., 2018] proposes a linear space em-
bedded method called spectral embedded adaptive neighbors
clustering (SEANC). It processes the high-dimensional data
with embedded representation and obtains clustering results
by adaptive neighbors clustering.

Lifelong learning aims to learn new tasks while retain-
ing its performance on the previous tasks. Elastic weight
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consolidation (EWC) [Kirkpatrick et al., 2017] calculates
the importance of the parameters by the Fisher informa-
tion matrix and minimizes the change of important param-
eters when encountering a new task. Variational continual
learning (VCL) [Nguyen et al., 2017] reaches the same goal
with Kullback-Leibler (KL) divergence. An efficient lifelong
learning algorithm (ELLA) [Ruvolo and Eaton, 2013] con-
siders that all related tasks of the consecutive online tasks
should share a common basis, each new task can be obtained
by transferring knowledge from the basis. Furthermore, [Sun
et al., 2018] considers that the order of tasks can affect perfor-
mance, and the tasks with more unknown/novel information
should be selected.

3 Method
This section presents our proposed lifelong multi-view spec-
tral clustering model. We first review the classic single-view
spectral clustering algorithm for a fixed task set and then de-
tail the proposed LMSC.

3.1 Revisit of Spectral Clustering
Given a clustering task m with nm samples Xm ∈ Rd×nm ,
where d is the dimension of samples. Spectral clustering
first calculates the corresponding symmetric similarity matrix
Wm ∈ Rnm×nm of Xm, where wij represents the similarity
between each pair of samples (as an element of the similarity
matrix W ). Three common ways are used to construct simi-
larity matrix Wm ∈ Rnm×nm , e.g., k-nearest-neighborhood
(KNN). ϵ -nearest-neighborhood or fully connected graph.
The KNN used in this paper is defined as follows:

wm
ij =

 exp

(
−∥x

m
i −xm

j ∥2
2σ2

)
, if xm

i ∈ N
(
xm
j

)
0, otherwise ,

(1)

whereN (.)is the function to search k-nearest neighbors, and
σ controls the spread of the neighbors. Then apply the nor-
malized Laplacian on W :

Km = (Dm)
− 1

2 Lm (Dm)
− 1

2 = I−(Dm)
− 1

2 Wm (Dm)
− 1

2 ,
(2)

where Dm is the diagonal matrix of Wm,Dm
ii =

∑
j W

m
ij .

After all, we can express the final formulation of spectral
clustering with normalized cut [Shi and Malik, 2000]:

max
Fm

tr
(
(Fm)

⊤
KmFm

)
, s.t., (Fm)

⊤
Fm = Ik. (3)

Fm is the optimal cluster assignment matrix, which can be
calculated via the eigenvalue decomposition of matrix Km.
The final clustering labels of Fm can be achieved by post-
processing, e.g., k-means or spectral rotation.

3.2 Problem Statement
Assume that there is a set of M multi-view clustering tasks
T 1, . . . , T M . Each task Tm with V views contains nm data
samples Xm

v ∈ Rdv×nm , v = 1...V , with the dimension of
features of v-th view as dv . Different from multi-task spec-
tral clustering learn the correlations among all tasks, a life-
long system considers learning new tasks without access to

the previously learned data. The model faces a series of con-
secutive clustering tasks T m, . . . , T M . When a new task T m

is coming, it arbitrarily and efficiently obtains corresponding
cluster assignment matrix Fm

v of different views and adap-
tively integrates them into one. In the setting of lifelong clus-
tering, the key issue is how to use the knowledge from each
learned task T 1, . . . , T (m−1) to help the future task T m.

3.3 Proposed Model
In this section, we introduce the proposed LMSC model with
three parts, i.e., orthogonal basis library, Feature Embedding
Library and multi-view fusion basis library.

Orthogonal Basis Library. [Lin et al., 2021] proposes a
simple but effective method to store the previously accumu-
lated experiences. An orthogonal basis clustering is applied
to uncover the latent cluster centers. Specifically, the as-
signment matrix Fm is decomposed into two submatrices: a
basis matrix B ∈ Rk×k and a task-specific representation
Em ∈ Rnm×k, as Fm = EmB. Then the multi-task spectral
clustering model for v-th view of M tasks can be represented
as:

max
{Em

v }M
m=1

1

M

M∑
m=1

tr
(
(Em

v Bv)
⊤
Km

v EmBv

)
,

s.t., B⊤
v Bv = Ik, (E

m
v )

⊤
Em

v = Ik, ∀m = 1, . . . ,M,
(4)

and Bv and Em
v are view-specific Basis Library and m task

representation, respectively.
Feature Embedding Library. Besides latent cluster cen-

ter transfer across consecutive tasks, there is also common
feature embedding shared among multiple tasks. [Jiang and
Chung, 2012] achieved knowledge transfer between two tasks
based on graph-based co-clustering. Inspired by that, with
a invariant feature embedding libraryL ∈ Rd×k with group
sparse constraint, we have graph co-clustering term for v-th
view:

max
Lv

1

M

M∑
m=1

tr
(
L⊤
v X̂

m
v Em

v Bv

)
+µ∥Lv∥2,1, s.t., L⊤

v Lv = Ik,

(5)
where X̂m

v is defined as

X̂m
v = (Dm

1 )
− 1

2 Xm
v (Dm

2 )
− 1

2 , (6)
where Dt

1 = diag (Xm
v 1) and Dt

2 = diag
(
(Xm

v )⊤1
)
. With

the sharing Embedding Library, learned tasks can facilitate
the discovery of the embedding in new tasks, and the feature
embedding can be transferred with each task [Argyriou et al.,
2008].

Multi-view Fusion Basis Library. View-specific Orthogo-
nal Basis Library can be learned by Eq. (4). For task with
V views, we learned V basis libraries. Because the cluster-
ing centers on different views should be consistent, each li-
brary should be helpful for clustering results. We fuse these
libraries to learn a consensus one with adaptive weights [Nie
et al., 2018]

max
{Bv}V

v=1,DD⊤=I

V∑
v=1

{
αv ∥D− Bv∥2F

}
,

s.t., B⊤
v Bv = Ik,D

⊤D = Ik.

(7)
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Algorithm 1 Lifelong multi-view spectral clustering (LSMC)
model

Input: multi-view clustering task sets:
{
X1

v , . . . , X
M
v

}V

v=1
,

view-specific library:{Bv ← 0k×k, Lv ← 0dv×k}Vv=1, fu-
sion library D,µ ≥ 0, λ ≥ 0, β ≥ 0, statistical records:
{(Mv)0 ← 0k×k, (Cv)0 ← 0d×k}Vv=1
Parameter: λ, µ and β
Output: Bv, Lv, Ev and D

1: new m-th task {Xm
v }

V
v=1.

2: compute matrices
{
Kt

v, X̂
t
v

}V

v=1
.

3: while Not converge do
4: update Em

v by solving Eq.12;
5: update Bv by solving Eq.16;
6: update Lv by solving Eq.18;
7: update D by solving Eq.20;
8: update αv by solving Eq.21;
9: compute task representation Em = 1

V

∑V
v=1 E

m
v ;

10: compute assignment matrices via Fm = EmD;
11: execute K-means to obtain indicator matrices;
12: end while
13: return solution

By combining Eq. (4), Eq. (5) and Eq. (7), the objective func-
tion is formally formulated as follows:

max
{Bv,Lv}V

v=1,{Em
v }M

m=1
,DD⊤=I

V∑
v=1

{
1

M

M∑
m=1{

tr
(
(Em

v Bv)
⊤
kmv Em

v Bv

)
+ λ tr

(
L⊤
v X̂

m
v Em

v Bv

)}
+µ ∥Lv∥2,1 − βαv ∥D− Bv∥2F

}
,

s.t., (Em
v )

⊤
Em
v = Ik,B

⊤
v Bv = Ik,L

⊤
v Lv = Ik,D

⊤D = Ik,
(8)

where λ is the trade-off parameter between spectral clustering
and co-clustering. If λ equals 0, the function can be reduced
to common clustering centers.

4 Optimization
In this section, we introduce the optimization for our method.
To reduce computing consumption and memory space, all
variables in Eq. (8) should be updated without accessing the
previously learned tasks. In the following, the final objective
function is non-convex, so an alternating iterative algorithm
is given.

4.1 Update Em
v

When Bv , Lv , D and αv are fixed, the problem of {Em
v }Vv=1

of m-th task can be express independently for different views
as:

max
Em

v

{
tr
(
(Em

v Bv)
⊤
kmv Em

v Bv

)
+ λ tr

(
Lm
v X̂m

v Em
v Bv

)}
,

s.t., (Em
v )

⊤
Em
v = Ik,

(9)

where (Em
v )

⊤
Em
v = Ik is the orthonormality constraint. And

Et can be effectively updated by Stiefel Manifold Theorem
[Manton, 2002]:
Theorem 1. Given a rank p matrix X ∈ Rn×k , and the
singular value decomposition of P is UΣV ⊤. On the Stiefel
manifold, the projection of P can be calculated by:

π(P ) = argmin
Q⊤

∥P −Q∥2F . (10)

The projection could be expressed as π(P ) = UIn,kV
⊤.

To maximize the objective function, Et could be updated by
moving it in the direction of increasing the value of Eq. (9):

Em
v = π (Em

v + ηT∇g (Em
v )) , (11)

where ηT is step size and ∇g (Em
v ) is the partial derivatives

of objective function of Em
v :

∇g (Em
v ) =

1

V

V∑
v=1

2 (kmv )
⊤
Em
v BvB

⊤
v + λ

(
X̂m

v

)⊤
LvB

⊤
v .

(12)

4.2 Update Bv

With other fixed variables, the optimization of Bv can be sim-
plified as:

max
B⊤

v Bv=Ik

1

M

M∑
m=1

{
tr
(
(Em

v Bv)
⊤
kmv Em

v Bv

)
+λ tr

(
L⊤
v X̂

m
v Em

v Bv

)}
− βαv ∥D− Bv∥2F .

(13)

Eq. 13 can be converted into:

max
B⊤

v Bv=Ik
tr

(
Bv

⊤
( 1

M

M∑
m=1

(Em
v )

⊤
kmv Em

v

+
1

M

M∑
t=1

λBvL
⊤
v X̂

m
v Em

v

)
Bv

)
−βαv tr

(
B⊤

v (2I− BvD
⊤ −DB⊤

v )Bv

)
.

(14)

Two statistical variables are constructed to represent the
knowledge learned from previous tasks:

(Mv)m = (Mv)m−1 + (Em
v )

⊤
Km

v Em
v ,

(Cv)m = (Cv)m−1 + λX̂m
v Em

v .
(15)

We also have (Mv)M−1 =
∑M−1

m=1 (Em
v )

⊤
Km

v Em
v , and

(Cv)M−1 =
∑M−1

m=1 λX̂m
v Em

v . Therefore, Bv in Eq. 14 can
be updated by:

Bv = argmax
B⊤

v Bv=Ik

tr
(
B⊤

v

(
(Mv)m/m+BvL

⊤(Cv)m/m
)
Bv

)
−βαv tr

(
B⊤

v

(
2I− BvD

⊤ −DB⊤
v

)
Bv

)
⇔

argmax
B⊤

v Bv=Ik

tr
(
B⊤

v

(
(Mv)m/m+BvL

⊤Cv)m/m

−βαv(2I− BvD
⊤ −DB⊤

v )
)
Bv

)
.

(16)
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Finally, the Bv could be updated by the the eigen-
decomposition of B⊤

v

(
mm/m + BvL

⊤Cm/m − βαv(2I −
BvD

⊤ −DB⊤
v )

)
Bv .

4.3 Update Lv

With fixed Bv and Em
v , the optimization problem for variable

Lv on v-th view can be denoted as:

max
L⊤
v Lv=Ik

1

M

M∑
m=1

λ tr
(
L⊤
v X̂

m
v Em

v Bv

)
+ µ∥Lv∥2,1. (17)

It is equivalent to the following equations:

min
L⊤
v Lv=Ik

− tr
(
L⊤
v

( 1

m

M∑
m=1

λtX̂
m
v Em

v

)
Bv + µΘLv

)
⇔

min
L⊤
v Lv=Ik

∥∥∥Lv −
(( 1

m

M∑
m=1

λX̂m
v Em

v

)
Bv + µΘ−1Lv

)∥∥∥2
F
,⇔

min
L⊤
v Lv=Ik

∥∥Lv −
(
CmBv + µΘ−1Lv

)∥∥2
F
,

(18)
where Θii = 1

2∥li∥2
and Θ is a diagonal matrix. Eq. (18)

can be seen as the projection of CmBv + µΘ−1Lv on Stiefel
manifold.

4.4 Update D

The part related to D in the objective function is

min
DD⊤=I

V∑
v=1

{
αv ∥D− Bv∥2F

}
. (19)

According to the formula of F-norm, Eq. (20) can be con-
verted into:

min
DD⊤=I

tr(D⊤(
V∑

v=1

αv(2I− BvD
⊤ −DB⊤

v ))D). (20)

The final solution of D could be obtained by the eigen-
decomposition of

∑V
v=1 αv(2I− BvD

⊤ −DB⊤
v ).

4.5 Update αv

Inspired by [Nie et al., 2017], the adaptive weight of each
view αv could be calculated via the following formulation:

αv =
1

2 ∥D− Bv∥F
. (21)

5 Experiment
In this section, we evaluate the clustering performance of our
LMSC model via a throughout empirical comparisons. Start-
ing with a brief introduction to the benchmark datasets and
several SOTA methods we adopted, we demonstrate the clus-
tering results and followed by convergence analysis and pa-
rameter analysis of our model.

The experimental environment of the paper is AMD Ryzen
5 2600X, Windows 10 Operating System, 16 GB Main Mem-
ory, and the experimental platform is MATLAB R2022b.

5.1 Experiment Setup
Aiming at thoroughly examining the clustering performance
of our method, several real-world datasets are utilized in our
experiment. All datasets are divided into two, three, or four
task groups such that each task contains all clusters.

• 3Sources comprises of 3 common online news sources
i.e., The Guardian, Reuters, and BBC. 169 different
news stories are gathered from the agencies.

• BBC dataset is composed of news stories in five dif-
ferent labels: politics, entertainment, business, tech and
sport. We use 685 samples from 4 sources.

• BBCSport contains 544 archives collected from the
BBCSport website, where each document is divided into
2 kinds of features.

• Cornell dataset is a popular benchmark for multi-view
clustering. It has web pages collected from computer
science departments of Cornell University and consists
of 195 web pages with two different views.

We also choose some single task multi-view clustering mod-
els, multi-task clustering models, and lifelong clustering
models as powerful competitors, which are

• SNMF [Kuang et al., 2012]: a graph clustering frame-
work based on NMF.

• Co-regularized multi-view clustering (Coreg) [Kumar
et al., 2011] find clustering results that are consistent
across the different views.

• Local Learning-based Multi-task Clustering (LLMC)
[Zhong and Pun, 2022]: multi-task clustering with
shared low-dimensional subspace information.

• Lifelong Spectral Clustering (L2SC) [Sun et al., 2020a]:
single-view lifelong spectral clustering.

• Diversity-induced multi-view subspace clustering [Cao
et al., 2015] (DiMSC): explores the enhanced comple-
mentarity of multi-view representations:

• Generalized latent multi-view subspace clustering
(LRMSC) [Zhang et al., 2018a]: multi-view clsutering
with latent representation of each view.

• Multiview clustering via adaptively weighted procrustes
(AWP) [Nie et al., 2018]: weights each view with its
clustering capacities.

• Weighted multi-view spectral clustering (WMSC) [Zong
et al., 2018]: employs the spectral perturbation to learn
the weight of each view.

5.2 Clustering Results
To achieve fairness, with the authors’ suggested parame-
ter settings, each approach is conducted ten times on every
dataset with several tasks. The average values of each task
and all tasks are adopted. The task sequences fed into multi-
view models are the same as a multi-task model and a lifelong
model. Three widely used criteria are utilized: Normalized
Mutual Information (NMI), Purity, and Rand Index (RI). The
clustering results of our method and competitors are demon-
strated in Table 1 to Table 4, the best result is in red and
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method task1 task2 task3 task4 avg

NMI Purity RI NMI Purity RI NMI Purity RI NMI Purity RI NMI Purity RI

SNMF 16.83 49.05 64.61 14.58 45.00 64.81 21.06 42.38 70.36 64.12 73.81 83.93 29.15 52.56 70.93
Coreg 65.46 87.86 82.38 62.82 82.86 81.84 67.29 77.86 85.77 51.43 69.76 81.31 61.75 79.58 82.83
LLMC 22.63 50.00 62.37 17.21 47.62 62.37 14.70 45.24 65.16 51.68 59.52 73.52 26.55 50.60 65.85
L2SC 21.23 52.38 66.22 18.49 45.24 66.86 21.72 40.24 70.10 59.01 70.00 80.70 30.11 51.96 70.97

DiMSC 73.93 88.10 87.99 74.15 86.19 88.80 65.51 76.19 83.97 63.21 72.86 84.88 69.20 80.83 86.41
LRMSC 26.40 57.92 66.21 16.55 47.50 63.10 36.04 65.00 71.03 30.18 50.83 65.43 27.29 55.31 66.44

AWP 47.45 73.81 68.41 62.71 80.95 79.56 46.98 64.29 75.84 56.58 64.29 76.77 53.43 70.83 75.15
WMSC 46.11 69.05 71.38 49.81 72.38 73.19 20.38 42.86 44.13 26.19 46.67 52.36 35.62 57.74 60.27
LMSC 67.20 71.42 82.85 68.40 78.57 82.17 70.93 83.33 83.44 72.45 84.33 84.19 79.75 79.41 83.16

Table 1: clustering results on 3Sources.

method task1 task2 task3 avg

NMI Purity RI NMI Purity RI NMI Purity RI NMI Purity RI

SNMF 70.46 85.85 89.30 69.52 84.21 88.40 71.22 86.08 89.13 70.40 85.38 88.94
Coreg 64.01 80.23 85.44 84.20 93.57 95.29 76.29 91.11 93.19 74.83 88.30 91.28
LLMC 21.03 50.29 58.60 21.74 50.29 58.69 21.74 50.29 58.69 21.50 50.29 58.63
L2SC 69.28 83.63 90.38 71.43 83.98 90.80 71.75 84.09 90.88 70.82 83.90 90.66

DiMSC 74.15 86.19 88.80 65.51 76.19 83.97 63.21 72.86 84.88 67.62 78.41 85.86
LRMSC 43.18 60.12 75.22 48.33 70.41 81.41 44.53 69.01 79.60 45.35 66.51 78.74

AWP 30.72 54.39 58.64 25.02 52.63 56.44 35.36 59.06 67.64 30.37 55.36 60.89
WMSC 16.53 44.91 47.98 35.18 56.14 70.15 23.13 52.98 66.53 24.95 51.34 61.54
LMSC 73.61 88.19 90.43 77.38 90.64 92.54 73.24 88.25 90.76 74.74 89.03 91.24

Table 2: clustering results on BBC.

method task1 task2 task3 avg

NMI Purity RI NMI Purity RI NMI Purity RI NMI Purity RI

SNMF 76.49 89.41 91.35 81.66 91.69 93.10 88.07 94.78 95.81 82.07 91.96 93.42
Coreg 84.26 93.38 92.86 73.22 87.13 91.01 76.58 89.71 92.02 78.02 90.07 91.96
LLMC 20.57 51.47 50.04 22.13 52.94 50.47 23.92 52.94 50.63 22.21 52.45 50.38
L2SC 70.62 81.47 88.08 75.25 82.72 88.92 77.83 83.38 90.02 74.57 82.52 89.01

DiMSC 49.87 71.47 76.85 34.45 55.59 70.49 27.48 53.09 64.90 37.27 60.05 70.75
LRMSC 34.54 57.54 72.51 48.33 70.41 81.41 44.53 69.01 79.60 42.47 65.65 77.84

AWP 34.96 63.24 68.77 27.94 57.35 63.37 46.46 69.12 70.92 36.45 63.24 67.69
WMSC 25.35 53.53 64.51 25.27 51.47 68.00 17.52 48.53 56.89 22.71 51.18 63.13
LMSC 87.90 95.32 96.35 83.35 93.57 94.96 81.59 92.40 93.50 84.28 93.76 94.94

Table 3: clustering results on BBCsport.

the second result is in blue. Note that our method achieves
the best performance on BBCSport and Cornell, and obtains
the best or second best performance on 3Sources and BBC
in most cases. Specifically, as for Cornell, LMSC outper-
forms other competitors on all metrics with respect to differ-
ent tasks. Overall, the average evaluation indicator of all tasks
is good, which showcases the efficiency and superiority of our
LMSC. It is worth noting that multi-view clustering models
only utilize the information in the current task, whereas the
LMSC exploits the knowledge shared among a sequence of
tasks. Compared to multi-task model, LMSC performs bet-
ter, because both the cluster centers and feature embedding
are learned. Hence, LMSC has remarkable advantages over
traditional multi-view clustering approaches in lifelong learn-
ing scenarios.

method task1 task2 avg

NMI Purity RI NMI Purity RI NMI Purity RI

SNMF 16.15 52.29 64.02 18.82 45.62 66.83 17.48 48.95 65.42
Coreg 28.82 60.42 67.74 22.39 50.42 66.91 25.61 55.42 67.32
LLMC 13.80 54.17 55.59 15.52 47.92 56.65 14.66 51.05 56.12
L2SC 21.43 57.08 66.35 18.31 50.63 68.59 19.87 53.86 67.47

DiMSC 26.40 57.92 66.21 16.55 47.50 63.10 21.48 52.71 64.66
LRMSC 20.97 55.00 63.05 13.57 48.33 42.11 17.27 51.66 52.58

AWP 24.60 56.25 61.70 14.60 43.75 56.38 19.60 50.00 59.04
WMSC 21.96 58.33 61.26 19.76 47.92 64.98 20.86 53.12 63.12
LMSC 32.08 61.67 71.53 27.22 51.67 69.72 29.65 56.67 70.62

Table 4: clustering results on Cornell.

5.3 Parameter Discussion
To explore the effect on three parameters in Eq. (8), we tune
λ, µ and β within the range [1e−3, 1e−1, . . . , 1e3]. We see
the parameters of LMSC are tuned roughly. Better parameter
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Figure 2: The influence of parameters λ, µ and β on 3Sources.
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Figure 3: The influence of parameters λ, µ and β on Cornell.
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Figure 4: Convergence analysis of our proposed LMSC model on
(a) 3Sources and (b) BBCSport datasets, where lines with different
colors denote different tasks in each dataset.

tuning would achieve better clustering performance than that
recorded in this paper. As shown in Fig. 2, the vertical axis
is NMI in [20%, 40%, 60%] and the horizontal axes are µ and
β in [1e−3, 1e−1, . . . , 1e3], respectively. We find that a high
value of λ is beneficial to clustering results. From a global
perspective, our proposed method is not greatly affected by µ
and β in most cases. In detail, the performance demonstrates
a bell-shaped curve since it first increases and then decreases
as µ and β vary. From Fig. 3, it is generally the same in the
case of Cornell. We observe that our method achieves con-
sistently better performance when λ is around 1 and the per-
formance is pretty stable under the change of other parameter
settings.

5.4 Convergence Analysis
It is worth noticing that the optimization algorithm of our ob-
jective function is essentially a non-convex problem. Thus,
it is rather critical to validate its convergence property. As
shown in Fig. 4, we plot the value of the objective function
with respect to each new task on 3Sources. Note that our
objective values increase sharply with 200 iterations on both
datasets and approach to a boundary. Owing to the limited
space, we did not theoretically prove the convergence prop-

erty of our algorithm, but we still find it converges asymptot-
ically on real-world datasets.

6 Conclusion

In this paper, we introduce a novel lifelong multi-view clus-
tering framework termed lifelong multi-view spectral cluster-
ing (LMSC) to deal with tasks involved with multi-view data
in a sequence. Specifically, two types of libraries are pro-
posed: 1) orthogonal basis libraries which retain cluster cen-
ters for each view, and 2) view-specific feature embedding
libraries which embrace feature relationships among tasks in
the same sequence. As a new multi-view spectral clustering
task arrives, LMSC is able to transfer knowledge embedded
in the shared knowledge libraries to encode the coming spec-
tral clustering task and update the libraries with respect to
different views. Moreover, an adaptive weighing strategy is
utilized to integrate multiple orthogonal basis libraries into a
fusion orthogonal basis library. Extensive experiments are
conducted to evaluate the superiority of the LMSC: 1) as
for clustering results, LMSC outperforms other competitors
in the majority of cases. 2) As for parameter analysis, our
method is relatively stable with respect to different λ, µ, and
β. 3) The convergence analysis proves the effectiveness of
our optimization algorithm. In the future, we consider using
a multi-layer library to capture the nonlinear correlation of
each view.
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