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Abstract

One of the widely used peak reduction methods
in smart grids is demand response, where one
analyzes the shift in customers’ (agents’) usage
patterns in response to the signal from the dis-
tribution company. Often, these signals are in
the form of incentives offered to agents. This
work studies the effect of incentives on the prob-
abilities of accepting such offers in a real-world
smart grid simulator, PowerTAC. We first show
that there exists a function that depicts the prob-
ability of an agent reducing its load as a func-
tion of the discounts offered to them. We call
it reduction probability (RP). RP function is fur-
ther parametrized by the rate of reduction (RR),
which can differ for each agent. We provide
an optimal algorithm, MJS–EXPRESPONSE, that
outputs the discounts to each agent by maximiz-
ing the expected reduction under a budget con-
straint. When RRs are unknown, we propose a
Multi-Armed Bandit (MAB) based online algo-
rithm, namely MJSUCB–EXPRESPONSE, to learn
RRs. Experimentally we show that it exhibits sub-
linear regret. Finally, we showcase the efficacy of
the proposed algorithm in mitigating demand peaks
in a real-world smart grid system using the Power-
TAC simulator as a test bed.

1 Introduction
Load balancing is one of the most prevalent problems in en-
ergy grids, which occurs when there is a sudden surge of con-
sumption (i.e., during peak hours) and the demand goes be-
yond the normal working range of supply. The sudden surge
in demand leads to multiple issues: (i) peak demands put
an added load on electricity generating companies (GenCo)
to supply additional energy through fast ramping generators
to fulfill the energy requirement of the customers (agents).
(ii) The grid needs to support such dynamics and peak de-
mand. The ramping up of the generators results in higher
costs for distribution companies (DC). Typically, daily peak
demands are approximately 1.5 to 2.0 times higher than the
average demand [U.S. EIA, 2014]. As per one estimation, a

5% lowering of demand during peak hours of California elec-
tricity crisis in 2000/2001 would have resulted in 50% price
reduction [International Energy Agency, 2003]. Thus, it is
paramount to perform load balancing in the grid efficiently.

A promising technology for load balancing is a smart grid.
It is an electricity network that supplies energy to agents
via two-way digital communication. It allows monitoring,
analysis, control, and communication between participants
to improve efficiency, transparency, and reliability [Techope-
dia.com, 2021]. The smart grid technology is equipped with
smart meters capable of handling the load in the smart grid by
advising the agents to minimize energy usage during heavy
load scenarios. The smart grid system can effectively balance
the load by incentivizing agents to shift their energy usage
to non-peak timeslots by signaling them the updated tariffs,
commonly known as demand response (DR).

DR involves DC offering the agents voluntarily monetary
incentives to optimize their electricity load. There are many
approaches, such as auction-based mechanisms [Zeng et al.,
2015; Zhou et al., 2015] and dynamic pricing [Goudarzi
et al., 2021] to achieve DR. The major challenge with
these approaches is that different agents may respond differ-
ently to the given incentives. Thus, to increase agent par-
ticipation, it becomes crucial to learn their reaction toward
these incentives. Learning agents’ behavior is challenging
due to the uncertainty and randomness that creeps in due
to exogenous factors like weather [Shweta and Sujit, 2020;
Li et al., 2018]. Works like [Shweta and Sujit, 2020;
Li et al., 2018] consider a very simplistic model – when DC
offers to an agent incentive more than what it values, the
agent reduces every unit of electricity it consumes with a cer-
tain probability independent of the incentive. This probabil-
ity is termed as reduction probability (RP) [Jain et al., 2014;
Shweta and Sujit, 2020]. RPs are learned using multi-armed
bandit (MAB) solutions. There are three primary issues
with these approaches. (i) Agents’ valuations need to be
elicited [Jain et al., 2014; Shweta and Sujit, 2020], which
adds additional communication complexity, (ii) agents reduce
all with RP else nothing, and (iii) RPs do not change with in-
centives. In the real world, an increase in incentives should
lead to an increase in RP. Our work considers the model
where the RP is a function of incentives offered and not a
constant for an agent, and reduction is not binary.

To model RP as a function of incentive, we need to carry
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out experiments with smart grids. However, any DR tech-
nique (or such experiments) proposed for a smart grid should
also maintain the grid’s stability. The only way to validate
that the proposed technique would not disrupt the grid oper-
ations while achieving DR is to test it on real-world smart
grids, which is practically impossible. Nevertheless, Power
Trading Agent Competition (PowerTAC) [Ketter et al., 2013]
provides an efficient and very close-to real-world smart grid
simulator intending to facilitate smart grid research. We first
perform experiments with PowerTAC to observe the behavior
of different agents for the offered incentives. With rigorous
experiments, we propose our model EXPRESPONSE. We ob-
serve that the agents respond quickly to the incentives; how-
ever, more incentives may not substantially increase reduc-
tion guarantees. Different agents may have a different rate
of reduction (RR) to incentives that determine how fast RP
changes w.r.t. incentives. It also models the consumer val-
uation for one unit of electricity. A higher RR corresponds
to the case where a consumer values the electricity less (for
example, a home consumer). In contrast, a lower RR value
indicates that the consumer values the electricity higher (for
example, an office consumer).

We propose an optimization problem for the DC to max-
imize the expected peak reduction within the given bud-
get. We then provide an optimal algorithm, namely MJS–
EXPRESPONSE, for the case when the reduction rate (RR)s
of the agents are known. When RRs are unknown, we employ
a standard MAB-algorithm, MJSUCB–EXPRESPONSE, to
learn RRs. Our experiments with synthetic data exhibit sub-
linear regret (the difference between the expected reduction
with known RRs and the actual reduction with MJSUCB–
EXPRESPONSE). With this success, we adopt it for Power-
TAC set-up and experimentally show that it helps in reducing
peak demands substantially and outperforms baselines such
as distributing budget equally across all agent segments. In
summary, the following are our contributions,

• We propose a novel model (EXPRESPONSE) which
mimics smart grid agents’ demand response (DR) be-
havior by analyzing agents’ behavior in a close-to real-
world smart grid simulator, PowerTAC.

• We design an offline algorithm to optimally allocate the
budget to agents to maximize the expected reduction.

• We design an online algorithm based on a linear search
method to learn the RR values required to calculate opti-
mal allocation in the offline algorithm. We further show
that the proposed algorithm exhibits sub-linear regret ex-
perimentally.

• We evaluate the proposed algorithm on the PowerTAC
platform – close to a real-world smart grid system. Ex-
periments showcase the proposed algorithm’s efficacy in
reducing the demand peaks in the PowerTAC environ-
ment (14.5% reduction in peak demands for a sufficient
budget).

2 Related Work
Many demand response methods are available in the liter-
ature. Some of the popular ones include time-of-day tar-

iff [Ramchurn et al., 2011; Jain et al., 2013], direct load con-
trol [Hsu and Su, 1991], the price elasticity of demand ap-
proach (dynamic pricing) [Chao, 2012] approaches. These
approaches are quite complex for the agents as the price keeps
changing. It can lead to agent confusion due to uncertain sup-
ply, volatile prices, and lack of information. Due to the com-
plexity involved in these methods, many recent works have
focused on providing incentives to the agents, which make
them shift their load from peak hours to non-peak hours [Park
et al., 2015; Jain et al., 2014].

In the literature, many techniques for providing incentives
primarily focus on the setting where when given an offer (in-
centive), the consumer can either reduce or choose not to re-
duce the consumption. For example, DR mechanism in [Jain
et al., 2014; Shweta and Sujit, 2020] considered a setting
where each consumer was associated with two quantities: (i)
valuation per unit of electricity, which represents how much
a consumer values the unit of electricity, and (ii) acceptance
rate, which denotes the probability of accepting the offer if
a consumer is given the incentive more than his/her valua-
tion. The authors then proposed a Multi-Armed Bandit mech-
anism that elicits the valuation of each consumer and learns
the acceptance rate over a period of time. Similar approaches
were also considered in [Ma et al., 2016; Ma et al., 2017;
Methenitis et al., 2019; Li et al., 2018]. All the above models,
in principle, assume that the acceptance rate is independent of
the incentives given to the agents. In practice, this assumption
does not hold. The acceptance rate ideally should increase
with the increase in incentives. To the best of our knowledge,
this paper considers the dependency of increased incentives
on the acceptance rate for the first time, esp. in MAB-based
learning settings. In principle, the paper considers the prob-
lem of an optimal allocation of the budget to different types
of agents to maximize the overall peak reduction.

Two sets of works aim to maximize the peak reduction
under a budget constraint. (i) With a mixed integer lin-
ear programming (MILP) approach [Chen et al., 2020], and
(ii) with an efficient algorithm by drawing similarities from
the min-knapsack problem [Singh et al., 2021]. Other than
that, there are a few tariff strategies for PowerTAC environ-
ment which mitigates the demand peaks by publishing tar-
iffs to incentivize customers to shift their non-priority elec-
tricity usage to non-peak timeslots [Chandlekar et al., 2022;
Demijan et al., 2022; Ghosh et al., 2019]. However, none of
this technique talks about DR in detail.

3 Preliminaries and Mathematical Model
In a smart grid system, distributing companies (DC) distribute
the electricity from GenCo to agents (household customers,
office spaces, electric vehicles, etc.) in the tariff market. The
customers are equipped with autonomous agents/bots to in-
teract with the grid. Hence, we refer to customers as agents
henceforth. Depending on their type, each agent exhibits a
certain usage pattern which is a function of a tariff offered by
the DC for most agents. We consider N = {1, 2, . . . , n}
agents available to prepare for DR at any given timeslot.
Here, n denotes the number of types of consumers in the tariff
market.
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A DR model can further incentivize agents, offering ci to
agent i, to shift their usages from peak to non-peak timeslot.
However, agents may do so stochastically, based on external
random events and the offered incentives. For each agent i,
this stochasticity can be modeled by associating the probabil-
ity of reducing demand in the desired timeslot as i. We call
this probability as reduction probability (RP) pi(ci). Note
that the reduction in electricity consumption at peak slot for
agents is not binary. For example, an agent with the usage
of 10 KWh and RP (pi(ci)) of 0.6 would reduce its usage by
6 KWh in expectation. The general intuition is that higher
incentives lead to a higher probability of accepting the of-
fer, reducing the load in peak hours. Typically the DC has
a limited budget b to offer discounts. It aims to achieve the
maximum possible peak reduction within the budget.

First, we need to model the agent’s RP function pi(·). We
need a simulator that can efficiently model real-world agents’
usage patterns and the effects of DR on their usage pat-
terns. PowerTAC [Ketter et al., 2013] replicates the crucial
elements of a smart grid, including state-of-the-art customer
models. Below, we explain experimental details and observa-
tions from the PowerTAC experiments that helped us to come
up with our novel model of the RP function.

3.1 Modelling the Reduction Probability (RP)
Function Inspired from PowerTAC

PowerTAC Set-up. The PowerTAC simulates the smart-grid
environments in the form of games that run for a fixed du-
ration. The standard game duration is around 60 simulation
days, which can be modified to play for an even longer dura-
tion. The simulation time is discretized into timeslots cor-
responding to every hour of the day. For each game, the
PowerTAC environment randomly selects the weather of a
real-world location, and the agents mold their usage pattern
based on the selected weather in the game. During the game,
DC aims to develop a subscriber base in the tariff market by
offering competitive tariffs, which could be fixed price (FPT),
tiered, time-of-use (ToU) or a combination of all. The DC
also satisfies the energy requirement of their subscriber base
by buying power in the wholesale market by participating in
day-ahead auctions. There are different types of customers
in PowerTAC. But, we focus on PowerTAC’s consumption
agents – who consume electricity and aim to learn their RP
function.
Experimental Set-up. We perform the following nine sets of
experiments to model the RP function. We play 10 different
games for 180 simulation days for each experimental set-up
and report the statistics averaged over these 10 games. For
each experiment, we make DC publish a tariff at the start of
the game and keep the same tariff active throughout the game.
The initial tariff rates depend on the DC electricity purchase
cost and may vary from game to game.
FPT Set-up to Identify Peak Slots. We make DC publish
an FPT and record each consumption agent’s true usage pat-
tern without any external signals from DC. Based on the true
usage pattern of each agent, we identify the potential peak
demand hours in a day. Figure 1 shows the usage pattern of
a PowerTAC agent in response to the FPT; in this figure, the
hours 7 and 17 have the peak usages during the day. The rate

Figure 1: PowerTAC customer’s response for FPT and ToU tariffs

value of the FPT is derived by adding a profit margin in the
DC’s electricity purchase cost. Next, we study the agents’
response to different tariffs. To this, we consider the ToU
model, where different prices are proposed at different times.
These prices, however, are the same for all agents.
ToU Set-up. In ToU tariffs, the rate charged for each unit of
electricity consumed can vary depending on the time of the
day. The ToU tariffs are designed so that the agents get dis-
counts during non-peak hours and no/little discounts during
peak hours. The average rate of the tariffs across all times-
lots remains the same as the previous FPT-set-up. Essentially,
all the ToU tariffs have the exact same area under the curve
(AUC) as the FPT. We perform such an experiment for the re-
maining 8 sets by offering discounts in each set; we give x%
discount on non-peak timeslots compared to the price in peak
timeslots. Here x ∈ {1, 2, 5, 7.5, 10, 15, 20, 30}. Figure 1
explains how we move from an FPT (Fig. 1(a)) to a ToU tar-
iff (Fig. 1(c)) by offering a certain discount and keeping the
AUC the same for all the tariffs. Based on the discount level,
the agents modify their usage patterns ((Fig. 1(b,d)), and we
collect the usage data of each agent for each of the sets.

To analyze the effects of various discounts on agents’ usage
patterns, we pick the top two peak hours in the day for each
agent. Then, we calculate the difference between the elec-
tricity usage during FPT-Set-up and electricity usage during
discounted ToU-Set-up for both peak slots. We do this for all
eight sets numbered from 2 to 9. We can view the discounted
tariffs as a DR signal for the agents to shift their non-priority
usages from peak to non-peak timeslots. Below, we show the
observations of the DR experiments for a few selected agents.

Figure 2a and Figure 2b show the DR behavior of three
PowerTAC agents BrooksideHomes, CentervilleHomes and
EastsideOffices for their top two peak demand hours (re-
scaled to visualize peak reduction as a probability function).
The first two agents are household customers, whereas the
last agent is an office customer. Analysing the plots gives
a crucial insight into the agents’ behavior. The agents re-
duce their usage by a great extent for the initial values of dis-
count (1%, 2% and 5%) but cannot reduce their usage further
even when offered a much higher discount; secondly, differ-
ent agents follow the different rate of reduction.

Based on the PowerTAC experiments, we conclude that the
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(a) (b) (c)

Figure 2: DR probability function of PowerTAC customers for (a) the highest peak, (b) the 2nd highest peak, and (c) exponential probability
function for EXPRESPONSE

reduction probability function can be modeled by an expo-
nential probability function and is given as:

pi(ci) = 1− e−λici , ∀i ∈ N (1)
Here, ci is a discount (or incentive) given to agent i, and λi

is its reduction rate (RR). The proposed function depends
upon the choice of λi; the higher value of λi generates a
steeply increasing curve (as shown with λi = 0.5), while
the lower λi value makes the curve increase slowly with each
discount (as shown with λi = 0.1) as shown in Figure 2c. Let
c = (c1, c2, . . . , cn) and λ = (λ1, λ2, . . . , λn) be vector of
offered incentives and RRs.

3.2 EXPRESPONSE: The Optimization Problem
We assume that all the agents have the same electricity con-
sumption in peak slots1. The aim is to maximize the expected
reduction under a budget constraint. This leads to the follow-
ing optimization problem:

maxci

n∑
i=1

(1− e−λici) s.t.

n∑
i=1

ci ≤ b (2)

Suppose the RR (λ) values are known. In that case, we
present an optimal algorithm MJS–EXPRESPONSE to effi-
ciently distribute the budget b among the agents to maximize
the expected sum of peak reduction (Section 4.1). When RRs
are unknown, we provide MJSUCB–EXPRESPONSE algo-
rithm that estimates it (Section 4.2). The algorithm is mo-
tivated by multi-armed bandit literature [Jain et al., 2014;
Shweta and Sujit, 2020] and uses the linear search over the
possible range of values of RR.

4 Proposed Algorithms for EXPRESPONSE
This section proposes a novel algorithm to solve EXPRE-
SPONSE. We discuss two settings: (i) perfect information that
assumes the knowledge of RR, and (ii) imperfect information
where RR values need to be learned over time.

4.1 Perfect Information Setting: Known RR
MJS–EXPRESPONSE (Algorithm 1) distributes one unit of
budget to an appropriate agent in each iteration until the en-
tire budget is exhausted. To decide the appropriate agent for

1Agents consuming different amounts can be trivially modeled
by duplicating agents

Algorithm 1: MJS–EXPRESPONSE Algorithm
Input: Budget b, n, RR vector λ
Output: Final Allocation vector c

1 cost← 0, c← 0n; // initialization
2 while cost ≤ b do
3 d← 1 // iterator
4 l← 1 // index of agent with largest

jump
5 while d ≤ n do
6 ∆

cd+1
d ← (1− e−λd(cd+1))− (1− e−λdcd)

7 ∆
cl+1
l ← (1− e−λl(cl+1))− (1− e−λlcl)

8 if ∆cd+1
d > ∆

cl+1
l then

9 l = d

10 d = d+ 1

11 cl = cl + 1 and cost = cost+ 1

12 return c // final allocation

the current iteration, we calculate jump (∆) values for all the
agents. We define ∆j+1

i value for each agent as the change
in RP for a unit change in discount. For example, if an agent
i has RP of (1 − e−λi(j+1)) for discount ci = (j + 1) and
RP of (1 − e−λij) for discount ci = j, then the jump ∆j+1

i
is the difference between these two probabilities. The algo-
rithm finds an agent l having the maximum such jump for the
current unit of reduction (denoted by ∆cl+1

l for agent l) and
allocates the current unit discount to agent l–Maximum Jump
Selection (MJS). Finally, the algorithm returns the allocation,
which is the optimal distribution of the initial fixed budget, as
shown in the below theorem.
Theorem 1. MJS–EXPRESPONSE is optimal.

Proof. For any discount vector c, the objective function in
Equation 2 can be written as a sum of jumps ∆j

i which denote
the additional increase in reduction probability of consumer i
when offered j units of discount compared to j − 1. i.e.

max
c

n∑
i=1

1− e−λici

= max
c

n∑
i=1

 ci∑
j=1

(1− e−λij)− (1− e−λi(j−1))
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Algorithm 2: MJSUCB–EXPRESPONSE Algorithm
Input: Budget b, n, Batch Size bS, T
Output: Allocation {ct}Tt=1

1 Initialize λ̂, λ̂+ randomly // n-dimensional
vectors

2 Initialize offeredInst, successInst, offeredHist and
successHist to 0 // 2D matrices of size n× b

3 t← 0
4 while t < T do
5 {ct′}t+bs

t′=t = MJS–EXPRESPONSE(b, n, λ̂+)
6 for i = 1→ n do
7 if ct(i) ̸= 0 then
8 offeredInst(i, ct(i)) += bS
9 successInst(i, ct(i)) += # Successes for agent

i

10 Update Hist = {Hist, offeredInst, successInst}
11 Clear offeredInst, successInst
12 t← t+ bS

13 [λ̂, λ̂+]← LinearSearch(Hist, n, b, t)

14 return {ct}Tt=1

=

ci∑
j=1

∆j
i max

c

n∑
i=1

ci∑
j=1

∆j
i s.t.

n∑
i=1

ci ≤ b

Thus at the optimal solution, one unit is allocated to b highest
jumps and 0 to other jumps. We now need to prove that the
earlier jump is higher than the latter, i.e., ∆l

i ≥ ∆j
i ∀l < j.

The below lemma proves this for any agent i.

Lemma 1. For each i, we have ∆j
i ≥ ∆j+1

i with λi ≥ 0

Proof. We have the following:

e−jλi(eλi − 1) ≥ e−jλi(1− e−λi)

⇒e−λi(j−1) − e−λij ≥ e−jλi − e−λi(j+1)

From the last equation, we have ∆j
i ≥ ∆j+1

i .

Note that one can use KKT conditions and derive a set of
linear equations to determine an optimal distribution of b. Our
proposed algorithm is simple, determines an optimal solution
in linear time, and has a time complexity of O(nb).

4.2 Imperfect Information Setting: Unknown RR
As RR of the agents are unknown in this setting, we estimate
them based on the history of the agents, which consists of the
agents’ response during the past timeslots. For each agent,
we store its historical behavior by keeping track of the offered
history and success history; we estimate λ̂ and λ̂+ through a
routine LinearSearch(·).
MJSUCB–EXPRESPONSE. We start by initializing λ̂ and
its UCB component λ̂+, then estimating p̂i(ci) for each agent
i and for each ci using Linearsearch(·) at each timeslot.
LinearSearch(). Estimating RRs with the offered history and
success history, we calculate p̂i(ci) =

SuccHist(i,ci)
OfferredHist(i,ci)

, for
each ci offered to the agent i. p̂i(ci) is then used to cal-
culate candidate values of RR using Equation 1. Based on

the candidate RR values, we determine λ̂i that minimizes
the squared error loss between the historical probabilities
and the probabilities calculated based on the Equation 1 i.e.,
λ̂i ∈ argminl

∑
ci∈[b]

(
p̂i(ci)− (1− e−lci)

)2
, for each of

the discount value. The RR value that achieves the least
squared error loss is returned as the optimal RR after the
current timeslot. We follow the same method for each of
the agents. Algorithm 2 discusses our proposed MJSUCB–
EXPRESPONSE method in more detail, which takes budget b,
n, batch Size bS, and T as inputs and returns λ̂s. Here, λ̂, λ̂+

denote estimated λ and its UCB version, respectively.

4.3 Experimental Evaluation of
MJSUCB–EXPRESPONSE

To check whether the algorithm converges to the true RR, we
conduct extensive analysis on a simplified version of a smart
grid. Here, we discuss the experimental set-up to observe the
regret of the proposed MJSUCB–EXPRESPONSE. Regret is
the difference between total reduction with known RRs and
total reduction with unknown RRs. In both experiments, we
repeat the experiment 25 times, each instance having inde-
pendently chosen λ. We report different statistics averaged
over 25 iterations. We defer the detailed discussion of the
second experiment to the Appendix.
Exp1– Effect of Batch Size. In this experiment, we keep
the budget b and T constant, and vary batch sizes. This ex-
periment shows the change in regret behavior as we change
the batch sizes from low to high. Figure 3 compares aver-
age regret of MJSUCB–EXPRESPONSE over 25 iterations
of varying true RR values of agents, with varying batch size,
b = 5, and T = 5000000. The figure shows three subplots
with batch sizes of 5, 10, and 50, respectively. Each subplot
compares the regret values for 4, 5, and 6 agents, respectively,
and shows sub-linear regret in the case of 5 and 6 agents for
three different batch sizes. With an increased batch size to
50, even the case with 4 agents converges to sub-linear regret
within a few timeslots.
Exp2– Effect of Budget and Relation w.r.t. T . In this ex-
periment, we vary the budget and number of agents while
keeping the number of iterations and time T constant. Fig-
ure 4 compares the regret and concludes that MJSUCB–
EXPRESPONSE achieves a sub-linear regret, and its peak re-
duction success rates are approximately the same as the opti-
mal peak reduction success rates. We next show the perfor-
mance of MJSUCB–EXPRESPONSE in PowerTAC.

5 MJSUCB–EXPRESPONSE in PowerTAC
We first explain how we model different customer groups in
PowerTAC (More details are provided in the Appendix.)
Modelling the Customer Groups. We begin by grouping
the agents based on their electricity usage and create four
groups, namely, G1, G2, G3, and G4, as shown in Table 1.
We consider groups due to the limitations of PowerTAC,
where we cannot publish individual customer-specific tariffs.
We can only publish tariffs for customer groups having
similar usage ranges. However, our proposed model and
algorithms do not rely on any assumption of the existence of
such groups and treat each consumer as a separate user (in
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Figure 3: Comparing MJSUCB–EXPRESPONSE’s regret over 25 iterations with varying batch sizes [budget=5, T=5M]

Figure 4: Comparing MJS–EXPRESPONSE and MJSUCB–
EXPRESPONSE with varying budget and number of agents [Itera-
tions = 25, T=5M]

Sections 3 and 4). We leave out the remaining PowerTAC
agents as they do not use a considerable amount of electricity
in the tariff market.

Designing the Tariffs for Each Group. For each group Gi,
we publish ToU tariff ToUi such that agents from Gi sub-
scribe to tariff ToUi, and no other group of agents subscribe
to that tariff. To achieve this, we combine ToU tariffs with
tier tariffs as follows. In PowerTAC, tier tariffs specify rate
values and upper bounds on electricity usage below which
the specified rates are applicable. However, if the usage goes
beyond that particular bound, the agent has to pay the rate
values associated with the next higher bound. As we have
segregated the agents based on their usage range, for any tar-
geted group, we offer standard ToU rate values for its par-
ticular usage range and high rates for the remaining ranges
of electricity usage. Thus, a group of agents naturally like
the tariff designed for their group as the other tariffs are way
costlier for their usage pattern. At any moment in the Power-
TAC game, we keep all four ToU tariffs active (one for each
group); these tariffs keep getting updated based on the DR
signals from DC.
Adapting MJSUCB–EXPRESPONSE in PowerTAC.
While proposing our model, we assume that agents are iden-
tical and have the same usage capability. Thus, maximizing

Group Customers Type %Usage in
Tariff Market

G1
BrooksideHomes &
CentervilleHomes Household 50%

G2
DowntownOffices
& EastsideOffices

Small Of-
fices 25%

G3 HextraChemical Mid-level
Offices 10% to 12%

G4 MedicalCenter-1 High-level
Offices 10% to 12%

Table 1: Customer groups detail

the sum of probability would also result in maximizing
reduction. However, for general smart grid settings such
as PowerTAC, we modify our model by giving weightage
to agents based on their usage percentage (market cap).
Higher weightage is given to agents that can reduce the
larger amount of energy. We modify MJS–EXPRESPONSE
to introduce weights proportional to groups’ contribution to
electricity usage for each group. weights = {4, 2, 1, 1}
to groups {G1, G2, G3, G4}, respectively in our experi-
ments. We still use c = MJS–EXPRESPONSE(·) (Line 5,
Algorithm 2) to find the group that can fetch the highest
increase in the probabilities as shown in Algorithm 1. While
allocating discounts to the groups, instead of allocating a
1 unit of budget to each group, we weigh the unit with the
group’s weight. For example, if G1 gets selected for the
discount, we assign a 4 unit discount instead of 1. We call
this way of allocation as WEIGHTEDMJS–EXPRESPONSE.
It may help to assign weights to the groups as assigning
weights will allocate discounts proportional to their peak
reduction capacity. For instance, 10% reduction in G1 would
reduce more peak demand than 10% reduction in G4.
Creating Baseline. To compare the performance, we con-
sider the baseline of uniformly allocating the budget to all the
groups. This leads to publishing group-specific tariffs with
equal discounts. We record the peak reduction efficiency and
reduction in capacity transactions from the baseline strategy.
We then use the recorded information as a benchmark to eval-
uate MJSUCB–EXPRESPONSE performance. Furthermore,
we compare the efficacy against the strategy when we do not
provide groups with any DR signals.
Evaluation Metrics. Finally, we evaluate MJSUCB–
EXPRESPONSE’s performance on two metrics, (i)
MJSUCB–EXPRESPONSE’s peak demand reduction
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capability, which indicates how much percentage of peak
demand reduction MJSUCB–EXPRESPONSE achieved
compared to the benchmark strategies, and (ii) the reduction
in capacity transaction penalties that suggest how effectively
MJSUCB–EXPRESPONSE can mitigate such penalties
compare to the benchmark strategies.
Capacity Transactions. In PowerTAC, capacity transactions
are the penalties incurred by the DC if the agents subscribed
to their portfolio contribute to the peak demand scenarios.
These huge penalties are a way to penalize the DC for let-
ting the agents create demand peaks. Thus, as opposed to
the previous section where we analytically show MJSUCB–
EXPRESPONSE exhibits a sub-linear regret, here in Pow-
erTAC experiments, we aim to reduce capacity transaction
penalties of DC using MJSUCB–EXPRESPONSE.

5.1 Experiments and Discussion
Experimental Set-up. We perform multiple experiments
with different initial budgets. We play 8 games in each set
with approximately 28 simulation weeks (total 210 weeks).
For each set, we start the experiments by randomly initializ-
ing RR values for each group and calculate the budget allo-
cation based on WEIGHTEDMJS–EXPRESPONSE as well as
MJS–EXPRESPONSE (line 5 in MJSUCB–EXPRESPONSE),
called as MJSUCB–EXPRESPONSE-W and MJSUCB–
EXPRESPONSE-UW, respectively. As explained in Section 5,
for each of the 4 groups, we have four ToU tariffs. We keep
the same tariffs active for 3 simulation days and invoke the
MJSUCB–EXPRESPONSE at the end of the 3rd day. Based
on the success probabilities, we update the offeredHist and
successHist, and calculate the next set of λ̂ and λ̂+ values
for each group. Using the new λ̂+, we calculate the next de-
mand allocation and publish the new tariffs as explained ear-
lier. While publishing new tariffs, we revoke the previous
ones; thus, only 4 tariffs are active at any time in the game.
This 3 days process constitutes a single learning iteration (t).
To calculate the success probability of each tariff, we played
10 offline games without any discount to any group and noted
down the top two peak timeslots. Let xi,1 and xi,2 denote
per group usage during those peak timeslots. Then, we com-
pute the success probability as pi,1 = (1 − yi,1/xi,1) and
pi,2 = (1 − yi,2/xi,2), with yi,1 and yi,2 denoting group 1
and 2 usage respectively. pi is then set as pi =

pi,1+pi,2

2 . We
perform 2 sets of experiments with b = 15% and b = 7.5%.
We define a scalar value that gets multiplied by the discounts
to generate fractional discounts.
Observations and Discussion. Table 2 shows the cumulative
peak usages under MJSUCB–EXPRESPONSE and bench-
marked (baseline) method for the top 2 peaks of groups G1
to G4. As shown in the table, for the overall 210 simulation
weeks of training in PowerTAC, MJSUCB–EXPRESPONSE
cumulative peak usage for peak1 is similar to the baseline
method for both weighted and unweighted allocations, while
slightly worse than the baseline for the peak2. The obser-
vation is consistent for the budget values 15% and 7.5%.
However, if we focus on only the last 10 weeks of train-
ing, MJSUCB–EXPRESPONSE’s peak usage reduction ca-
pabilities are visible. Both weighted and unweighted alloca-
tions achieve cumulative peak reduction close to 14.5% con-

Method b = 15 b = 7.5
P1 P2 P1 P2

No Discount 70.2 69.7 70.2 69.7
Baseline 68.1 67.4 67.8 67.7

Average Over All 210 Weeks of Training
MJSUCB–EXPRESPONSE-W 68.4 67.8 68.8 69.5

MJSUCB–EXPRESPONSE-UW 68.3 68.1 68.1 68.6

Average Over Last 10 Weeks of Training
MJSUCB–EXPRESPONSE-W 60.2 69.8 64.1 70.9

MJSUCB–EXPRESPONSE-UW 60.0 67.6 61.4 69.0

Table 2: Peak usage comparison (usage in MWh)

Method b = 15 b = 7.5

No Discount 249355 249355
Baseline 233768 227070

Average Over All 210 Weeks of Training
MJSUCB–EXPRESPONSE-W 233643 228478

MJSUCB–EXPRESPONSE-UW 233248 229467

Average Over Last 10 Weeks of Training
MJSUCB–EXPRESPONSE-W 226374 228351

MJSUCB–EXPRESPONSE-UW 225775 228276

Table 3: Capacity transaction comparison (avg. penalty)

cerning No Discount peak usages for peak1 and b = 15%,
which is almost 5 times better than the baseline while main-
taining similar performance as the baseline for peak2. Sim-
ilarly, MJSUCB–EXPRESPONSE achieves significant im-
provement for b = 7.5% too for peak1 by reducing the
peaks 3 to 4 times better than baseline. Furthermore, as
shown in Table 3, capacity transaction penalties in the last
10 weeks are significantly lower than the No Discount and
baseline. Due to DR signals, agents sometimes shift some
of the demand from peak1 to peak2 or cannot reduce any
demand from peak2. However, if the overall system’s per-
formance is observed with the help of capacity transaction
penalties in PowerTAC experiments, the penalties are signif-
icantly lower than the baseline, reinforcing the efficacy of
MJSUCB–EXPRESPONSE in the PowerTAC environment.

6 Conclusion
The paper proposed a novel DR model where the user’s be-
havior depends on how much incentives are given to the users.
Using the experiments on the PowerTAC real-world smart
grid simulator, we first showed that agents’ probability of ac-
cepting the offer increases exponentially with the incentives
given. Further, each group of agents follows a different rate
of reduction (RR). Under the known RR setting, we proposed
MJS–EXPRESPONSE which leads to an optimal allocation
of a given budget to the agents, which maximizes the peak re-
duction. When RRs are unknown, we proposed MJSUCB–
EXPRESPONSE that achieves sublinear regret on the simu-
lated data. We demonstrated that MJSUCB–EXPRESPONSE
is able to achieve a significant reduction in peak demands and
capacity transactions just within 200 weeks of simulation on
PowerTAC simulator.
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