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Abstract

Actor-critic deep reinforcement learning (DRL) al-
gorithms have recently achieved prominent suc-
cess in tackling various challenging reinforcement
learning (RL) problems, particularly complex con-
trol tasks with high-dimensional continuous state
and action spaces. Nevertheless, existing re-
search showed that actor-critic DRL algorithms of-
ten failed to explore their learning environments ef-
fectively, resulting in limited learning stability and
performance. To address this limitation, several en-
semble DRL algorithms have been proposed lately
to boost exploration and stabilize the learning pro-
cess. However, most of existing ensemble algo-
rithms do not explicitly train all base learners to-
wards jointly optimizing the performance of the
ensemble. In this paper, we propose a new tech-
nique to train an ensemble of base learners based on
an innovative multi-step integration method. This
training technique enables us to develop a new hi-
erarchical learning algorithm for ensemble DRL
that effectively promotes inter-learner collabora-
tion through stable inter-learner parameter sharing.
The design of our new algorithm is verified theoret-
ically. The algorithm is also shown empirically to
outperform several state-of-the-art DRL algorithms
on multiple benchmark RL problems.

1 Introduction
Deep reinforcement learning (DRL) is a booming field of re-
search in machine learning with diverse real-world applica-
tions [Ibarz et al., 2021]. In recent years, many model-free
DRL algorithms achieved cutting-edge performance in tack-
ling various continuous reinforcement learning (RL) prob-
lems, including complex control tasks with high-dimensional
state and action spaces [Liu et al., 2021]. These algorithms
can effectively train deep neural networks (DNNs) to pre-
cisely model high-quality control policies and are the central
focus of this paper1.

1A long version of this paper with all referenced appendices can
be accessed through https://arxiv.org/abs/2209.14488.

Despite of widely reported success, a majority of existing
actor-critic DRL algorithms, such as DDPG [Lillicrap et al.,
2015], SAC [Haarnoja et al., 2018] and PPO [Schulman et
al., 2017], still suffer from some major limitations. Specifi-
cally, existing research works showed that the algorithm per-
formance is highly sensitive to hyper-parameter settings and
can vary substantially in different algorithm runs [Paine et al.,
2020]. Ineffective exploration is often considered as a major
cause for the poor learning stability [Chan et al., 2019], of-
ten resulting in overfitting and premature convergence to poor
local optima [Kurutach et al., 2018].

Rather than relying on one learner (or DRL agent), an en-
semble of base learners can be jointly utilized to boost explo-
ration and stabilize the learning process [Osband et al., 2016;
Osband and Roy, 2017]. For example, the ensemble deep de-
terministic policy gradient (ED2) algorithm is a newly devel-
oped ensemble DRL method [Januszewski et al., 2021] that
trains multiple DNN policies simultaneously using a shared
experience replay buffer (ERB), similar to several previously
proposed parallel DRL algorithms [Barth-Maron et al., 2018;
Mnih et al., 2016]. ED2 features a unique mixture of
multiple well-studied tricks, including temporally-extended
deep exploration, double Q-bias reduction, and target pol-
icy smoothing [Osband et al., 2016; Osband and Roy, 2017;
Hasselt et al., 2016; Fujimoto et al., 2018]. It was reported
to outperform state-of-the-art ensemble DRL algorithms such
as SUNRISE [Lee et al., 2021] on several difficult Mujoco
benchmark control problems.

As far as we know, many existing ensemble DRL algo-
rithms are designed to train each base learner individually.
For example, in ED2, every base learner trains its own DNN
policy using its own critic, with the aim to improve its own
performance without considering the impact of the trained
policy on the ensemble. While sharing the same ERB, pol-
icy training is conducted largely independently by all base
learners. This is shown to promote healthy exploration in
[Januszewski et al., 2021]. However, there is no guarantee
that the base learners will collaborate effectively such that the
ensemble as a whole can achieve desirable performance.

To address this limitation, we propose a new hierarchical
approach for training base learners in this paper. Specifically,
we follow ED2 for low-level training of DNN policies, which
will be performed concurrently by all base learners. In the
meantime, we construct a global critic, which is trained con-
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stantly to predict the performance of the ensemble. Guided
by the global critic, high-level training of DNN policies will
be performed regularly to strengthen cooperation among all
the base learners.

Since the ensemble is not used directly to collect state-
transition samples from the learning environment, we must
make sure that high-level training of the ensemble is not
performed on out-of-distribution data obtained by individ-
ual base learners. In view of this, it is important to encour-
age inter-learner parameter sharing so that the DNN policy
trained by one base learner can contribute directly to the train-
ing of DNN policies by other base learners. For this purpose,
we develop a new technique in this paper for high-level train-
ing of policies based on the multi-step integration methods
[Scieur et al., 2017].

Our high-level policy training technique is theoretically
justified as it guarantees stability for a wide range of opti-
mization problems. Meanwhile, it can be shown analytically
that, for all base learners, their trained linear parametric poli-
cies (a special and important technique for policy approxi-
mation) are expected to behave more consistently as the en-
semble through high-level policy training, encouraging inter-
learner collaboration and alleviating the data distribution is-
sue.

Driven by the hierarchical policy training method, we de-
velop a new ensemble DRL algorithm called the hierarchical
ensemble deep deterministic policy gradient (HED) in this
paper. Experimental evaluation of HED has been conducted
on a range of benchmark control problems, including the
widely used Mujoco control tasks as well as the less popular
and potentially more challenging PyBullet control problems.
Our experiments clearly show that HED can outperform ED2,
SUNRISE and several cutting-edge DRL algorithms on mul-
tiple benchmark problems.

2 Related Work
Similar to ED2, HED trains an ensemble of policies using
an off-policy DRL algorithm to leverage on the algorithm’s
advantages in sample efficiency. Recently, several off-policy
DRL algorithms have been developed successfully for RL in
continuous spaces, including DDPG [Lillicrap et al., 2015],
SAC [Haarnoja et al., 2018], TD3 [Fujimoto et al., 2018],
and SOP [Wang et al., 2020]. These algorithms introduce a
variety of tricks to stabilize the learning process. For exam-
ple, TD3 extends the idea of double Q-network [Hasselt et al.,
2016] to a new double-Q bias reduction technique, which can
effectively prevent over-optimistic training of DNN policies.
In addition, empirical evidence showed that the learning pro-
cess becomes more stable when the actor and critic in TD3
are trained with different frequencies [Fujimoto et al., 2018;
Cobbe et al., 2021]. The base learners in our HED ensemble
will adopt these tricks.

The recent literature also provides some new tricks to stabi-
lize learning. Specifically, various trust-region methods have
been developed to prevent negative behavioral changes during
policy training [Kurutach et al., 2018; Schulman et al., 2015;
Shani et al., 2020; Wu et al., 2017; Schulman et al., 2017].
Meanwhile, entropy regularization techniques prohibit im-

mature convergence of the trained policies and ensure pro-
longed profitable exploration [Chen et al., 2018; Haarnoja et
al., 2018]. However, these techniques are mainly applied to
stochastic policies while we aim at learning an ensemble of
deterministic policies. Previous research showed that deter-
ministic policies can often be trained more efficiently than
stochastic policies using the reparameterization trick [Fuji-
moto et al., 2018; Silver et al., 2014; Baek et al., 2020].

The stability of a DRL algorithm depends critically on how
the learner explores its environment. Besides the entropy
regularization methods, curiosity metrics are popularly em-
ployed to encourage a learner to explore rarely visited states
during RL [Reizinger and Szemenyei, 2020; Zhelo et al.,
2018]. Meanwhile, many previous studies embraced the op-
timum in the face of uncertainty (OFU) principle to design
bonus rewards for actions with high potentials, thereby pro-
moting exploration in promising areas of the learning envi-
ronment [Bellemare et al., 2016]. One good example is the
UCB exploration technique developed in [Chen et al., 2017;
Lee et al., 2021]. However, in [Januszewski et al., 2021], this
technique was shown to be less effective than the bootstrap
with random initialization trick adopted in ED2. Temporally-
extended exploration on RL problems with continuous ac-
tions can also be achieved by adding a small amount of noise
to DNN weights [Plappert et al., 2017]. This is directly re-
lated to the posterior sampling methods that are often used to
select the best actions among a statistically plausible set of
sampled actions [Osband et al., 2018].

Following the OFU principle, deep ensembles have been
recently proposed to approximate Bayesian posteriors with
high accuracy and efficiency [Lakshminarayanan et al.,
2016]. They are subsequently exploited to approach deep
exploration for reliable RL [Osband et al., 2016]. Sev-
eral issues have been investigated under the context of en-
semble DRL. For instance, the diversity of base learners
is essential to the performance of the ensemble. To en-
courage diversity, either different DRL algorithms or the
same algorithm with differed hyper-parameter settings have
been adopted to train base learners [Huang et al., 2017;
Wiering and Hasselt, 2008]. The training of each base learner
can also be supported by an ensemble of critics [An et al.,
2021]. Meanwhile, inter-learner collaboration can be encour-
aged by asking one learner to imitate the behavior of the other
learner that is expected to perform better in the ensemble [Lai
et al., 2020]. This idea gives rise to the DPD-PPO algorithm
that only supports an ensemble with two learners. Some ex-
periment results that compare the performance of DPD-PPO
with HED can be found in Appendix F.

As far as we know, few existing ensemble DRL algorithms
in the literature have ever studied the important issue on how
to effectively train all base learners to jointly improve the en-
semble performance. This issue will be explored in-depth
with the newly developed HED algorithm in this paper.

3 Background
An RL problem is modeled as a Markov Decision Process
(MDP) (S,A, R, P, γ, p0), where S and A refer respectively
to the continuous multi-dimensional state space and action
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space. P stands for the state-transition model that governs
the probability of reaching any state st+1 ∈ S at timestep
t + 1 upon performing any action at ∈ A in state st ∈ S
at timestep t, with t ∈ Z+. Additionally, γ ∈ [0, 1) is the
discount factor, R is the reward function, and p0 captures the
initial state distribution.

To solve any RL problem described above, we aim to learn
an optimal deterministic ensemble policy πe

∗(s) that maps any
state input s ∈ S to an action vector a ∈ A so as to maximize
the cumulative rewards defined below

πe
∗ = argmax

πe
J(πe) = argmax

πe
Eτ∼πe [

∞∑
t=1

γt−1R(st, at)],

where τ = [(st, at, rt, st+1)]
∞
t=1 contains a series of consec-

utive state-transition samples and is called a episode, which
can be obtained by following the ensemble policy πe, and
rt = R(st, at) is the immediate reward received at timestep t
in τ . For an ensemble with N base learners where each base
learner Li, 1 ≤ i ≤ N , maintains its own deterministic base
policy πi, the action output of πe is jointly determined by all
the base policies according to

∀s ∈ S, πe(s) =
1

N

N∑
i

πi(s). (1)

In order to train an ensemble to maximize the cumulative
rewards, our baseline algorithm ED2 uses randomly selected
base learners to sample a series of episodes {τi}, which will
be stored in the shared ERB. At regular time intervals, a mini-
batch of state-transition samples will be retrieved from the
ERB. Every base learner Li will then use the retrieved mini-
batch to train its own actor πi and critic Qi individually. In
other words, a base learner manages two separate DNNs, one
models the deterministic policy πi and the other approximates
the Q-function Qi of πi. A base learner uses an existing actor-
critic RL algorithm to train the two DNNs. In this paper, we
choose TD3 for this purpose due to its proven effectiveness,
high popularity and stable learning behavior [Fujimoto et al.,
2018].

4 Hierarchical Ensemble Deep Deterministic
Policy Gradient

The pseudo-code of the HED algorithm is presented in Algo-
rithm 1. HED follows many existing works including ED2
[Osband et al., 2016; Januszewski et al., 2021] to achieve
temporally-extended exploration through bootstrapping with
random initialization of DNN policies. As clearly shown in
[Januszewski et al., 2021], this exploration technique is more
effective than UCB and parameter randomization methods.
Different from ED2 which completely eliminates the neces-
sity of adding small random noises to the deterministic ac-
tion outputs from the DNN policies, we keep a small level
of action noise2 while using any chosen policy to explore the
learning environment. We found empirically that this ensures

2The noise is sampled from the Normal distribution indepen-
dently for each dimension of the action vector. The variance of the
normal distribution is fixed at 0.01 during the learning process.

coherent exploration, similar to [Osband et al., 2016], while
making the testing performance of the trained policies more
stable.

Different from ED2 and other ensemble algorithms for RL
in continuous spaces, HED trains DNN policies at two sepa-
rate levels. The low-level training of πi and Qi by each base
learner Li is essentially the same as ED2 and TD3. Specifi-
cally, for any base learner Li, i ∈ {1, . . . , N}, Qi is trained
by Li to minimize MSEi below

MSEi =
1

|B|
∑

(s,a,r,s′)∈B

(
Qi

ϕi
(s, a)− r−

γ min
k=1,2

Q̂i
k(s

′, πi(s′) + ϵ)

)2

,

(2)
where ϕi represents the trainable parameters of the DNN that
approximates Qi. B is the random mini-batch retrieved from
the ERB. Q̂i

k with k = 1, 2 stands for the two target Q-
networks of Li that together implement the double-Q bias re-
duction mechanism proposed in [Fujimoto et al., 2018]. Ad-
ditionally, ϵ is a random noise sampled from a Normal distri-
bution with zero mean and small variance3. Using the trained
Qi, the trainable parameters θi of the DNN that models policy
πi is further updated by Li along the policy gradient direction
computed below

∇θiJ(π
i
θi) =

1

|B|
∑
s∈B

∇aQ
i(s, a)|a=πi

θi
(s)∇θiπ

i
θi(s). (3)

Besides the above, HED constantly trains a separate high-
level Q-function Qe to predict the performance of the ensem-
ble policy πe. Guided by the trained Qe, high-level policy
training is conducted regularly to update policy πi of all base
learners so as to enhance their cooperation and performance.

A new multi-step technique is developed in HED to en-
able inter-learner parameter sharing during high-level policy
training. To implement this technique, we keep track of a
list of bootstrap policy parameters for the multi-step training
process. More details can be found in the following subsec-
tion. Theoretical justifications regarding the usefulness of the
multi-step approach are also provided below.

4.1 Multi-Step High-Level Policy Training
In addition to Qi for each base learner Li, i ∈ {1, . . . , N},
HED maintains a separate Q-network to approximate Qe of
the ensemble policy πe. Similar to (2), HED trains this central
Q-network towards minimizing MSEe below

MSEe =
1

|B|
∑

(s,a,r,s′)∈B

(
Qe

ϕe
(s, a)− r

−γQ̂e(s′, πe(s′))

)2

, (4)

with ϕe representing the trainable parameters of the cen-
tral Q-network. Q̂e stands for the corresponding target Q-
network that stabilizes the training process. For simplicity,
we do not add random noise ϵ in (2) to the action outputs
produced by the ensemble policy πe in (4). Furthermore, fol-
lowing [Hasselt et al., 2016], one target Q-network instead of

3The variance for sampling ϵ is kept at a very small level of 0.01
in the experiments.
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Algorithm 1 The pseudo-code of the HED algorithm.
Input: Ensemble size N ; initial policy networks πi

θi
and

Q-networks Qi
ϕi

for i ∈ {1, . . . , N}; ERB; ensemble Q-
network Qe

ϕe
; target Q-networks for each base learner and

the ensemble
Output: Trained ensemble policy πe

While total number of sampled trajectories < max number
of trajectories:

Randomly sample i ∈ {1, . . . , N}
While the current trajectory does not terminate:

Use πi to perform the next action
Store sampled state-transition in ERB
Track number of steps sampled before critic training
If time for critic training:

For number of steps sampled:
Sample a mini-batch B from ERB
Train Qi

ϕi
for i ∈ {1, . . . , N} using (2)

Train Qe
ϕe

using (4)
If time for low-level policy training:

Train πi
θi

for i ∈ {1, . . . , N} using (3)
If time for high-level policy training:

Set bootstrap list {xj}2j=0 for each base learner
For a fraction of sampled steps:

Train πi
θi

for i ∈ {1, . . . , N} using (9)
Append trained θi for i ∈ {1, . . . , N} to the
bootstrap lists of each base learner for the next
step of high-level policy training

two is adopted in (4) to facilitate the training of Qe. Build-
ing on the trained Qe, we can calculate the ensemble policy
gradient with respect to θi of every base learner Li as follows

∇θiJ(π
e) =

1

|B|
∑
s∈B

∇aQ
e(s, a)|a=πe(s)∇ai

πe(s)|ai=πi
θi

(s)

∇θiπ
i
θi(s),

(5)

with
∇aiπ

e(s)|ai=πi
θi

(s) =
1

N
I,

according to (1). I stands for the m × m identity matrix
where m is the dimension of the action vector. One straight-
forward approach for high-level policy training is to update
θi of every base learner Li in the direction of (5). How-
ever, using (5) alone may not encourage any base learner
Li to behave consistently with the ensemble (see Proposition
2). Consequently, high-level training of the ensemble policy
may be performed on the out-of-distribution state-transition
samples collected by the base learners, affecting the train-
ing effectiveness. Furthermore, ensembles are used mainly
for temporally-extended exploration in the literature. Except
[Lai et al., 2020], the learning activity of one base learner
may only indirectly influence the learning activities of other
base learners through the shared ERB. Base learners do not
explicitly share their learned policy parameters to strengthen
inter-learner cooperation and boost the learning process.

To address this limitation, we propose to promote inter-
learner parameter sharing during high-level policy training, in
order to achieve a desirable balance between exploration and
inter-learner cooperation. Specifically, in addition to (5), we
randomly select two base learners Lp and Lq and use their
policy parameters to guide the training of policy πi of any
base learner Li. In comparison to selecting one base learner,
this allows more base learners to have the opportunity to share
their parameters with the base learner Li during policy train-
ing. It is also possible to recruit more than two base learners.
However, in this case, it is mathematically challenging to de-
rive stable learning rules for high-level policy training.

Motivated by the above discussion, a search through the
literature leads us to the linear multi-step integration methods
recently analyzed in [Scieur et al., 2017]. Consider a simple
gradient flow equation below

x(0) = θ0i ,
∂x(t)

∂t
= g(x(t)) = ∇θiJ(π

e)|θi=x(t), (6)

where θ0i refers to the initial policy parameter of base learner
Li. If J(πe) is strongly concave and Lipschitz continuous,
the solution of (6) allows us to obtain the optimal policy pa-
rameters θ∗i when x(t) approaches to ∞. Since J(πe) is not
strongly concave for most of real-world RL problems, x(t) in
practice may only converge to a locally optimal policy, which
is common among majority of the policy gradient DRL algo-
rithms. Therefore high-level training of policy πe and hence
πi can be approached by numerically solving (6). This can be
achieved through a linear µ-step method shown below

xk+µ = −
µ−1∑
j=0

ρjxk+j + h

µ−1∑
j=0

σjg(xk+j), ∀k ≥ 0, (7)

where ρj , σj ∈ R are the pre-defined coefficients of the multi-
step method and h is the learning rate. Clearly, each new
point xk+µ produced by the µ-step method is a function of
the preceding µ points. In this paper, we specifically consider
the case when µ = 3. Meanwhile, let

x0 = θp, x1 = θq, x2 = θi, (8)

where p and q are the randomly generated indices of two base
learners and i is the index of the base learner whose policy πi

is being trained by the µ-step method. Through this way, the
training of policy πi is influenced directly by base learners
Lp and Lq through explicit inter-learner parameter sharing.
xi(i ≥ 3) in (7) represents the trained policy parameters of
πi in subsequent training steps.

Although (7) allows us to use ∇θpJ(π
e) and ∇θqJ(π

e) to
train θi, they do not seem necessary for inter-learner parame-
ter sharing. To simplify (7), we set σ0 = σ1 = 0 and σ2 = 1.
Hence only g(xk+2), which is the ensemble policy gradient
with respect to policy πi in (5), is used to train πi. With this
simplification, we derive the new learning rule for high-level
policy training below

xk+3 = −ρ2xk+2 − ρ1xk+1 − ρ0xk + h · ∇θiJ(π
e)|θi=xk+2

x0 = θp, x1 = θq, x2 = θi, ∀k ≥ 0.
(9)
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To implement (9) in HED, before high-level policy train-
ing, every base learner Li must set up a bootstrap list of pol-
icy parameters {x0 = θp, x1 = θq, x2 = θi}. After the k-th
training step (k ≥ 0) based on (9), Li appends the trained θi
as xk+3 to the bootstrap list, which will be utilized to train πi

in the subsequent training steps. Reliable use of (9) demands
for careful parameter settings of ρ0, ρ1, ρ2 and h. Relevant
theoretical analysis is presented below.

4.2 Theoretical Analysis
In this subsection, a theoretical analysis is performed first to
determine suitable settings of ρ0, ρ1, ρ2 and h for stable high-
level policy training through (9). To make the analysis feasi-
ble, besides the strongly concave and Lipschitz continuous
conditions, we further assume that

∇θiJ(π
e) ≈ −A(θi − θ∗i ) (10)

where A is a positive definite matrix whose eigenvalues are
bounded positive real numbers. θ∗i stands for the global-
optimal (or local-optimal) policy parameters. Many strongly
concave functions satisfy this assumption [Scieur et al.,
2017]. Meanwhile, the attraction basin of the local optimum
of many multi-modal optimization problems often satisfies
this assumption too. Using this assumption, we can derive
Proposition 1 below.
Proposition 1. Upon using (9) to numerically solve (6), the
following conditions must be satisfied for xk to converge to
θ∗i as k approaches to ∞:

1. ρ2 = ρ0 − 1, ρ1 = −2ρ0;
2. 0 < ρ0 < 1

2 ;
3. h is reasonably small such that 0 ≤ λh < 2−4ρ0, where

λ can take any real value between the smallest and the
largest eigenvalues of the positive definite matrix A in
(10).

The proof of Proposition 1 can be found in Appendix A.
Proposition 1 provides suitable parameter settings for (9) and
justifies its stable use for high-level policy training. We next
show that (9) is also expected to make base learners behave
more consistently with the ensemble, without affecting the
behavior of the trained ensemble, when ρ0 is sufficiently
small. Consider specifically that each base learner Li trains a
linear parametric policy of the form:

πi(s) = Φ(s)T · θi (11)

where Φ(s) represents the state feature vector with respect to
any input state s. For simplicity, we study the special case of
scalar actions. However, the analysis can be easily extended
to high-dimensional action spaces. Meanwhile, we use Sin()
and Mul() to represent respectively the action output of a
policy trained for one iteration on the same state s by using
either the single-step method or the multi-step method in (9).
The single-step method can be considered as a special case of
the multi-step method with ρ2 = −1 and ρ0 = ρ1 = 0. Using
these notations, Proposition 2 is presented below.
Proposition 2. When each base learner Li, i ∈ {1, . . . , N},
trains its linear parametric policy πi with policy parameters
θi on any state s ∈ S and when 0 < ρ0 < 1

3 ,

1. Sin(πe(s)) = E [Mul(πe(s))];

2.
∑

i∈{1,...,N} E
[(
Mul(πi(s))− E [Mul(πe(s))]

)2]
<
∑

i∈{1,...,N}
(
Sin(πi(s))− Sin(πe(s))

)2
=
∑

i∈{1,...,N}
(
πi(s)− πe(s)

)2
where the expectations above are taken with respect to any
randomly selected p, q ∈ {1, . . . , N} in (8).

Proposition 2 indicates that multi-step training in (9) is ex-
pected to reduce the difference between the action output of
any base learner and that of the ensemble. Meanwhile the
amount of action changes applied to πe remains identical to
the single-step method. Therefore, using the multi-step pol-
icy training method developed in this section helps to enhance
consistent behaviors among all base learners of the ensemble.

5 Experiment
This section presents the experimental evaluation of HED, in
comparison to several state-of-the-art DRL algorithms. The
experiment setup is discussed first. Detailed experiment re-
sults are further presented and analyzed.

5.1 Experiment Setting
We implement HED based on the high-quality implemen-
tation of TD3 provided by the publicly available OpenAI
Spinning Up repository [Achiam, 2018]. We also follow
closely the hyper-parameter settings of TD3 recommended in
[Fujimoto et al., 2018] to build each base learner of HED.
Specifically, a fully connected MLP with two hidden lay-
ers of 256 ReLU units is adopted to model all policy net-
works and Q-networks. Similar to [Januszewski et al., 2021;
Lee et al., 2021], HED employs 5 base learners, i.e., N = 5.
Each base learner has its own policy network and Q-network.
Meanwhile, HED maintains and trains a separate ensemble
Q-network with the same network architecture design.

Each base learner trains its Q-network and also conducts
the low-level training of the policy network repeatedly when-
ever HED collects 50 consecutive state-transition samples
from the learning environment. Meanwhile, high-level pol-
icy training as well as the training of the ensemble Q-network
is performed immediately after HED samples a full episode.
HED adopts a separate Adam optimizer with the fixed learn-
ing rate of 1e−3 to train each Q-network and policy network.
Furthermore, ρ0 in (9) is set to 0.0001 for the main exper-
iment results reported in Figure 1. The mini-batch size |B|
is set to 256, following existing research [Januszewski et al.,
2021; Fujimoto et al., 2018] without any fine-tuning.

HED is compared against four state-of-the-art DRL al-
gorithms, including two Ensemble DRL algorithms, i.e.,
ED2 [Januszewski et al., 2021] and SUNRISE [Lee et
al., 2021]), and two widely used off-policy DRL algo-
rithms, i.e., SAC [Haarnoja et al., 2018] and TD3 [Fuji-
moto et al., 2018]. We evaluate their performance on 9
challenging continuous control benchmark problems, includ-
ing four PyBullet benchmark problems [Ellenberger, 2018
2019] (i.e., Ant-v0, Hopper-v0, InvertedPendulum-v0, and
Walker2D-v0), five Mujoco control tasks (i.e., Hopper-v3,
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Benchmark problems TD3 SAC ED2 SUNRISE HED
Ant-v0 (PyBullet) 3246.82±184.03 2453.23±523.96 3285.06±183.98 2425.93±1120.12 3370.12±179.95

Hopper-v0 (PyBullet) 2051.68±567.12 2126.43±165.58 2284.41±203.79 1585.17±761.78 2530.85±277.26
InvertedPendulum-v0 (PyBullet) 958.15±33.38 995.69±12.94 1000.00±0.00 995.69±5.27 1000.00±0.00

Walker2D-v0 (PyBullet) 1379.56±394.77 774.19±281.45 1082.42±312.4 2012.15±148.73 2109.49±116.79
Hopper-v3 (Mujoco) 2374.47±721.68 3306.01±410.28 2361.13±1101.71 2427.12±622.42 3396.9±249.11

Humanoid-v3 (Mujoco) 321.1±225.3 1151.49±598.54 596.57±113.03 756.66±143.06 4223.77±1119.55
InvertedDoublePendulum-v2 (Mujoco) 7417.5±3694.8 9355.67±11.04 9323.89±22.15 9351.58±22.15 9144.38±327.28

LunarLanderContinuous-v2 275.69±5.99 277.67±3.44 275.7±7.2 282.84±1.99 286.29±0.8
Walker2D-v3 (Mujoco) 3805.88±1402.27 4240.35±694.64 4750.82±530.3 5510.83±669.98 5778.84±133.15

Table 1. Final performance of all competing algorithms on 9 benchmark problems. The results are shown with mean cumulative rewards and
standard deviation over 10 independent algorithm runs. For each run, the cumulative rewards are obtained by averaging over 50 independent
testing episodes.
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(a) Ant-v0 (PyBullet)

0 500 1000 1500 2000 2500
Episode

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e 

re
w

ar
ds

TD3
SAC
ED2
SUNRISE
HED

(b) Hopper-v0 (PyBullet)
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(c) InvertedPendulum-v0 (PyBullet)
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(d) Walker2D-v0 (PyBullet)
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(e) Hopper-v3 (Mujoco)

0 500 1000 1500 2000 2500
Episode

0

1000

2000

3000

4000

C
um

ul
at

iv
e 

re
w

ar
ds

TD3
SAC
ED2
SUNRISE
HED

(f) Humanoid-v3 (Mujoco)

0 500 1000 1500 2000 2500
Episode

0

2000

4000

6000

8000

C
um

ul
at

iv
e 

re
w

ar
ds

TD3
SAC
ED2
SUNRISE
HED

(g) InvertedDoublePendulum-v2 (Mujoco)
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(h) LunarLanderContinuous-v2
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(i) Walker2D-v3 (Mujoco)

Figure 1. Learning curves of HED and other competing algorithms (i.e. TD3, SAC, ED2 and SUNRISE) on 9 benchmark RL problems.
Results are obtained through 10 indepent runs of each algorithm.

Humanoid-v3, InvertedDoublePendulum-v0, and Walker2D-
v3), and LunarLanderContinuous-v2 provided by OpenAI

Gym [Brockman et al., 2016]. In literature, PyBullet bench-
marks are often considered to be more challenging than Mu-
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joco benchmarks. Hence we decide to evaluate the perfor-
mance of HED on both PyBullet and Mujoco benchmarks.
The maximum episode length for each benchmark is fixed
to 1000 timesteps. Each algorithm runs independently with
10 random seeds on all benchmarks. Besides the hyper-
parameter settings of HED highlighted above, more detailed
hyper-parameter settings of all competing algorithms have
been summarized in Appendix C.

5.2 Experiment Result

Performance Comparison
Table 1 presents the average cumulative rewards obtained by
the policy networks (or policy ensembles for ensemble DRL
algorithms) trained by all the competing algorithms across
the same number of sampled episodes with respect to each
benchmark. As evidenced in the table, HED achieved consis-
tently the best performance4 on most of the benchmark prob-
lems except InvertedDoublePendulum. Meanwhile, on In-
vertedDoublePendulum, HED achieved very competitive per-
formance with at least 97% of the highest cumulative rewards
reached by the best performing competing algorithms. Fur-
thermore, on some problems such as Humanoid-v3, HED out-
performed the lowest performing algorithm by up to 1200%
and the algorithm with the second highest performance by up
to 600%. Besides the results on the average cumulative re-
wards, the maximum cumulative rewards achieved by each
algorithm have been reported in Appendix F for all experi-
mented benchmarks.

In addition to Table 1, we also compared the learning
curves of all the competing algorithms in Figure 1. As
demonstrated in this figure, by explicitly strengthening inter-
learner collaboration, HED converges clearly faster and is
more stable during the learning process than other compet-
ing algorithms. Specifically, on several benchmark prob-
lems, such as Hopper-v0, InvertedPendulum-v0, Hopper-v3,
InvertedDoublePendulum, and Walker2D-v3, HED achieved
significantly higher sample efficiency and lower variations in
learning performance across 10 independent runs. In compar-
ison to other ensemble DRL algorithms, the learning curves
of HED also appear to be smoother on several benchmark
problems, such as Hopper-v0 and Walker2D-v3, suggesting
that HED can achieve highly competitive stability during
learning.

Performance Impact of ρ0
To investigate the performance impact of ρ0, we tested 4 dif-
ferent settings of ρ0, ranging from 5e−05 to 0.01, on the
Ant-v0 and Hopper-v0 problems (similar observations can be
found on other benchmark problems and are omitted in this
paper). The learning curves are plotted in Figure 2. It is wit-
nessed in the figure that the impact of different ρ0 on the final
performance appears to be small as long as ρ0 is reasonably
small according to Proposition 1.

4HED significantly outperformed ED2 on most benchmark prob-
lems, thanks to its use of the proposed high-level policy training
technique.
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Figure 2. The impact of using different ρ0 in (9) on the performance
of HED. ρ1 and ρ2 in (9) depend directly on ρ0 according to Propo-
sition 1.

Ablation Study on High-Level Policy Training
Techniques
High-level policy training can be conducted repeatedly when-
ever HED obtains either a full sampled episode or a fixed
number of consecutive state-transition samples (e.g., sam-
ples collected from 50 consecutive timesteps). To understand
which approach is more effective, experimental comparisons
have been conducted in Appendix D with detailed perfor-
mance results. According to the experiment results in Ap-
pendix D, episodic learning can produce more stable learning
behavior and also makes HED converge faster with higher
performance.

We also compared HED with its variation that performs
high-level policy training by using the single-step method in
(5) instead of the multi-step method in (9). Detailed exper-
iment results can be found in Appendix E. Our experiment
results confirm that multi-step training in (9) enables HED to
achieve significantly faster convergence and learning stability
than using the conventional single-step training technique in
(5). Hence, by explicitly sharing learned policy parameters
among base learners in an ensemble through (9), HED can
effectively enhance inter-learner collaboration and boost the
learning process.

6 Conclusions
In this paper, we conducted in-depth study of ensemble DRL
algorithms, which have achieved cutting-edge performance
on many benchmark RL problems in the recent literature.
Different from existing research works that rely mainly on
each base learner of an ensemble to train its policy network
individually, we developed a new HED algorithm to explore
the potential of training all base learners in a hierarchical
manner in order to promote inter-learner collaboration and
improve the collective performance of an ensemble of trained
base learners. Specifically, we adopted existing ensemble
DRL algorithms such as ED2 to perform low-level policy
training. Meanwhile, a new multi-step training technique
was developed for high-level policy training in HED to facil-
itate direct inter-learner parameter sharing. Both theoretical
and empirical analysis showed that the HED algorithm can
achieve stable learning behavior. It also outperformed several
state-of-the-art DRL algorithms on multiple benchmark RL
problems.
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