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Abstract
Incremental and decremental learning (IDL) deals
with the tasks where new data arrives sequentially
as a stream or old data turns unavailable continually
due to the privacy protection. Existing IDL meth-
ods mainly focus on support vector machine and its
variants with linear-type loss. There are few stud-
ies about the quadratic-type loss, whose Lagrange
multipliers are unbounded and much more difficult
to track. In this paper, we take the latest statisti-
cal learning framework optimal margin distribution
machine (ODM) which involves a quadratic-type
loss due to the optimization of margin variance,
for example, and equip it with the ability to handle
IDL tasks. Our proposed ID-ODM can avoid up-
dating the Lagrange multipliers in an infinite range
by determining their optimal values beforehand so
as to enjoy much more efficiency. Moreover, ID-
ODM is also applicable when multiple instances
come and leave simultaneously. Extensive empir-
ical studies show that ID-ODM can achieve 9.1×
speedup on average with almost no generalization
lost compared to retraining ODM on new data set
from scratch.

1 Introduction
For machine learning tasks, once data changes, the mod-
els should be refined. However, retraining models from
scratch usually incurs unbearable cost or is even impossible
in some situations, which gives rise to the incremental and
decremental learning (IDL) [Schlimmer and Fisher, 1986;
Cauwenberghs and Poggio, 2000]. This paradigm can effi-
ciently update the model and be applied in many learning
problems, just to name a few, anomaly detection [Laxham-
mar and Falkman, 2014; Nguyen et al., 2019], concept drift-
ing [Syed et al., 1999; Gâlmeanu and Andonie, 2022], active
learning [Ertekin et al., 2007; Huang et al., 2020], privacy
protection [Nguyen et al., 2020; Sekhari et al., 2021] , and
model estimation [Cherubin et al., 2021].

Existing IDL methods mainly focus on support vector
machine (SVM) [Cortes and Vapnik, 1995] and its variants.
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We summarize the representative works of this line in Table 1.
Based on the path following method, IDSVM [Cauwen-
berghs and Poggio, 2000] takes both incremental learning
and decremental learning into account to update SVM. MID-
SVM [Karasuyama and Takeuchi, 2009] is a batch version
of IDSVM. AONSVM [Gu et al., 2012] and FISVDD [Jiang
et al., 2019] extends the ν-SVM [Schölkopf et al., 2000]
and SVDD [Tax and Duin, 2004] to incremental learning,
respectively. All these models use hinge loss. Besides, IL-
S3VM [Gu et al., 2018] and ILTSVM [Chen et al., 2023]
are incremental semi-supervised SVMs with symmetric hinge
loss or its variant ramp loss.

On the one hand, the aforementioned methods mainly fo-
cus on large margin models, but the latest theoretical stud-
ies [Gao and Zhou, 2013] disclose that the margin distribution
is much more critical to the generalization performance. On
the other hand, these methods are limited to linear-type loss,
in which the hinge loss is sensitive to outliers and symmet-
ric hinge loss leads to non-convex optimization problems. In
contrast, the quadratic-type loss is smoother and numerically
easier to deal with. It results in a strictly diagonally dominant
matrix in dual quadratic form which is always invertible, thus
relaxes the restriction of linear-type loss that data should be
linearly independent. As far as we know, there are few IDL
methods concerning models with quadratic-type loss.

In this paper, we take the latest statistical learning frame-
work optimal margin distribution machine (ODM) [Zhang
and Zhou, 2019] which involves a quadratic-type loss due
to the optimization of margin variance as an example and
equip it with the ability to handle IDL tasks. The drawback
of quadratic-type loss lies in the optimization aspect, that is
the Lagrange multipliers are unbounded and much more dif-
ficult to track when data varies, and existing IDL methods
with linear-type loss can hardly be adapted to these circum-
stances. To overcome this difficulty, we estimate the optimal
value of the Lagrange multiplier of the varying data in ad-
vance to avoid the optimization in an infinite range, and then
update along the fastest direction to make the interruption by
breakpoints less frequent. We also theoretically analyze the
time complexity and convergence of our proposed incremen-
tal and decremental ODM (ID-ODM). The remarkable ad-
vantages are as follows:

• It is the first attempt to implement IDL for kernel meth-
ods optimizing the margin distribution.
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Methods Models Tasks Loss Applications

ISVM [Rüping, 2001; Liang and Li, 2009] SVM BC hinge loss, linear single, incremental
IDSVM [Cauwenberghs and Poggio, 2000] SVM BC hinge loss, linear single, inc. & dec.
WIDSVM [Gâlmeanu and Andonie, 2022] W-SVM BC hinge loss, linear single, inc. & dec.
MID-SVM [Karasuyama and Takeuchi, 2009] SVM BC hinge loss, linear multiple, inc. & dec.
INSVR [Gu et al., 2015b] ν-SVR RG hinge loss, linear single, incremental
ISVOR [Gu et al., 2015a] SVOR OR hinge loss, linear single, incremental
FISVDD [Jiang et al., 2019] SVDD OCC hinge loss, linear single, incremental
oSVMR [Wang and Vucetic, 2009] SVMR BC ramp loss, linear single, incremental
IL-S3VM [Gu et al., 2018] S3VM SSC ramp loss, linear single, incremental
ILTSVM [Chen et al., 2023] TSVM SSC symmetric hinge loss, linear single, incremental
ID-ODM ODM BC ODM loss, quadratic multiple, inc. & dec.

Table 1: An overview of the existing literature on incremental and decremental learning, in which BC, RG, OR, OCC, and SSC are the ab-
breviations of binary classification, regression, ordinary regression, one-class classification, and semi-supervised classification, respectively.
“single” and “multiple” represent the number of varying instances.

• It is the first effort to track unbounded Lagrange multi-
pliers brought by quadratic-type loss.

• It is applicable when multiple instances come and leave
simultaneously.

The rest of this paper is organized as follows. First, we
introduce some preliminaries. Then we detail the ID-ODM,
followed by the time complexity and convergence analysis.
After that, we present the experimental results and empiri-
cal observations. Finally, we conclude the paper with future
work.

2 Preliminaries

We first introduce some conventions and notations used
throughout the paper. The normal font letters (e.g., y) denote
scalars. The boldface letters (e.g., w and W) denote vectors
and matrices, respectively. The upper case letters with math-
cal font (e.g., S) indicate the sets. Particularly, [m] is defined
as the integer set {1, 2, . . .,m}. wS indicates the vector con-
sisting of the entries of w specified by index set S . Similarly,
WS,S′ is the submatrix of W specified by row index set S
and column index set S ′.

For a binary classification problem, let X ⊆ Rd and Y =
{1,−1} denote the instance space and label set, respectively.
The training set {(xi, yi)}i∈[m] ∈ (X × Y)m is drawn i.i.d
from some underlying distribution on X ×Y . Let ϕ : X 7→ H
be a feature mapping associated with some positive definite
kernel κ where H is the corresponding reproducing kernel
Hilbert space (RKHS). The hypothesis is defined as the linear
function f(x) = ⟨w, ϕ(x)⟩H.

This linear decision function naturally leads to the defini-
tion of margin, i.e., γ(x, y) = y⟨w, ϕ(x)⟩H. Notice that f
misclassifies (x, y) if and only if it produces a negative mar-
gin, thus it represents the confidence of the prediction results.
Recent studies on margin theory reveal that margin distribu-
tion is more important to generalization than a single margin,

which gives rise to the ODM:

min
w,ξi,ϵi

1

2
∥w∥2H +

λ

2

∑
i∈[m]

(ξ2i + ϵ2i ), (1)

s.t. 1− θ − ξi ≤ γi ≤ 1 + θ + ϵi, ∀i ∈ [m],

where γi = yif(xi) and λ is the trade-off hyperparameter.
The margin mean has been fixed as 1 since scaling w does
not affect the decision boundary. The slack variables ξi and
ϵi represent the deviation from the strip centered at margin
mean with width 2θ. The hyperparameter θ is to tolerate the
tiny deviations smaller than θ. When it is set as 0, the third
term is exactly the margin variance.

Introducing the Lagrange multipliers ζi ≥ 0 and βi ≥ 0
for constraints leads to the Lagrangian of Eqn. (1):

L =
1

2
∥w∥2H −

∑
i∈[m]

ζi(γi − (1− θ − ξi))

+
λ

2

∑
i∈[m]

(ξ2i + ϵ2i ) +
∑
i∈[m]

βi(γi − (1 + θ + ϵi)).

The KKT conditions [Boyd and Vandenberghe, 2004] are

w =
∑
i∈[m]

yi(ζi − βi)ϕ(xi), λξi = ζi, λϵi = βi,

ζi(γi − (1− θ) + ξi) = 0, (2)
βi(γi − (1 + θ)− ϵi) = 0. (3)

The analysis on complementary slackness conditions, i.e.,
Eqn. (2)-(3), leads to the partition of data into three sets:

• L = {i | γi < 1− θ, ζi > 0, βi = 0},
• C = {i | γi ∈ [1− θ, 1 + θ], ζi = 0, βi = 0},
• R = {i | γi > 1 + θ, ζi = 0, βi > 0},

which are shown in Figure 1(a), respectively. Besides, let
αi = ζi − βi and S = L ∪ R is the index set of instances
whose αi ̸= 0, the decision function can be rewritten as

f(xi) = ⟨w, ϕ(xi)⟩H =
∑
j∈S

αjyjκij (4)

with κij = κ(xi,xj).
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(a) (b) (c)

Figure 1: Description of different tasks. (a): Add multiple new in-
stances (red points). (b): Remove multiple invalid instances (black
points). (c): Add new instances and remove invalid instances simul-
taneously.

3 ID-ODM for Single Instance Varying
In this section, we investigate the case when single instance
comes or leaves.

3.1 Incremental Case
Suppose the new instance is (xk, yk). If γk ∈ [1− θ, 1 + θ],
acccording to Eqn. (4), this instance can be directly added to
C without any update. Thus without loss of generality, we
assume γk ̸∈ [1 − θ, 1 + θ] and initialize the Lagrange mul-
tiplier αk as 0. Next, we first derive the relationship between
αS and αk, and then detail how to update αS by varying αk

gradually.

The relationship between αS and αk. Notice that 1 ± θ
are constants, to make the KKT conditions hold, i.e.,

γi + ξi = 1− θ, ∀i ∈ L,
γi − ϵi = 1 + θ, ∀i ∈ R,

the Lagrange multiplier αS should vary with αk such that

∆γi +∆ξi = 0, ∀i ∈ L, (5)
∆γi −∆ϵi = 0, ∀i ∈ R, (6)

where ∆ denotes the variations of variables. With Eqn. (4),
we have

∆γi = yi∆f(xi) =
∑
j∈S

∆αjyiyjκij +∆αkyiykκik. (7)

Notice that αi = λξi for ∀i ∈ L and αi = −λϵi for ∀i ∈ R,
we can derive the following linear system∑

j∈S
∆αjhij +∆αkhik +∆αi/λ = 0, ∀i ∈ S, (8)

where hij = yiyjκij . Denote H = (hij)i,j∈[k], then Eqn. (8)
can be rewritten in a matrix form

(HSS + I|S|/λ)∆αS = −HSk∆αk,

which implies that ∆αS varies linearly with ∆αk:

∆αS = −Q−1
S HSk∆αk = t∆αk, (9)

where QS = HSS + I|S|/λ and t = −Q−1
S HSk.

Update αk. By substituting Eqn. (9) into Eqn. (7) to elimi-
nate ∆αS , the remaining variable is only ∆αk. We can mon-
itor the variation of margin with ∆αk for all instances.

Different from previous works like [Cauwenberghs and
Poggio, 2000] in which αk belongs to [0, C] and can be sim-
ply updated by increasing gradually from 0 to C, here αk ∈ R
is unbounded, and we do not even know whether to increase
or decrease αk. Fortunately, if (xk, yk) is successfully added,
by KKT conditions, we have

γk +∆γ⋆
k + (αk +∆α⋆

k)/λ = d, (10)

where

d =

{
1− θ, γk < 1− θ,

1 + θ, γk > 1 + θ.
(11)

With Eqn. (7) and Eqn. (9), we have a closed-form solution

∆α⋆
k =

d− γk − αk/λ

1 + 1/λ+HkSt
. (12)

The above analysis is based on the assumption that the
three index sets L, C, and R remain unchanged when αk is
varying, thus Eqn. (12) is not an actual optimal solution, but
it can provide a credible update direction. In practice, we can
let ∆αk = η∆α⋆

k and increases η from 0 to 1 gradually. At
the same time, we monitor the three index sets. When one of
the following events occurs

• i ∈ S migrates to C, i.e., nonzero αi turns to 0,
• i ∈ C migrates to S , i.e., f(xi) reaches the boundary of

the strip as shown in Figure 1,
we call a breakpoint is detected and sequentially perform the
following four steps

1. Stop the increase of η.
2. Update the index sets L, C, and R.
3. Record the current αk and αS .
4. Update H, t, and ∆α⋆

k.
The above procedure is repeated until no breakpoint is de-

tected during the increase of η from 0 to 1, then (xk, yk) can
be added to L or R based on current γk.

3.2 Decremental Case
Suppose the invalid instance is (xk, yk). If k ∈ C, i.e., αk =
0, it has no contribution to the model and can be removed
directly. Thus without loss of generality, we assume k ∈ S .
Now we need to turn αk to 0 to totally eliminate its effect on
the model. Analogous to the incremental case, we first update
S = S \ {k} and derive the relationship between αS and αk,
and then show how to update αS by varying αk.
The relationship between αS and αk. Since we should
make KKT conditions hold at any time, the deletion of αk

from S can be viewed as the reverse process of addition of
αk to S . Again, ∆αS and ∆αk satisfy

(HSS + I|S|/λ)∆αS = −HSk∆αk.

Since ∆αS changes linearly with ∆αk, we can trace the vari-
ation of the margin with ∆αk.
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Update αk. The update is now reduced to determine ∆αk.
Distinct from the incremental case, the invalid data vanishes
and the algorithm terminates with ∆α⋆

k = −αk.
As a result, we can update αk with ∆αk = −ηαk. Like

the incremental case, each update is comprised of four steps
when we keep watch on breakpoints. The whole procedure
stops when η = 1.

4 ID-ODM
In this section, we first present the general ID-ODM for mul-
tiple instances varying and then analyze the time complexity
and convergence.

4.1 Multiple Instances Varying
Without loss of generality, we assume that there are p in-
stances {(xi, yi)}i∈E becoming available and q instances
{(xj , yj)}j∈I turning invalid where

E = {m+ 1,m+ 2, . . . ,m+ p}, I ⊆ S.

We denote A = E ∪I to represent all varying instances for
convenience. The most straightforward way is to view each
single instance individually and invoke the method in Section
3.1 and 3.2 for p times and q times, respectively. Neverthe-
less, this scheme is computationally inefficient as shown in
Figure 2(a).

∆αi

yf(x)

∆αj

α⋆
i

yif
′(xi)−αj

yif
′(xi)

1 + θ

1 − θ

yjf
′(xj)

1⃝

1⃝

2⃝

Delete (xj , yj)

Successfully add (xi, yi)

(a)

∆αi

yf(x)

∆αj

α⋆
i

−αj

yjf
′(xj)yif

′(xi)

1 + θ

1 − θ

and delete (xj , yj)
Successfully add (xi, yi)

(b)

Figure 2: Different schemes to process multiple instances. (a) Up-
date αk, k ∈ A individually. (b) Update αE and αI simultaneously.

One smarter way is to update αE and αI simultaneously as
shown in Figure 2(b). Under this circumstance, multiple new
instances satisfy the optimal conditions, and multiple invalid
instances are removed at the same time. In the same manner
as before, we first update S = S \ I and derive the relation-
ship between αS and αA, and then show how to update αE
and αI simultaneously.

The relationship between αS and αA. Different from the
single instance case where ∆αk is a scalar, now ∆αS varies
with the vector ∆αA. The margin change of (xi, yi) is de-
scribed as

∆γi =
∑
j∈S

∆αjyiyjκij +
∑
k∈A

∆αkyiykκik

= HiS∆αS +HiA∆αA (13)

In order to make KKT conditions hold, ∆αS , ∆αE , and
∆αI should satisfy

(HSS + I/λ)∆αS +HSA∆αA = 0.

Thus, ∆αS can be traced by ∆αE and ∆αI according to

∆αS = −Q−1
S HSA∆αA = [TSE TSI ]

[
∆αE
∆αI

]
(14)

where TSE = −Q−1
S HSE and TSI = −Q−1

S HSI .
Update αA. The critical point to update the model lies in
identifying ∆αA. Intuitively, αI is supposed to update along
the opposite direction of αI to remove the invalid data. In
other words, ∆αI = −ηαI . As for αE , we determine the
update direction ∆αE by keeping KKT conditions w.r.t the
new instances. Since multiple instances arrive, Eqn. (10) can
be recast in
dE = γE +HES∆α⋆

S +HEA∆α⋆
A + (αE +∆α⋆

E)/λ,

where d is the vector with the k-th entry dk defined in
Eqn. (11). By denoting ∆αS via ∆αE and ∆αI , we can
determine ∆α⋆

E by
∆α⋆

E = (QE +HESTSE)
−1(dE − γE −αE/λ)

− (QE +HESTSE)
−1(HESTSI +HEI)∆α⋆

I .

It seems that ∆α⋆
E is relevant to ∆α⋆

I , but when no break-
point is produced, ∆α⋆

I = −αI is fixed. Consequently, we
update αA via

∆αA =

[
∆αE
∆αI

]
= η

[
∆α⋆

E
−αI

]
and track ∆αS and ∆f(x) by searching for the minimal η
which will lead to a breakpoint or the termination of ID-
ODM. Algorithm 1 summarizes the pseudo-code for ID-
ODM.

4.2 Time Complexity
According to the Algorithm 1, the main time cost is caused
by computing the inverse of the matrix QS . It is well ac-
cepted that the time complexity of computing the inverse of a
n-order square matrix is O(n3). If we calculate Q−1

S at each
iteration, the time complexity is O(c(m+p−q)3), where c is
the number of breakpoints. Hence it is very time-consuming.
However, by resorting to Sherman-Morrison-Woodbury for-
mula [Golub and Van Loan, 1983], we can reduce the time
cost to O(c(m+ p− q)2).

Suppose a new instance (xc, yc) is added to S , let S ′ =
S ∪ {c}, then we have

QS′ =

[
QS HSc

HcS Hcc + 1/λ

]
=

[
QS HSc

HcS κcc + 1/λ

]
.

The Schur’s complement [Zhang, 2006] of QS is S = κcc +
1/λ − HcSQ

−1
S HSc. According to the Sherman-Morrison-

Woodbury formula,

Q−1
S′ =

[
Q−1

S +Q−1
S HScS

−1HcSQ
−1
S −Q−1

S HScS
−1

−S−1HcSQ
−1
S S−1

]
=

[
Q−1

S 0
0 0

]
+

[
v
1

]
S−1

[
v⊤ 1

]
, (15)

where v = −Q−1
S HSc.

As for the decremental case, we can exchange the roles of
S and S ′, and calculate Q−1

S′ in the same manner.
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Algorithm 1 ID-ODM

1: Input: The data set {(xi, yi)}i∈[m], the hyperparame-
ters {λ, θ, σ}, the given model αS , the varying instances
{(xi, yi)}i∈E∪I .

2: Calculate the margin γ, and the matrix Q−1, H, T.
3: for k ∈ E do
4: if γk ∈ [1− θ, 1 + θ] then
5: C = C ∪ {k}, E = E \ {k}.
6: end if
7: end for
8: for k ∈ I do
9: if k ∈ C then

10: C = C \ {k}, I = I \ {k}.
11: end if
12: end for
13: S = S \ I .
14: while true do
15: Calculate the update direction ∆αA.
16: Calculate the minimal η leading to breakpoints.
17: if η < 1 then
18: Update the index sets S and C.
19: Update Q−1

S , T, γ, αS and αA.
20: else
21: Break.
22: end if
23: end while
24: Output: The updated model αS .

4.3 Convergence
According to Eqn. (9), ID-ODM depends on the existence of
Q−1

S . Fortunately, for quadratic-type loss, Q is strictly diag-
onally dominant and positive definite, thus its inverse always
exists.

When an instance (xk, yk) comes or leaves, αk varies,
the classification hyperplane evolves, and αS monotonically
increases or decreases [Laskov et al., 2006]. To guarantee
the convergence of Algorithm 1, we should further prove the
monotonic update of αS is strict, that is no instance migrates
between index sets back and forth.
Theorem 1 (Immediate cycling will not occur). If a break-
point (xc, yc) migrates from C to S or vice versa in round t,
it will not come back in the next round.

Proof. C → S: Suppose (xc, yc) migrates from C to L. Be-
fore it enters L, we always have α

(t)
c = 0. If it comes back

from L to C in the next round, its margin will increase, i.e.,
∆γ

(t+1)
c > 0. Notice that ∆γi = −∆αi/λ, ∀i ∈ L accord-

ing to Eqn. (5), which implies ∆α
(t+1)
c < 0. Together with

α
(t)
c = 0, we have α

(t+1)
c < 0. A contradiction occurs since

αi > 0, ∀i ∈ L.
The proof of migration from C to R is similar. If (xc, yc)

comes back from R to C in the next round, its margin will
decrease, and we have ∆γ

(t+1)
c < 0 and ∆α

(t+1)
c > 0 by

noticing that ∆γi = −∆αi/λ, ∀i ∈ R according to Eqn. (6).
Together with α

(t)
c = 0, we have α

(t+1)
c > 0, which contra-

dicts with αi < 0, ∀i ∈ R.

S → C: It is equivalent to prove that the margin varies
monotonically, i.e., ∆γ

(t+1)
c and ∆γ

(t)
c have the same sign.

Before a breakpoint turns out in round t, the index sets
are S(t−1) and C(t−1). Obviously the migration of (xc, yc)
from S(t−1) to C(t) can be viewed as the reverse process of
migration from C(t) to S(t−1). Thus, we can calculate t(t) as

t(t) = −Q−1
S(t−1)HS(t−1)k

= −
([

Q−1
S(t) 0
0 0

]
+

[
v
1

]
S−1

[
v⊤ 1

])
HS(t−1)k (16)

=

[
t(t+1)

0

]
−
[
v
1

]
S−1

(
v⊤HS(t)k +Hck

)
,

where S is the Shur’s complement of QS(t−1) , and the first
and last equality are according to the definition of t, v, and
Eqn. (15), respectively. With Eqn. (16), we have

∆α(t)
c = −S−1

(
v⊤HS(t)k +Hck

)
∆α

(t)
k

= −S−1
(
−HcS(t)Q−1

S(t)HS(t)k+Hck

)
∆α

(t)
k . (17)

Then we can further calculate the variation of margin for
the instance (xc, yc) in round t+ 1 as

∆γ(t+1)
c =

∑
j∈S(t)

∆α
(t+1)
j hcj +∆α

(t+1)
k hck

= HcS(t)∆α
(t+1)

S(t) +Hck∆α
(t+1)
k

=
(
−HcS(t)Q−1

S(t)HS(t)k +Hck

)
∆α

(t+1)
k ,

where the first and third equality are according to Eqn. (7) and
Eqn. (9), respectively. With Eqn. (17), we have ∆γ

(t+1)
c =

−S∆α
(t)
c ∆α

(t+1)
k /∆α

(t)
k .

Since the update of αk is monotonic, ∆α
(t)
k and ∆α

(t+1)
k

have the same sign. Notice that ∆α
(t)
c has the opposite sign to

∆γ
(t)
c , thus ∆γ

(t+1)
c has the same sign with ∆γ

(t)
c if S > 0.

Since QS is a positive definite matrix, the corresponding
Shur’s complement S > 0 [Ouellette, 1981], which con-
cludes the proof. For multiple instance changes, the proof
is similar.

5 Experiments
In this section, we empirically analyze the effectiveness and
efficiency of our proposed methods.

5.1 Setup
Data sets. We perform experiments on nine real-world data
sets available on the LIBSVM website 1. The features of each
data set are normalized into [0, 1]. The characteristics of data
sets are summarized in Table 2. We randomly divide all data
sets into training and test sets with a ratio of 4:1. Besides,
we randomly select 75% of the training data as historical data
and the rest are varying data.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.
html
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Figure 3: The cumulative running time of SR-ODM, BR-ODM, SID-ODM and BID-ODM on different data sets over 5 trials. The x-axis is
the number of varying instances and the y-axis is the logarithm of cumulative running time in seconds.

ID Data sets #Instances #Features

1 heart 270 13
2 ionosphere 351 34
3 breast 683 10
4 diabetes 768 8
5 fourclass 862 2
6 splice 1,000 60
7 svmguide3 1,243 21
8 madelon 2,000 500
9 a2a 2,265 123

Table 2: Characteristics of experimental data sets

Methods. To make an overall comparison, we implement
single incremental and decremental ODM (SID-ODM) and
batch incremental and decremental ODM (BID-ODM). We
use historical data to train the initial ODM and all varying
instances will be added to the model and then deleted. SID-
ODM adds/deletes an instance at once while BID-ODM pro-

cesses a batch of data. The batch size is set to 5. Apart from
our proposed methods, we retrain the model for comparison,
which is denoted as SR-ODM and BR-ODM corresponding
to single and multiple varying instances, respectively. All
methods are performed on a machine with the 11th Gen
Intel(R) Core(TM) i5-11320H@3.20GHz CPUs and 16GB
main memory. ODM is optimized by dual coordinate gra-
dient descent.

Hyperparameters. The hyperparameters in our experi-
ments contain three model hyperparameters {λ, θ, σ}. λ and
θ are tuned from {10−3, . . . , 103} and {0.1, 0.2, . . . , 0.9}, re-
spectively by grid search. The kernel hyperparameter σ is
fixed to 1/d where d is the number of features. All exper-
iments are performed five times according to different data
partitions.

Evaluation Measures. To verify the efficiency of our pro-
posed methods, we compare the running time of each method.
Besides, we also compare the accuracy on the test set to val-
idate the effectiveness. We record the average accuracy as
well as the standard deviation.
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Data sets Time (in seconds) Speedup Ratio

SR-ODM SID-ODM BR-ODM BID-ODM SID/SR BID/BR BID/SID

heart 0.007±0.001 0.001±0.001 0.007±0.003 0.001±0.001 11.68 5.55 2.16
ionosphere 0.012±0.002 0.001±0.001 0.011±0.002 0.002±0.001 10.57 5.59 2.78
breast 0.033±0.005 0.004±0.003 0.033±0.005 0.006±0.004 7.50 5.50 3.61
diabetes 0.040±0.006 0.008±0.004 0.041±0.006 0.007±0.002 5.32 5.66 5.21
fourclass 0.047±0.007 0.009±0.004 0.047±0.007 0.009±0.005 5.42 5.33 4.88
splice 0.197±0.031 0.022±0.015 0.198±0.030 0.037±0.018 8.85 5.43 3.05
svmguide3 0.127±0.020 0.024±0.012 0.128±0.020 0.024±0.018 5.31 5.31 4.95
madelon 3.001±0.470 0.078±0.079 3.116±0.496 0.132±0.080 38.41 23.56 2.95
a2a 0.443±0.071 0.082±0.054 0.438±0.066 0.102±0.055 5.42 4.29 4.00

Table 3: The average running time of SR-ODM, BR-ODM, SID-ODM, and BID-ODM on each data set with the speedup ratio

5.2 Results
Efficiency Comparison. Figure 3 demonstrates the cumu-
lative running time of conducting SID-ODM, BID-ODM,
SR-ODM, and BR-ODM on each data set. It can be seen that
both SID-ODM and BID-ODM cost much less time than re-
training the model from scratch, which reveals the efficiency
of our proposed method. Besides, it is worth noting that
the running time of SR-ODM and BR-ODM varies signif-
icantly with the data size while SID-ODM and BID-ODM
behave steadily, which benefits from the Sherman-Morrison-
Woodbury formula.

Table 3 further shows the speedup ratio of our proposed
methods compared to retraining the model. Since data sets
have various characteristics, the boost of the performance dif-
fers slightly, but on all data sets, we can gain more than 4
times acceleration and even can reach 9.1× speedup on av-
erage. Besides, there is no doubt that BID-ODM is more ef-
ficient than SID-ODM since it processes multiple instances
at one time but with a closed-time cost to SID-ODM. The
speedup ratio of BID-ODM compared to SID-ODM is also
recorded in Table 3 to make an intuitive comparison.

Figure 4: The accuracy of SID-ODM and BID-ODM on data sets

Generalization Performance Comparison. Figure 4
shows the accuracy over 5 trials with a box plot. We also
plot the mean accuracy of retraining the model in the box.
Intuitively, our proposed methods accelerate the update of
ODM nearly without sacrificing accuracy, which validates
the effectiveness of our proposed methods.

In order to further validate the performance of ID-ODM,
we compare it with MID-SVM [Karasuyama and Takeuchi,
2009], which is another batch IDL method based on SVM.
We incrementally add 100 instances to the training set and
record the accuracy. As shown in Table 4, ID-ODM performs
better than MID-SVM on most datasets, which benefits from
optimizing margin distribution.

Data sets ID-ODM MID-SVM

heart 81.5 ± 4.7 81.1 ± 4.1
ionosphere 87.4± 6.6 90.6 ± 3.8
breast 97.2 ± 0.9 96.7 ± 1.2
diabetes 76.9 ± 4.8 76.6 ± 4.9
fourclass 78.7 ± 2.8 77.1 ± 1.9
splice 84.4 ± 3.1 85.5 ± 3.6
svmguide3 80.5 ± 1.5 79.9 ± 1.3
madelon 58.0 ± 1.1 56.7 ± 1.6
a2a 83.0 ± 0.8 83.0 ± 0.8

Avg. Acc. 81.1 80.8

Table 4: The accuracy of ID-ODM and MID-SVM

6 Conclusions
In this paper, we propose the ID-ODM to efficiently up-
date ODM when new data is available or old data turns in-
valid. Specifically, we avoid updating the unbounded La-
grange multipliers in an infinite range by estimating the op-
timal value beforehand, thus iteratively updating the model.
Moreover, ID-ODM is effective no matter how data varies,
thus it is applicable to various real-world tasks. Besides,
we provide some theoretical analysis on ID-ODM. Extensive
experiments validate the effectiveness and efficiency of our
method. In the future, we will extend our method to other
models with quadratic-type loss.
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Razvan Andonie. Weighted incremental-decremental
support vector machines for concept drift with shifting
window. Neural Networks, 152(5):528–541, 2022.

[Gao and Zhou, 2013] Wei Gao and Zhi-Hua Zhou. On the
doubt about margin explanation of boosting. Artificial In-
telligence, 203:1–18, 2013.

[Golub and Van Loan, 1983] Gene H. Golub and Charles F.
Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, Baltimore, MD, 1983.

[Gu et al., 2012] Bin Gu, Jiandong Wang, Yuecheng Yu,
Guansheng Zheng, Yu-Fan Huang, and Tao Xu. Accu-
rate on-line ν-support vector learning. Neural Networks,
27:51–59, 2012.

[Gu et al., 2015a] Bin Gu, Victor S. Sheng, Keng Yeow Tay,
Walter Romano, and Shuo Li. Incremental support vector
learning for ordinal regression. IEEE Transactions Neural
Networks Learning System, 26(7):1403–1416, 2015.

[Gu et al., 2015b] Bin Gu, Victor S. Sheng, Zhijie Wang,
Derek Ho, Said Osman, and Shuo Li. Incremental learning
for ν-support vector regression. Neural Networks, 67:140–
150, 2015.

[Gu et al., 2018] Bin Gu, Xiao-Tong Yuan, Songcan Chen,
and Heng Huang. New incremental learning algorithm
for semi-supervised support vector machine. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1475–
1484, London, United Kingdom, 2018.

[Huang et al., 2020] Sheng-Jun Huang, Guo-Xiang Li, Wen-
Yu Huang, and Shao-Yuan Li. Incremental multi-label
learning with active queries. Journal of Computer Science
and Technology, 35(2):234–246, 2020.

[Jiang et al., 2019] Hansi Jiang, Haoyu Wang, Wenhao Hu,
Deovrat Kakde, and Arin Chaudhuri. Fast incremental
SVDD learning algorithm with the gaussian kernel. In
Proceedings of 33rd AAAI Conference on Artificial Intelli-
gence, pages 3991–3998, Honolulu, HI, 2019.

[Karasuyama and Takeuchi, 2009] Masayuki Karasuyama
and Ichiro Takeuchi. Multiple incremental decremental
learning of support vector machines. In Advances in
Neural Information Processing Systems, pages 907–915,
Vancouver, Canada, 2009.

[Laskov et al., 2006] Pavel Laskov, Christian Gehl, Stefan
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