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Abstract
Large-scale neural networks possess considerable
expressive power. They are well-suited for com-
plex learning tasks in industrial applications. How-
ever, large-scale models pose significant challenges
for training under the current Federated Learn-
ing (FL) paradigm. Existing approaches for effi-
cient FL training often leverage model parameter
dropout. However, manipulating individual model
parameters is not only inefficient in meaningfully
reducing the communication overhead when train-
ing large-scale FL models, but may also be detri-
mental to the scaling efforts and model perfor-
mance as shown by recent research. To address
these issues, we propose the Federated Opportunis-
tic Block Dropout (FEDOBD) approach. The key
novelty is that it decomposes large-scale models
into semantic blocks so that FL participants can
opportunistically upload quantized blocks, which
are deemed to be significant towards training the
model, to the FL server for aggregation. Exten-
sive experiments evaluating FEDOBD against four
state-of-the-art approaches based on multiple real-
world datasets show that it reduces the overall com-
munication overhead by more than 88% compared
to the best performing baseline approach, while
achieving the highest test accuracy. To the best of
our knowledge, FEDOBD is the first approach to
perform dropout on FL models at the block level
rather than at the individual parameter level.

1 Introduction
Over the years, machine learning techniques have been ap-
plied to solve a wide range of problems. The size of the
learning model matters. Both manually designed neural
architectures and those generated through neural architec-
ture search [Elsken et al., 2019] demonstrate that scaling
up model sizes can improve performance. However, it is
a significant challenge to train a large-scale model, espe-
cially in a distributed manner (e.g., involving multiple col-
laborative organizations [Yu et al., 2017]). Federated Learn-
ing (FL) [Yang et al., 2019] is a distributed machine learn-
ing paradigm that enables multiple data owners to collabo-

ratively train models (e.g., neural networks (NNs)) without
exposing their private sensitive data. In the centralized FL ar-
chitecture, local model updates are aggregated into a global
model in a privacy-preserving manner by a central parame-
ter server [Konečnỳ et al., 2016]. FL has been applied in
many commercial scenarios such as enhancing user experi-
ence [Yang et al., 2018], safety monitoring [Liu et al., 2020;
Xie et al., 2022] and healthcare [Liu et al., 2022].

However, training large-scale deep models in current FL
settings is challenging. The communication overhead in-
volved is high [Kairouz et al., 2021]. Typical FL approaches
require local model updates to be sent to the server and the
aggregated global model to be distributed to the clients mul-
tiple times. This limits the scale of neural networks that can
be used, making them less well-suited for solving complex
real-world problems. When multiple institutional data own-
ers collaboratively train large-scale FL models, communica-
tion efficient FL training approaches are required.

One popular approach for achieving communication effi-
cient training of large-scale NNs in FL is through parameter
dropout. FedDropoutAvg [Gunesli et al., 2021] randomly se-
lects a subset of model parameters to be dropped out to reduce
the size of transmission. In addition, it also randomly drops
out a subset of FL clients to further reduce the number of
messages required. In contrast, Adaptive Federated Dropout
(AFD) [Bouacida et al., 2021] performs dropout based on pa-
rameter importance by maintaining an activation score map.
In such approaches, it is common to apply compression tech-
niques to further reduce the communication overhead when
transmitting model updates to and from the FL server.1 How-
ever, these approaches directly manipulate individual model
parameters. Recent research shows that this is not only in-
efficient in terms of meaningfully reducing the communica-
tion overhead when training large-scale FL models, but may
also negatively affect the scaling efforts and model perfor-
mance [Cheng et al., 2022].

To address this limitation, we propose the Federated Op-
portunistic Block Dropout (FEDOBD) approach. By divid-
ing large-scale deep models into semantic blocks, it evaluates

1Note that although Federated Dropout [Wen et al., 2021],
FjORD [Horváth et al., 2021] and FedDrop [Liao et al., 2021] also
leverage parameter dropout in FL, their design goal is to enhance
model adaptability to FL client heterogeneity, rather than training
large-scale NN models efficiently via FL.
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block importance (instead of determining individual param-
eter importance) and opportunistically discards unimportant
blocks in order to enable more significant reduction of com-
munication overhead while preserving model performance.
Since our block importance measure is not based on the client
loss function as is the case for AFD [Bouacida et al., 2021],
FEDOBD can handle complex tasks effectively.

We study the performance of FEDOBD for training large-
scale deep FL models through extensive experiments in com-
parison with four state-of-the-art baseline approaches on
three real-world datasets (including CIFAR-10, CIFAR-100
and IMDB). The results show that, compared to the best per-
forming existing approach, FEDOBD reduces communica-
tion overhead by 88%, while achieving the highest test ac-
curacy. To the best of our knowledge, FEDOBD is the first
semantic block importance-based opportunistic FL dropout
approach.

2 Related Work
Existing methods for improving FL communication effi-
ciency can be divided into two major categories:
Compression. Deep Gradient Compression (DGC) [Lin et
al., 2017] employs gradient sparsification to reduce redundant
gradients, and thereby enabling large models to be trained
more efficiently under FL settings. FetchSGD [Rothchild et
al., 2020] takes advantage of Count Sketch to compress gradi-
ent updates, while accounting for momentum and error accu-
mulation in the central FL server. Nevertheless, it requires
a large number of communication rounds to achieve con-
vergence because aggregation is performed after each local
batch. SignSGD [Bernstein et al., 2018] is a typical method
for compressing model gradients. However, the compression
is static which can result in loss of important features and
convergence to a global model with reduced performance.

In recent years, approaches that directly compress FL
model parameters are starting to emerge [Amiri et al., 2020;
Reisizadeh et al., 2020]. This is more challenging compared
to gradients compression as more training information is lost
in the process. Nevertheless, these approaches can reduce the
number of communication rounds required during FL model
training, and can achieve comparable performance with full-
precision networks [Hou et al., 2018]. For example, Fed-
PAQ [Reisizadeh et al., 2020] compresses the model updates
before uploading them to the FL server. However, it requires
a static quantization approach to be applied before the com-
pression step. Thus, it is only able to support simple learn-
ing tasks and small-scale neural networks. Existing compres-
sion methods are not suitable for complex FL tasks involving
large-scale neural networks.
Parameter Dropout. Dropout methods for FL training
have been proposed to address two distinct problems: 1) en-
abling devices with diverse local resources to collaboratively
train a model, and 2) enabling efficient training of a large-
scale FL model by organizational data owners (which are not
resource constrained).

Federated Dropout [Wen et al., 2021] exploits user-server
model asymmetry to leverage the diverse computation and
communication capabilities possessed by FL clients to train

a model which could be too large for a subset of the clients
to handle. It fixes the server model size and applies parame-
ter dropout at different rates to generate models suitable for
each client to train according to their local resource con-
straints. FjORD [Horváth et al., 2021] extends Federated
Droput to propose the ordered dropout method, under which
the client sub-models are selected in a nested fashion from
the FL server model. In this way, each client is assigned
a model of size in proportion to its local computational re-
sources for training, thereby adapting the model according to
clients’ device heterogeneity. Similarly, FedDrop [Liao et al.,
2021] incorporates additional dropout layers into FL models
to determine the channel wise trajectories to be dropped or
retained to adapt a model according to FL clients’ local data
distributions. Nevertheless, these approaches are designed to
address the first problem, which is not the focus of this paper.

Our research focuses on the second problem. The Fed-
DropoutAvg approach [Gunesli et al., 2021] randomly drops
out a subset of model parameters while randomly dropping
out some FL clients before performing FedAvg based model
aggregation. The Adaptive Federated Dropout (AFD) ap-
proach [Bouacida et al., 2021] adaptively determines a per-
centage of weights based on parameter importance to be
dropped. In this way, compression can be performed to re-
duce the communication overhead of transmitting the model
updates to the FL server. It maintains an activation score map
which is used to determine the importance of the activations
to the training process, and determine which of them shall be
kept or dropped in the current round of training. Instead of de-
termining individual parameter importance, the proposed FE-
DOBD approach focuses on evaluating the importance of se-
mantic blocks in a large-scale deep model and opportunisti-
cally discarding unimportant blocks in order to enable more
significant reduction of communication overhead while pre-
serving model performance, thereby enabling efficient train-
ing of large-scale FL models by institutional data owners.

3 The Proposed FEDOBD Approach
FL is a distributed machine learning paradigm involving mul-
tiple data owners (a.k.a., FL clients) to collaboratively train
models under the coordination of a parameter server (a.k.a.,
FL server).2 Formally, assume that there are n clients par-
ticipating in FL model training. Each client i owns a local
dataset Di =

{(
xj ,yj

)}Mi

j=1
, where xj is the j-th local train-

ing sample, yj is the corresponding ground truth and Mi is
the number of samples in Di. Under these settings, FL aims
to solve the following optimization problem:

min
w∈W

n∑
i=1

Mi

M
Li(w;Di), (1)

where W is the parameter space determined by the neural
network architecture. M := Σn

i=1Mi is the total number of
samples and Li(w;Di) := 1

Mi

∑Mi

j=1 ℓ(w;xj ,yj) is the lo-
cal loss of client i. Normally, the training process consists

2Here, we refer to the horizontal federated learning setting with
an FL server [Yang et al., 2019].
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Figure 1: An overview of FEDOBD

of multiple synchronization rounds. In the beginning of each
round, the FL server distributes a global model to selected FL
clients. The clients train the received models using local data
and send the resulting model updates back to the server. Then,
the server combines these uploaded models into an updated
global model following some aggregation algorithm (e.g., Fe-
dAvg [McMahan et al., 2017]). These steps are repeated until
model convergence. FEDOBD is designed for the aforemen-
tioned horizontal Federated Learning setting. It attempts to
identify unnecessary model updates during training to reduce
communication overhead while maintaining model perfor-
mance. The following subsections explain key components
of FEDOBD for achieving this design goal. They are also
illustrated in Figure 1.

3.1 Opportunistic Block Dropout (OBD)
Neural networks (NNs) are often designed with some struc-
tures in mind. Their generalization performance relies heav-
ily on properly selecting the structures. Motivated by this
observation, an NN model can be decomposed into blocks
of consecutive layers before FL model training commences.
The key idea of FEDOBD is to identify important blocks and
only involve them, instead of the entire model, during the FL
training process in order to reduce communication overhead.
To achieve this goal, we need to address three questions: 1)
how to decompose a given model; 2) how to determine block
importance; and 3) how to aggregate the uploaded blocks.

When decomposing the trained model, it is critical to rec-
ognize popular (i.e., frequently used) NN structural patterns.
For example, layer sequences such as ⟨Convolution, Pooling,
Normalization, Activation⟩ are commonly found in convolu-
tional neural networks (CNNs), and Encoder layers are com-
monly found in Transformer based models. Other types of
architecture may define basic building blocks which can be
taken into consideration when dividing a model into blocks.
Such blocks often provide important functionality (e.g., fea-
ture extraction). Thus, it makes sense to transmit or drop them
as a whole. Finally, the remaining layers are treated as sin-
gleton blocks.

The proposed opportunistic block dropout approach is

Algorithm 1: OBD
Input : global model wr−1, local model wr,i in

client i, the set of identified block structures
B, dropout rate λ ∈ [0, 1].

Output: retained blocks.
1 important blocks← MaxHeap();
2 foreach b ∈ B do
3 important blocks[MBD(br−1, br,i)]← br,i;
4 end
5 revised model size← 0;
6 retained blocks← List();
7 while important blocks do
8 br,i ← important blocks.pop();
9 new size← revised model size+ |vector(br,i)|;

10 if new size > (1− λ)|vector(wr,i)| then
11 continue;
12 end
13 revised model size← new size;
14 retained blocks.append(br,i);
15 end
16 return retained blocks;

shown in Algorithm 1. At the end of each round of local train-
ing, each block is assigned an importance score. To achieve
this goal, a client i keeps a copy of the global FL model wr−1

and compares it with the resulting model wr,i block by block
after local training. We propose the Mean Block Difference
(MBD) metric to measure block importance, defined as:

MBD(br−1, br,i) :=
∥vector(br−1)− vector(br,i)∥2
NumberOfParameters(br−1)

,

(2)
where br−1 denotes the blocks in the received global FL
model, and br,i denotes the corresponding blocks in the local
model produced by client i after the current round of training.
The vector operator concatenates parameters from differ-
ent layers into a single vector and Parameter returns the
number of parameters in a block. In general, the larger MBD
value between the new and old versions of the same block,
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Algorithm 2: NNADQ
Input: parameter set L, relative weight β.
Output: quantized vectors and other parameters for

dequantization.
1 results← List();
2 foreach layer l ∈ L do
3 results.add(ADQ(l, β));
4 end
5 return results;

Algorithm 3: ADQ
Input : vector v, relative weight β.
Output: a quantized vector and parameters for

dequantization.
1 max v, min v← maxmin(v);
2 offset← argminθ max(|max v + θ|, |min v + θ|);
3 v′ ← v+offset;
4 d← ∥v′∥∞;
5 sign← sgn(v′);

6 s← int

(
max

(√
ln 4 ∗ REPR(v)

β ∗ d, 1
))

;

7 vquantized ← Round(v′, s, d);
8 return ⟨vquantized, offset, d, sign, s⟩;

the more important the new block is because it may contain
lots of new knowledge learned in the current round.

Once the MBD values for all the blocks have been com-
puted, FEDOBD determines which blocks to retain (lines 5-
15). Since all the blocks are ranked from high to low in terms
of their MBD values with the MaxHeap data structure, the
algorithm simply pops each block one by one in descend-
ing order of their MBD values and adds each of them to
the retained blocks list, while keeping track of the size of
the revised model so far. When the algorithm terminates,
the size of the revised model is guaranteed to not exceed
(1− λ)|vector(wr,i)|, where λ ∈ [0, 1] is the dropout rate
(where 1 indicates dropping out the entire model and 0 indi-
cates no dropout). Only the retained blocks are transmitted to
the FL server for model aggregation.

Upon receiving retained blocks from a client i in round r,
the FL server combines them with unchanged blocks from the
previous global model wr−1 to form wr,i. The reconstructed
local models for all clients are then used to aggregate a new
global FL model wr following an aggregation algorithm such
as FedAvg [McMahan et al., 2017].

3.2 Adaptive Deterministic Quantization For
Neural Networks (NNADQ)

OBD reduces the transmission size of the original model by
retaining only important blocks based on a user specified
dropout rate. To further reduce communication overhead, we
propose an improved quantization approach to compress the
other blocks before transmission. Quantization operates by
converting given float-point values into integers within a fixed
range. It is a lossy compression method. In FEDOBD, local

Algorithm 4: FEDOBD
Input : number of FL clients n,

client subset size k,
dropout rate λ ∈ [0, 1],
relative weight β in quantization,
number of rounds R in stage 1,
first stage number of local epochs E1,
second stage number of local epochs E2.

Output: the final global FL model.
1 Stage 1:
2 //at the FL server:
3 initialize w0;
4 foreach r ∈ {1, 2, . . . , R} do
5 Cr ← k randomly chosen clients;
6 distribute NNADQ(wr−1, β) to Cr;
7 //at each client i ∈ Cr:
8 dequantize data, construct and load wr−1;
9 train wr,i for E1 epochs;

10 important blocks← OBD(wr,i,wr−1, λ);
11 upload

NNADQ(Diff(important blocks, old blocks), β)
to FL server;

12 //at the FL server:
13 foreach client i ∈ Cr do
14 dequantize the received update and reconstruct

wr,i;
15 end
16 wr ← Aggregation({wr,i}i∈Cr )
17 end
18 Stage 2:
19 //at the FL server:
20 w0 ← wR

21 foreach epoch e ∈ {1, 2, . . . , E2} do
22 distribute NNADQ(we−1, β) to clients;
23 //at each client i ∈ {1, 2, . . . , n}:
24 dequantize data, construct and load we−1;
25 we,i ← train with previous learning rate for 1

epoch;
26 upload NNADQ(Diff(we,i,we−1), β) to FL

server;
27 //at the FL server:
28 foreach i ∈ {1, 2, . . . , n} do
29 dequantize the received update and reconstruct

we,i;
30 end
31 we ← Aggregate(we,1, . . . ,we,n);
32 end

block differences and global models are quantized before be-
ing sent out. The following sections describe the proposed
NNADQ quantization algorithm in detail.

Stochastic Quantization. In stochastic quantization [Alis-
tarh et al., 2017] for encoding models, the quantization func-
tion is denoted as Q(v, s). It takes a vector v and the number
of quantization levels s ⩾ 1 as the inputs, and generates a
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quantized vector. Formally, for any v ∈ Rn,Q(v, s) is:

Q(v, s) := ∥v∥2 · sgn(v) · ξi(v, s),

where the second multiplication is element-wise and ξi(v, s)
denotes independent random variables for vector elements,
whose definition follows.

Let 0 ⩽ ℓ < s be an integer such that |vi|/ ∥v∥2 ∈
[ℓ/s, (ℓ + 1)/s]. That is, [ℓ/s, (ℓ + 1)/s] is a quantization
interval for |vi|/ ∥v∥2. Then,

ξi(v, s) =

{
ℓ/s with probability 1− p

(
|vi|
∥v∥2

, s
)
;

(ℓ+ 1)/s otherwise.

Here, p(a, s) := as− ℓ for any a ∈ [0, 1].

Reformulation. While the above method is a statistically
unbiased way of quantization, it is still unclear whether some
choices of variables are optimal. It is also necessary to refor-
mulate the problem taking the balance between compression
and informativeness into consideration. Following the above
notation, we treat the number of quantization levels s and the
norm d as variables. Then, ξi becomes:

ξi(v, s, d) =

{
ℓ/s with probability 1− p

(
|vi|
d , s

)
;

(ℓ+ 1)/s otherwise.

Since ξi is an unbiased estimator, Var(ξi) is an indication of
quantization loss. However, we quickly find that

Roundi(v, s, d) =

{
ℓ/s if |vi|

d is closer to ℓ/s;
(ℓ+ 1)/s otherwise;

is a better alternative since ( |vi|
d − Roundi(v, s, d))

2 ⩽
Var(ξi), and the new way of quantization works determin-
istically rather than stochastically.

The trade-off between compression and informativeness
can now be formulated as an optimization problem:

min
s,d

d2

n

∑
i

(
|vi|
d
−Roundi(v, s, d)

)2

+ β
⌈log2 (s+ 1)⌉

REPR
,

s.t. s ⩾ 1, s ∈ N,
d ⩾ ∥v∥∞ .

(3)

The first part of Eq. (3) indicates the mean information loss
and the second part indicates the compression ratio where
REPR is the number of bits in a floating-point representation3.
β ∈ R+ is a predefined relative weight between the two parts.

3REPR = 32 in typical environments.

Since dl ⩽ s|vi| ⩽ dl + d, by definition, we have

d2

n

∑
i

(
|vi|
d
−Roundi(v, s, d)

)2

=
d2

n

∑
i

(
min

(
|vi|
d
− l

s
,
|vi|
d
− l + 1

s

))2

⩽
d2

n

∑
i

(
|vi|
d
− l

s

)(
|vi|
d
− l + 1

s

)
=

1

ns2

∑
i

(s|vi| − dl)(d+ dl − s|vi|)

⩽
1

ns2

∑
i

(d+ dl − s|vi|) ⩽
d

s2
.

(4)

Eq. (4) shows that d should be as small as possible and
d = ∥v∥∞ is a near optimal choice for any fixed d. For any
fixed d, we allow s to take real values and combine Eq. (3)
and Eq. (4) to obtain a simplified optimization objective

min
s

d

s2
+ β

log2 s+ 1

REPR
,

s.t. s ⩾ 1, s ∈ R.
(5)

Solving Eq. (5) gives us s∗R = max
(√

ln 4 ∗ REPR
β ∗ d, 1

)
.

⌊s∗R⌋ is then taken as an approximate solution to the original
problem Eq. (3).
Additional Optimizations. Note that d = ∥v∥∞ affects
the information loss directly and the compression ratio indi-
rectly via s∗R. Smaller values of ∥v∥∞ can improve Eq. (3)
in general. Thus, we should translate v to v′ with minimum
infinity norm before quantizing it. Since each layer of a large-
scale model has a different statistical parameter distribution,
quantization layer by layer can utilize this trick further.

Based on the aforementioned quantization approach, we
propose the Adaptive Deterministic Quantization for Neural
Networks (NNADQ) approach as in Algorithm 2 (and the re-
lated supporting function in Algorithm 3). NNADQ is used
in FEDOBD to compress both directions of transmission.

3.3 The Two-Stage Training Process
Finally, FEDOBD has a two-stage training process. In the
first stage, small local epochs are used, random subsets of
clients are selected in each round and OBD is activated (i.e.,
only selected blocks are uploaded to the server). In this
way, FEDOBD encourages frequent aggregation to prevent
overfitting without incurring high communication overhead.

In the second stage, FEDOBD switches to a single round
with aggregation being executed at the end of each epoch so
that local learning rates are reused. Therefore, FEDOBD at-
tempts to fine-tune the global model by approximating cen-
tralized training. The detailed process of FEDOBD is pre-
sented in Algorithm 4.

4 Experimental Evaluation
In this section, we evaluate the performance of FEDOBD
against four state-of-the-art related approaches. Next, we
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Dataset Approach Data Transmission (MB) Test Accuracy

CIFAR-10

FedAvg 13,504.22 82.75± 2.53%
FedPAQ 4,266.26 81.75± 0.47%
FedDropoutAvg 5, 777.91± 0.05 81.59± 0.38%
SMAFD 2, 495.13± 18.57 27.62± 12.34%
FEDOBD 1,440.96± 4.95 82.70± 0.28%

CIFAR-100

FedAvg 7,211.02 53.06± 0.48%
FedPAQ 2,278.10 52.67± 0.58%
FedDropoutAvg 3, 085.31± 0.06 52.62± 0.42%
SMAFD 1, 367.12± 10.14 9.27± 7.07%
FEDOBD 811.79± 1.57 53.11± 0.62%

IMDB

FedAvg 1,321,669.23 77.78± 1.36%
FedPAQ 417,542.27 78.69± 1.41%
FedDropoutAvg 565, 490.25± 0.58 78.51± 2.11%
SMAFD 321, 706.16± 3, 039.03 56.33± 6.40%
FEDOBD 178,359.36± 1063.37 79.66± 1.22%

Table 1: Performance and communication efficiency of various FL approaches.

Variant Data Transmission (MB) Test Accuracy

FEDOBD with SQ 977.61 52.89± 0.68%

FEDOBD w/o 2nd Stage 673.88± 1.07 50.06± 0.54%

FEDOBD w/o Block Dropout 926.23± 1.81 55.85± 1.08%

Table 2: Performance and communication efficiency of FEDOBD variants on CIFAR-100.

conduct ablation studies to investigate the impact of differ-
ent components of FEDOBD on its effectiveness.

4.1 Experiment Settings
We compare FEDOBD with these approaches:

1. FedAvg [McMahan et al., 2017]: A classic FL model
training approach used as the baseline.

2. FedPAQ [Reisizadeh et al., 2020]: A compression-
based communication efficient FL model training ap-
proach, which utilizes stochastic quantization [Alistarh
et al., 2017] and random client selection.

3. Adaptive Federated Dropout [Bouacida et al., 2021]:
An FL approach that optimizes both server-client com-
munication costs and computation costs by allowing
clients to train locally on a selected subset of the global
model parameters. We adopt the Single-Model Adaptive
Federated Dropout (SMAFD) variant for comparison.

4. FedDropoutAvg [Gunesli et al., 2021]: An FL approach
that randomly drops out a subset of model parameters,
while randomly dropping out some clients before per-
forming FedAvg based model aggregation.

Hardware & Software. The experiments are carried out on
a server with 4 NVIDIA A100 GPUs, 1 AMD EPYC CPU
and 252 GB of memory. The algorithm and experiment im-
plementations are based on the PyTorch [Paszke et al., 2017]
framework.

Tasks. We use two image classification tasks on CIFAR-
10, CIFAR-100 [Krizhevsky and Hinton, 2009] and one
sentiment classification task on IMDB [Maas et al., 2011].
CIFAR-10 consists of 50,000 training images and 10,000 test-
ing images in 10 classes. CIFAR-100 consists of 50,000 train-
ing images and 10,000 testing images in 100 classes. IMDB
consists of 25,000 highly polar movie reviews for training,
and 25,000 reviews for testing in two classes. In this work, we
focus on the i.i.d. case. Local training and validation datasets
are drawn uniformly from the larger datasets and the server
holds a separate test dataset for evaluating.

Models. For CIFAR-10 and CIFAR-100 tasks, we use two
DenseNet-40 networks with about 0.17 and 0.19 million pa-
rameters respectively [Huang et al., 2017]. For IMDB, we
use a Transformer based classification network consisting of
2 encoder layers followed by a linear layer with a total of 17
million parameters [He et al., 2016]. In addition, word em-
beddings are initialized with GloVe word embeddings [Pen-
nington et al., 2014].

Experiment Scale. We investigate the performance of FE-
DOBD and other approaches under large-scale settings.
Specifically, 100 clients are used in CIFAR-10 and IMDB
tasks and 50 clients are used in CIFAR-100 task. Further-
more, a fixed fraction of 50% clients are chosen randomly
in each round in FedPAQ, FedDropoutAvg, SMAFD and FE-
DOBD since random client selection is part of these algo-
rithms.
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Independent Trials. To measure the stability of FEDOBD
and other approaches that use probabilistic methods, 10 inde-
pendent trials are performed for each task.

Other Hyperparameters. 100 rounds and 5 local epochs
are used in all combinations of algorithms and tasks for
fair comparison. In addition, FEDOBD uses 10 epochs
in the second stage. Initial learning rates of 0.1 and 0.01
are used in image and sentiment classification tasks respec-
tively and adjusted by Cosine Annealing learning rate strat-
egy [Loshchilov and Hutter, 2016]. The batch size is set to
64. FedPAQ uses a fixed quantization level of 255. Fed-
DropoutAvg, SMAFD and FEDOBD use a dropout rate
of 0.3. FEDOBD uses a quantization weight β of 0.001 in
CIFAR-10/CIFAR-100 tasks and 0.0001 for IMDB.

4.2 Results And Discussion
Table 1 lists mean and standard deviation values of perfor-
mance and communication overheads over 10 independent
trials for each combination of tasks and approaches. In each
case, “Data Transmission” lists the amount of actual data
transmission in megabytes and “Test Accuracy” evaluates the
resulting model performance on the test dataset.

It can be easily calculated that, without parameter
dropout/compression, FedAvg requires around 20, 100 mes-
sages to be exchanged between the FL server and the clients,
with 100% of the model parameters being transmitted all
the time in order to reach model convergence. Therefore,
it achieves the highest test accuracies in large-scale train-
ing cases. FedPAQ, FedDropoutAvg and SMAFD exchange
fewer messages due to parameter dropout. Overall, they
achieve low communication overhead, with SMAFD consis-
tently achieving the lowest overhead among them.

Compared to the above approaches, FEDOBD requires
the lowest data transmission to achieve convergence. No-
tably, the communication overhead required by FEDOBD is
88% lower on average than that required by FedAvg. Mean-
while, FEDOBD achieves the highest or second highest test
accuracies, comparable to the performance of FedAvg. Over-
all, FEDOBD achieves the most advantageous trade-off be-
tween communication overhead and test accuracy among all
comparison approaches.

4.3 Ablation Studies
Since FEDOBD consists of three key components, we need
to measure their effect in isolation. Specifically, we consider
the following variants of FEDOBD:

1. FEDOBD with SQ: In this variant, NNADQ is replaced
with stochastic quantization [Alistarh et al., 2017].

2. FEDOBD w/o 2nd Stage: This variant only goes
through the first stage of the training process.

3. FEDOBD w/o Block Dropout: The dropout rate λ is
set to 0 in this variant of FEDOBD.

Table 2 lists mean and standard deviation values of per-
formance and communication overheads over 10 indepen-
dent trials for each variant under the CIFAR-100 task with
the same hyperparameter settings as in the previous experi-
ments. Although “FEDOBD with SQ” achieves similar test

accuracy compared to the canonical FEDOBD method, it in-
curs 20.37% higher communication overhead. This increase
in communication overhead is as a result of the transmission
amount rising from 811.79MB under FEDOBD to 977.15MB
under “FEDOBD with SQ”. This demonstrates the advantage
of the proposed NNADQ approach in terms of reducing com-
munication overhead.

When training without the second stage under “FEDOBD
w/o 2nd Stage”, an inferior global FL model is obtained
which achieves 3% lower test accuracy compared to the
canonical FEDOBD method. Nevertheless, without going
through the second stage of training, it incurs 16.99% lower
communication overhead (as a result of less message ex-
changes) compared to the canonical FEDOBD method. This
shows that the proposed two-stage training scheme is neces-
sary for producing high quality final models.

When trained under “FEDOBD w/o Block Dropout”, the
resulting model achieves higher test accuracy compared to
the canonical FEDOBD method (i.e., 2.7% increase in test
accuracy). However, it incurs 14.10% higher communica-
tion overhead due to the transmission amount increasing from
811.79MB under FEDOBD to 926.23MB. Hence, oppor-
tunistic block dropout is helpful in reducing communication
overhead while preserving model performance.

Through the ablation studies, we have demonstrated that
the algorithmic components of FEDOBD are indeed indis-
pensable towards achieving its design goal.

5 Conclusions and Future Works
In this paper, we set out to address an emerging research topic
in the field of federated learning which is how to efficiently
train large-scale deep models. This problem is commonly
found in industrial FL application settings. We propose FE-
DOBD: a first-of-its-kind semantic block-level importance-
based opportunistic dropout approach for improving FL
model training efficiency, while maintaining model perfor-
mance. Extensive experimental evaluation demonstrates that
FEDOBD outperforms state-of-the-art baselines in terms of
communication overhead and test accuracy.

We provide the reference implementation of FEDOBD and
related experiments in an open sourced project 4 for academic
research. In the future, we plan to integrate more privacy-
preserving considerations into the current FEDOBD imple-
mentation to enable institutional data owners to collabora-
tively train complex large-scale FL models efficiently.
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