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Abstract

Heterophily has been considered as an issue that
hurts the performance of Graph Neural Networks
(GNNs). To address this issue, some existing work
uses a graph-level weighted fusion of the informa-
tion of multi-hop neighbors to include more nodes
with homophily. However, the heterophily might
differ among nodes, which requires to consider the
local topology. Motivated by it, we propose to use
the local similarity (LocalSim) to learn node-level
weighted fusion, which can also serve as a plug-
and-play module. For better fusion, we propose a
novel and efficient Initial Residual Difference Con-
nection (IRDC) to extract more informative multi-
hop information. Moreover, we provide theoreti-
cal analysis on the effectiveness of LocalSim rep-
resenting node homophily on synthetic graphs. Ex-
tensive evaluations over real benchmark datasets
show that our proposed method, namely Local Sim-
ilarity Graph Neural Network (LSGNN), can of-
fer comparable or superior state-of-the-art perfor-
mance on both homophilic and heterophilic graphs.
Meanwhile, the plug-and-play model can signifi-
cantly boost the performance of existing GNNs.

1 Introduction
Graph Neural Network (GNN) has received significant in-
terest in recent years due to its powerful ability in various
real-world applications based on graph-structured data, i.e.,
node classification [Kipf and Welling, 2016], graph clas-
sification [Errica et al., 2020], and link prediction [Zhang
and Chen, 2018]. Combining convolutional network and
graph signal processing, numerous Graph Convolutional Net-
work (GCN) architectures [Scarselli et al., 2009; Defferrard
et al., 2016; Hamilton et al., 2017; Velickovic et al., 2017;

∗Correspoding authors: Jing Tang and Chuan Wang.

Kipf and Welling, 2016] have been proposed and show su-
perior performance in the above application domains. Re-
cent work [Battaglia et al., 2018] believes that the success of
GCN and its variants is built on the homophily assumption:
connected nodes tend to have the same class label [Hamil-
ton, 2020]. This assumption provides proper inductive bias,
raising the general message-passing mechanism: aggregating
neighbour information to update ego-node feature—a special
form of low-pass filter [Bo et al., 2021].

However, the homophily assumption does not always
hold [McPherson et al., 2001; Jiang et al., 2013]. In such
cases, empirical evidence shows that GCN may even be worse
than simple Multi-Layer Perceptrons (MLPs) that use merely
node features as input [Chien et al., 2021] (heterophily is-
sue). A potential explanation is that the low-pass filter is be-
lieved to hurt the performance of GCN on heterophilic graph.
Recently, the heterophily issue has received the community’s
interest, and various methods [Pei et al., 2020; Chien et al.,
2021; He et al., 2021; Li et al., 2022] have been proposed to
address the issue. Many existing works [Chien et al., 2021;
He et al., 2021; Li et al., 2022] propose to fuse interme-
diate representations, i.e., outputs of different layers, for
heterophilic graphs learning. However, they only consider
graph-level heterophily. Moreover, intermediate representa-
tions extracted by traditional propagation methods [Kipf and
Welling, 2016] may drop some important information, which
limits the effectiveness of information fusion among neigh-
bors.

We show that in real-world datasets the heterophily among
nodes can be significantly different (Section 3.3), which sug-
gests that only considering graph-level heterophily is insuffi-
cient. Although Liu et al. consider node-level heterophily,
they simply map each node’s representation to its node-level
weight, do not take local topology into consideration, yield-
ing suboptimal results. Motivated by the deficiency of exist-
ing techniques, we propose to use the local similarity to in-
dicate node homophily to conduct better node-level weighted
fusion adaptively. Moreover, we empirically and theoretically
show its capabilities on synthetic graphs (Section 4). Fur-
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Figure 1: An illustration of LSGNN framework. ‘Pre-Computed’ means the part can be pre-computed without training.

thermore, to obtain more informative intermediate represen-
tations for better fusion, we propose a novel Initial Residual
Difference Connection (IRDC), which can leverage all the
input information. Meanwhile, the IRDC propagation pre-
serves the key property of SGC [Wu et al., 2019] on removing
the nonlinear transformations between propagation, which is
time- and GPU-consuming in GCNs. This property makes the
feature propagation of LSGNN efficient and deep-learning
free. Based on the above novel designs, LSGNN offers high
performance and high efficiency in evaluations (Section 6).

To summarize, we make the following contributions: 1)
We study the local node homophily of real-world datasets and
suggest using LocalSim as an indicator of node homophily.
Moreover, we empirically and theoretically show the effec-
tiveness of using LocalSim to indicate node homophily on
synthetic graphs. 2) We propose LSGNN, which contains
a LocalSim-aware multi-hop fusion to guide the learning of
node-level weight for intermediate representations and an
IRDC to extract more informative intermediate representa-
tions for better fusion. 3) LocalSim-based node-level weight
is a plug-and-play module and can significantly boost the
performance of state-of-the-art models, such as H2GCN and
GPRGNN. 4) We conduct extensive experiments to demon-
strate the superiority of our method, LSGNN, which can offer
comparable or superior performance against 13 other meth-
ods over homophilic and heterophilic graphs.

2 Preliminaries
2.1 Notations
We denote an undirected graph without self-loops as G =
(V , E), where V = {vi}ni=1 is the node set and E ⊆ V × V
is the edge set. Let Ni denotes the neighbours of node vi.
Denote by A ∈ Rn×n the adjacency matrix, and by D
the diagonal matrix standing for the degree matrix such that
Dii =

∑n
j=1 Aij . Let Ã and D̃ be the corresponding matri-

ces with self-loops, i.e., Ã = A + I and D̃ = D + I, where
I is the identity matrix. Denote by X = {xi}ni=1 ∈ Rn×d the
initial node feature matrix, where d is the number of dimen-

sions, and by H(k) = {h(k)
i }ni=1 the representation matrix

in the k-th layer. We use Y = {yi}ni=1 ∈ Rn×C to denote
the ground-truth node label matrix, where C is the number of
classes and yi is the one-hot encoding of node vi’s label.

2.2 Simple Graph Convolution (SGC)
SGC [Wu et al., 2019] claims that the nonlinearity between
propagation in GCN (i.e., the ReLU activation function) is not
critical, whereas the majority of benefit arises from the prop-
agation itself. Therefore, SGC removes the nonlinear trans-
formation between propagation so that the class prediction Ŷ
of a K-layer SGC becomes

Ŷ = softmax
(
SKXW

)
, (1)

where S is a GNN filter, e.g., S = D̃− 1
2 ÃD̃− 1

2 is used in the
vanilla SGC, and W is the learned weight matrix. Removing
the nonlinearities, such a simplified linear model yields orders
of magnitude speedup over GCN while achieving comparable
empirical performance.

2.3 Heterophily Issue
Existing GNN models are usually based on the homophily
assumption that connected nodes are more likely to belong
to the same class. However, many real-world graphs are het-
erophilic. For example, the matching couples in dating net-
works are usually heterosexual. Empirical evidence shows
that when the homophily assumption is broken, GCN may be
even worse than simple Multi-Layer Perceptrons (MLPs) that
use merely node features as input [Chien et al., 2021]. There-
fore, it is essential to develop a general GNN model for both
homophilic and heterophilic graphs.

Pei et al. [2020] introduce a simple index to measure node
homophily/heterophily. That is, the homophily H(vi) of node
vi is the ratio of the number of vi’s neighbours who have the
same labels as vi to the number of vi’s neighbours, i.e.,

H(vi) =
|{vj | vj ∈ Ni,yj = yi}|

|Ni|
, (2)
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and the homophily in a graph is the average of all nodes, i.e.,

H(G) = 1

n

∑
vi∈V

H(vi). (3)

Similarly, the heterophily of node vi is measured by 1 −
H(vi), and the heterophily in a graph is 1−H(G).

3 Methodology
3.1 Overview
In this section, we present the Local Similarity Graph Neural
Network (LSGNN), consisting of a novel propagation method
named Initial Residual Difference Connection (IRDC) for
better fusion (Section 3.2), and a LocalSim-aware multi-hop
fusion (Section 3.4) and thus cope with both homophilic
and heterophilic graphs. We also demonstrate the motiva-
tion of using LocalSim as an effective indicator of homophily
(Section 3.3). Figure 1 shows the framework of LSGNN.

3.2 Initial Residual Difference Connection (IRDC)
Simply aggregating representation from the previous layer (as
applied by most GNNs) might lose important information and
consequently incur over-smoothing issues. To obtain more in-
formative intermediate representations, i.e., outputs of differ-
ent layers, we propose a novel propagation method, namely
Initial Residual Difference Connection (IRDC).

General Form. Inspired by SGC, we remove nonlinearity
between layers and formulate IRDC as follows:

H(1) = IRDC(1)(S,X) = SX,

H(k) = IRDC(k)(S,X) = S
(
(1− γ)X− γ

k−1∑
ℓ=1

H(ℓ)
)
,

(4)

for k = 2, . . . ,K . S is a GNN filter, and γ ∈ [0, 1] is a
hyperparameter. The term

∑k−1
ℓ=1 H(ℓ) in Equation (4) can be

seen as the total information extracted by the previous k − 1
layers. In this way, IRDC feeds the information that has never
been processed from the original input into the next layer,
thus can fully exploit all the information from the initial node
features. A normalization operation is conducted following
IRDC to handle the potential value scale issue. See Appendix
B for comparison between different residual connections.

Parameterization in Practice. Many GCNs use adjacency
matrix with self-loops as the low-pass GNN filter to extract
similar information from neighbours. However, the self-loops
added in GCNs may not always be helpful [Zhu et al., 2020b].
Instead, we use enhanced filters [Bo et al., 2021] of both low-
pass and high-pass (FL+FH = I) by adding weighted iden-
tity matrix I (i.e., weighted self-loops),

FL = βI+D− 1
2AD− 1

2 ,

FH = I−FL = (1− β) I−D− 1
2AD− 1

2 ,
(5)

where β ∈ [0, 1] is a hyperparameter. Intuitively, combining
low-pass and high-pass filters together can learn better repre-
sentations for both homophilic and heterophilic graphs. In a
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Figure 2: Positive relation between node homophily and LocalSim
on Cornell (left column) and Citeseer (right column) datasets. The
upper figures show the histogram of node homophily, while the
lower figures show the result for node homophily vs. LocalSim.

K-layer LSGNN, the output H(k)
L ,H

(k)
H ∈ Rn×d of the kth

low-pass and high-pass graph filter layer are

H
(k)
L = IRDC(k)(FL,X) and H

(k)
H = IRDC(k)(FH ,X),

where k = 1, 2, . . . ,K . Next, H(k)
L and H

(k)
H are transformed

into z dimensions by learnable W
(k)
L ,W

(k)
H ∈ Rd×z , i.e.,

H̃
(k)
L = σ

(
H

(k)
L W

(k)
L

)
and H̃

(k)
H = σ

(
H

(k)
H W

(k)
H

)
,

where σ is the ReLU function. To leverage the the initial node
features, we also obtain a transformation H̃I of X such that

H̃I = σ (XWI) ,

where WI ∈ Rd×z is a learned weight matrix. In what fol-
lows, H̃I , H̃

(k)
L , H̃

(k)
H ∈ Rn×z (k = 1, 2, . . . ,K) are deliv-

ered to the LocalSim-aware multi-hop fusion (Section 3.4) to
generate the final node representations.

3.3 LocalSim: An Indicator of Homophily
Based on the hypothesis that nodes with similar features are
likely to belong to the same class, we start out by defining a
simple version of Local Similarity (LocalSim) ϕi of node vi
to indicate its homophily, i.e.,

ϕi =
1

|Ni|
∑

vj∈Ni

dij =
1

|Ni|
∑

vj∈Ni

sim(xi,xj), (6)

where sim(·, ·) : (Rd,Rd) 7→ R is a similarity measure, e.g.,

sim(xi,xj) =

{
x⊤

i xj

∥xi∥∥xj∥ , Cosine similarity,
−∥xi − xj∥2, Euclidean similarity.

Figure 2 shows the relation between node homophily and Lo-
calSim (using Cosine similarity) on Cornell (left column) and
Citeseer (right column) datasets. From the upper figures, we
observe that the homophily/heterophily among nodes are dif-
ferent. In particular, Cornell is a heterophilic graph, while
Citeseer is a homophilic graph. Moreover, the lower figures
show a clear positive correlation between node homophily
and LocalSim, which indicates that LocalSim can be used to
represent node homophily appropriately.
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3.4 LocalSim-Aware Multi-Hop Fusion
In Section 3.3, we show that LocalSim, leveraging the local
topology information, can identify the homophily of nodes.
We apply LocalSim to learn the adaptive fusion of intermedi-
ate representations for each node.

The naive LocalSim in Equation (6) simply averages the
similarity between the ego-node and its neighbors. In what
follows, we refine the definition of LocalSim by incorporating
nonlinearity, i.e., d2ij . Specifically, the refined LocalSim φi of
node i is given by

φi =
1

|Ni|
∑

vj∈Ni

MLPls([dij , d
2
ij ]), (7)

where MLPls → R2 7→ R is a 2-layer perceptron. It is trivial
to see that incorporating d2ij via MLPls can encode the vari-
ance of series {dij}vj∈Ni

, since Var[dij ] = E[d2ij ]− E2[dij ]
with respect to vj ∈ Ni. As a consequence, φi can better
characterize the real “local similarity” than ϕi. To illustrate,
we compare φi and ϕi through a simple example. Suppose
that node v1 has two neighbours v2 and v3 such that d12 = 0
and d13 = 1, while node v4 has two neighbours v5 and v6
such that d45 = d46 = 0.5. Then, ϕ1 = ϕ4 = 0.5, which
cannot characterize the distinct neighbour distributions. On
the other hand, by introducing nonlinearity, we can easily dis-
tinguish φ1 and φ4. Finally, we have the LocalSim vector for
all nodes φ = [φ1, φ2, . . . , φn] ∈ Rn.

LocalSim can guide the intermediate representations fu-
sion, i.e., using φ as local topology information when learn-
ing weights for fusion. In addition, we also introduce nonlin-
earity by using φ and φ2 together to generate weights, i.e.,

[αI ,αL,αH ] = MLPα([φ,φ
2]), (8)

where αI ,αL,αH ∈ Rn×K are the weights for node rep-
resentation from each channel and MLPα : R2 7→ R3K is
a 2-layer perceptron. Then, the node representations for the
k-th layer is computed as follows:

Z(k) = α
(k)
I ⊙ H̃I +α

(k)
L ⊙ H̃

(k)
L +α

(k)
H ⊙ H̃

(k)
H , (9)

where Z(k) ∈ Rn×z and α
(k)
I ,α

(k)
L ,α

(k)
H ∈ Rn for k =

1, 2, . . . ,K , and α
(k)
I ⊙ H̃I is the i-th entry of α

(k)
I times

the i-th row of H̃I for i = 1, 2, . . . , n (so do α
(k)
L ⊙ H̃

(k)
L

and α
(k)
H ⊙ H̃

(k)
H ). Then, we obtain the final representation

as H̃I∥Z(1)∥Z(2)∥ · · · ∥Z(K), where ∥ is the concatenation
function. Finally, the class probability prediction matrix Ŷ ∈
Rn×C is computed by

Ŷ =
[
H̃I∥Z(1)∥Z(2)∥ · · · ∥Z(K)

]
Wout, (10)

where Wout ∈ R(K+1)z×C is a learned matrix.

4 Case Study of Toy Example
In this section, we conduct a case study using a simple syn-
thetic graph to demonstrate the superiority of our LocalSim-
based node-level weight.

4.1 Empirical Investigation
Inspired by the Featured Stochastic Block Model
(FSBM) [Chanpuriya and Musco, 2022], in the follow-
ing, we introduce FSBM with mixture of heterophily that
can generate a simple synthetic graph with different node
heterophily.

Definition 1 (FSBM with Mixture of Heterophily). A
Stochastic Block Model (SBM) graph G with mixture of
heterophily has n nodes partitioned into r communities
C1, C2, . . . , Cr and consisting of t subgraphs G1,G2, . . . ,Gt

where there is no edge between any two subgraphs, with
intra-community and inter-community edge probabilities pk
and qk in subgraph Gk. Let c1, c2, . . . , cr ∈ {0, 1}n be in-
dicator vectors for membership in each community, i.e., the
j-th entry of ci is 1 if the j-th node is in Ci and 0 other-
wise. An FSBM is such a graph model G, plus a feature
vector x = f + η ∈ Rn, where η ∼ N (0, σ2I) is zero-
centered, isotropic Gaussian noise and f =

∑
i µici for

some µ1, µ2, . . . , µr ∈ R, which are the expected feature val-
ues of each community.

According to Definition 1 and Equation (2), nodes in
the same subgraph have identical homophily in expecta-
tion, while nodes from different subgraphs have distinct ho-
mophily. We consider FSBMs with n = 1000, 2 equally-
sized communities C1 and C2, 2 equally-sized subgraphs G1

and G2, feature means µ1 = 1, µ2 = −1, and noise variance
σ = 1. We generate different graphs by varying λ1 = p1

p1+q1

and λ2 = p2

p2+q2
, where λ1, λ2 ∈ [0, 1] and high λτ means

high homophily, with the expected degree of all nodes to 10
(which means 1

4 (pτ + qτ )n = 10 for τ = 1, 2).
We employ graph-level weight and LocalSim-based node-

level weight to classify the nodes. For LocalSim-based node-
level weight, we use the proposed method in Section 3. For
graph-level weight, we replace α in Equation (8) with learn-
able graph-level value. For the similarity measure, we use
sim(x, y) = −(x − y)2, where x and y are scalar values.
Finally, considering the simplicity of the synthetic networks,
we use the simple LocalSim in Equation (6), and only use ad-
jacency matrix with self-loop Ã = A + I and set the layers
of IRDC to one.

As shown in Figure 3, our LocalSim-based node-level
weight consistently outperforms graph-level weight. In par-
ticular, when node homophily is significantly different among
subgraphs, the graph-level weight performs poorly, while our
approach still performs very well which can recognize the
node homophily well and adaptively provide suitable filters.

4.2 Theoretical Analysis
In addition to the empirical investigation, we theoretically
confirm the capabilities of LocalSim node-level weight. For
simplicity, we assume the number of inter-community and
intra-community edges for all the nodes is the same as their
expectation and without self-loop. Suppose that the optimal
graph-level weight can provide a global filter that achieves the
best average accuracy among all subgraphs (not the best in ev-
ery subgraph), while the optimal node-level weight can pro-
vide the optimal filter for each subgraph which can achieve
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Figure 3: Accuracy (higher is better) on the synthetic graphs using
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homophily is measured by λi. ‘Raw’ shows the result directly using
raw feature.

the best accuracy in every subgraph. However, to achieve
the optimal node-level weight, we need to estimate the node
homophily λ, and LocalSim is used for the aim. Next, we
investigate the effectiveness of using LocalSim to indicate λ.

Theorem 1 (Effectiveness of LocalSim Indicating λ). Con-
sider FSBMs with 2 equally-sized communities and 2 equally-
sized subgraphs, and assume that the number of inter-
community and intra-community edges for all the nodes is the
same as their expectation and without self-loop. Consider
that LocalSim is defined as ϕ(vi) = − 1

|Ni|
∑

vj∈Ni
(xi −

xj)
2. For any node vi that belongs to Gτ for τ = 1, 2, we have

E[ϕ(vi)] = −2σ2− (1−λτ )(µ1−µ2)
2, where λτ = pτ

pτ+qτ
.

Moreover, for any two nodes vi ∈ G1 and vj ∈ G2, the ex-
pectation of L1-norm distance between ϕ(vi) and ϕ(vj) is no
less than to |λ1 − λ2|(µ1 − µ2)

2.

We defer the proof to Appendix A. Theorem 1 states that
E[ϕ(vi)] linearly correlates to λτ when vi ∈ Gτ , which sug-
gests that LocalSim can represent the homophily λτ of node
vi unbiasedly. We can also get that the expectation of L1-
norm distance positively correlates to |λ1 − λ2|. This in-
dicates that our estimation is likely to perform better when
|λ1 − λ2| goes up. When the gap between λ1 and λ2 shrinks,
the two subgraphs become similar to each other, so does the
optimal filter for each community. These results confirm the
effectiveness of LocalSim indicating node homophily, which
yields high performance in our empirical investigation.

5 Additional Related Work
In this section, we discuss some related work that attempts
to address the heterophily issue. Mixhop [Abu-El-Haija et
al., 2019] proposes to extract features from multi-hop neigh-
borhoods to get more information. CPGNN [Zhu et al.,
2020a] modifies feature propagation based on node classes
in GCN to accommodate heterophily. Geom-GCN [Pei et
al., 2020] proposes to use the graph structure defined by ge-
ometric relationship to perform aggregation process to ad-

dress heterophily. FAGCN [Bo et al., 2021] proposes to use
the attention mechanism to learn the edge-level aggregation
weights of low-pass and high-pass filters to adaptively ad-
dress the heterophily issue, while we use LocalSim to pa-
rameterize the node-level weight which achieves less com-
putation complexity and better performance. H2GCN [Zhu et
al., 2020b] and GPRGNN [Chien et al., 2021] propose fus-
ing intermediate representation at graph-level based on their
analysis of graphs. ACM-GCN [Luan et al., 2022] divides
feature propagation into three channels: low-pass, high-pass,
and identity, and then adaptively mix the three channels dur-
ing propagation but does not fuse different intermediate rep-
resentations. Compared with H2GCN, GPRGNN, and ACM-
GCN, our work only needs propagation once which means
the propagation can be pre-computed, while their works are
trained via back-propagation through repeated feature propa-
gation which yields huge computation costs. ASGC [Chan-
puriya and Musco, 2022] directly uses the least square to filter
the features obtained by SGC [Chen et al., 2020] for classifi-
cation, while our work involves multiple intermediate infor-
mation, which is fused by node-level weight. These designs
yield better performance based on pre-propagated features.
Different from all these methods, our work uses LocalSim
to parameterize the node-level weight for better adaptive fu-
sion efficiently, and performs IRDC as an efficient propaga-
tion method for better informative representation, thus boost-
ing the performance while keeping high efficiency. More-
over, we show that our designed LocalSim-based node-level
weight can be used to improve the performance of H2GCN
and GPRGNN, which confirms the superiority of our method.

6 Experiment
6.1 Datasets and Setups
We evaluate LSGNN on nine small real-world benchmark
datasets including both homophilic and heterophilic graphs.
For homophilic graphs, we adopt three widely used citation
networks, Cora, Citeseer, and Pubmed [Sen et al., 2008;
Namata et al., 2012]. For heterophilic graphs, Chameleon
and Squirrel are page-page Wikipedia networks [Rozem-
berczki et al., 2021], Actor is a actor network [Pei et al.,
2020], and Cornell, Texas and Wisconsin are web pages net-
works [Pei et al., 2020]. Statistics of these datasets can be
seen in Appendix D.

For all datasets, we use the feature matrix, class labels,
and 10 random splits (48%/32%/20%) provided by Pei et
al. [2020]. Meanwhile, we use Optuna to tune the hyper-
parameter 200 times in experiments. For LSGNN, we set the
number of layer K = 5.

There are three types of baseline methods, including non-
graph models (MLP), traditional GNNs (GCN, GAT [Velick-
ovic et al., 2017], etc.), and GNNs tolerating heterophily
(Geom-GCN, GPRGNN, etc.).

6.2 Evaluations on Real Benchmark Datasets
As shown in Table 1, LSGNN outperforms most of the base-
line methods. On homophilic graphs, LSGNN achieves the
SOTA performance on the Cora and Pubmed datasets and
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Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin Avg
2MLP 74.75 72.41 86.65 46.36 29.68 35.76 81.08 81.89 85.29 65.99
2GCN 87.28 76.68 87.38 59.82 36.89 30.26 57.03 59.46 59.80 61.62
2GAT 82.68 75.46 84.68 54.69 30.62 26.28 58.92 58.38 55.29 58.56
2MixHop 87.61 76.26 85.31 60.50 43.80 32.22 73.51 77.84 75.88 68.10
3GCNII 88.37 77.33 90.15 63.86 38.47 37.44 77.86 77.57 80.39 70.16
1Geom-GCN 85.27 77.99 90.05 60.90 38.14 31.63 60.81 67.57 64.12 64.05
1H2GCN 87.81 77.07 89.59 59.39 37.90 35.86 82.16 84.86 86.67 71.26
1WRGNN 88.20 76.81 88.52 65.24 48.85 36.53 81.62 83.62 86.98 72.93
3GPRGNN 87.95 77.13 87.54 46.58 31.61 34.63 80.27 78.38 82.94 67.45
3LINKX 84.64 73.19 87.86 68.42 61.81 36.10 77.84 74.60 75.49 71.11
3ACM-GCN 87.91 77.32 90.00 66.93 54.40 36.28 85.14 87.84 88.43 74.92
3GGCN 87.95 77.14 89.15 71.14 55.17 37.54 85.68 84.86 86.86 75.05
1GloGNN 88.33 77.41 89.62 71.21 57.88 37.70 85.95 84.32 88.04 75.61

LSGNN 88.49 76.71 90.23 79.04 72.81 36.18 88.92 90.27 90.20 79.21

Table 1: Results on real-world benchmark datasets: Mean accuracy (%). Boldface and underline numbers mark the top-1 and top-2 results,
respectively. 1 denotes results from their respective papers, 2 from the H2GCN paper, and 3 from the GloGNN paper.

H(G) GCN SGC GCNII LINKX GloGNN LSGNN
arXiv-year 0.22 46.02 32.83 47.21 56.00 54.79 56.42
ogbn-arXiv 0.66 71.74 69.39 72.74 54.45∗ 49.22∗ 72.64

Avg NA 58.88 51.11 59.98 55.23 52.01 64.53

Table 2: Average accuracy (%) over 5 runs on large datasets. The
field marked ∗ denotes our implementation.

is lower than the best result by only 1.28% on the Cite-
seer dataset. On heterophilic graphs except Actor, LSGNN
significantly outperforms all the other baseline models by
1.77%–11.00%. Specifically, the accuracy of LSGNN is
7.83% and 2.97% higher than GloGNN, the existing SOTA
method on heterophilic graphs, on Chameleon and Cornell,
is 11.00% higher than LINKX [Lim et al., 2021] on Squirrel,
and is 2.43% and 1.77% higher than ACM-GCN on Texas
and Wisconsin. In particular, LSGNN achieves the best av-
erage accuracy, higher than the second-best by 3.60%. This
demonstrates that LSGNN can achieve comparable or supe-
rior SOTA performance on both homophilic and heterophilic
graphs.

6.3 Evaluations on Large Benchmark Datasets
We also conduct experiments on two large datasets: ogbn-
arXiv (homophilic) and arXiv-year (heterophilic), both with
170k nodes and 1M edges but different labels, following set-
tings in [Hu et al., 2020] and [Lim et al., 2021], see Ap-
pendix D for setting details. Table 2 shows that our method
has competitive performance on both homophilic and het-
erophilic larger graphs.

6.4 Training Cost Comparison
LSGNN only needs to propagate once during training, and
the networks for node-level weight are small. Thus the effi-
ciency of LSGNN can be close to SGC’s. As shown in Fig-
ure 4(a), on the average training time over nine datasets, our
proposed method is only slower than SGC, a simple and ef-
fective model, and is nearly 2× faster than GCN and GAT.
This confirms the high training efficiency of LSGNN. See
Appendix C for more setting details and detailed comparisons
of training costs on each dataset.
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Figure 4: Comparison of the average Training Cost Time (s) on nine
real-world datasets (Left). Average results with various model depth
on nine real-world datasets (Right).

6.5 Alleviate Over-Smoothing Issue
To validate whether LSGNN can alleviate the over-smoothing
issue, we compare the performance between vanilla GCN and
LSGNN under different layers of propagation (Figure 4(b)),
see Appendix E for full results. It can be seen that GCN
achieves the best performance at 2 layers, and its perfor-
mance decreases rapidly as layers increase. In contrast, the
results of LSGNN keep stable and high. The reasons are
two-fold: (i) our IRDC can extract better informative repre-
sentations, and (ii) our LocalSim-based fusion can adaptively
remain and drop distinguishable and indistinguishable repre-
sentations, respectively. Through these two designs, LSGNN
can perform well as layers increase, which indicates the ca-
pability of LSGNN to prevent the over-smoothing issue.

6.6 LocalSim-based Node-level Weight as a
Plug-and-Play Module

LocalSim-based node-level weight (Section 3.4) can be re-
garded as a plug-and-play module, which can be added to
existing GNNs that also fuse intermediate representations
without involving extra hyperparameters, such as H2GCN,
GPRGNN, and DAGNN.

H2GCN and GPRGNN use learned graph-level weight to
fuse the intermediate representations, which is only replaced
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Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin Avg
H2GCN 87.81 77.07 89.59 59.39 37.90 35.86 82.16 84.86 86.67 71.26
w/ LocalSim 88.42 76.77 89.91 64.91 41.73 36.29 85.68 85.68 88.82 73.13
GPRGNN 87.95 77.13 87.54 46.58 31.61 34.63 80.27 78.38 82.94 67.45
w/ LocalSim 88.83 76.60 90.26 65.39 51.96 35.59 85.14 87.84 87.65 74.36
DAGNN 82.63 75.47 88.50 58.03 39.59 30.20 61.89 58.92 55.10 61.15
w/ LocalSim 84.12 75.29 89.97 61.10 44.91 34.13 79.73 77.03 85.29 70.17

Table 3: LocalSim-based node-level weight as a plug-and-play module added to other models. w/ LocalSim denotes the LocalSim-based
node-level weight is used, replacing the graph-level weight used in H2GCN and GPRGNN, and replacing the random node-level weight
(learned without any local topology information) in DAGNN. The best results are in boldface.

Components Dataset
Rand LocalSim w-self-loop IRDC Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Texas Wisconsin Avg

Baseline 86.33 74.53 89.99 67.28 47.73 35.27 86.47 88.92 88.04 73.84
✓ 87.93 75.32 90.08 67.72 48.99 35.65 78.38 88.51 88.43 73.45

✓ 87.62 76.60 90.20 69.96 49.95 35.80 87.57 88.92 89.80 75.16
✓ ✓ 87.65 76.89 89.98 75.95 65.50 35.80 87.84 88.11 89.80 77.50

LSGNN ✓ ✓ ✓ 88.49 76.71 90.23 79.04 72.81 36.18 88.92 90.27 90.20 79.21

Table 4: Ablation study on 9 real-world benchmark datasets. Cells with ✓mean that the corresponding components are applied to the baseline
model. Boldface and underlined mark the top-1 and top-2 results. ‘Rand’ denotes random node-level weight (i.e., learned without any local
topology information). ‘LocalSim’ means that the added node-level weight is learned under the guidance of LocalSim. ‘w-self-loop’ denotes
weighted self-loops. ‘IRDC’ stands for the propagation via IRDC.

by LocalSim-based node-level weight here. Note that we
only add LocalSim-based node-level weight into H2GCN and
GPRGNN, but not the enhanced filters or the high-pass filters.
As shown in Table 3, the performance of both H2GCN and
GPRGNN increases significantly, indicating that taking each
node’s local topology into consideration when fusing inter-
mediate representations is more reasonable and effective than
merely considering graph-level structure.

DAGNN also fuse intermediate representations by node-
level weight, which however is simply mapped from each
node’s representation and is learned without involving any
local topology information, leading to a suboptimal result.
We use LocalSim-based node-level weight in DAGNN sim-
ilarly. The drmatic improving in Table 3 suggests that us-
ing LocalSim as local topology information can ensure the
weight being learned more effectively. Although DAGNN is
not designed for heterophilic graphs, it can also perform well
on heterophilic graphs after using LocalSim-based node-level
weight, and is even superior to H2GCN on Squirrel.

6.7 Ablation Study
In what follows, we investigate the effectiveness of
LocalSim-based node-level weight, weighted self-loops, and
IRDC. Specifically, in the baseline model, we use graph-level
weight learned without any local topology information to fuse
the intermediate representations, add self-loops when con-
ducting graph filtering, and apply the propagation method
used in GCNs. Then, the above components are added one
by one to the baseline model for performance comparison.
As shown in Table 4, all the components are effective and
can bring great benefits to the model in terms of performance
improvement.

Note that learning node-level weight without any local
topology information (‘Rand’) might even bring negative ef-
fect on the model (lower than baseline by 0.39% on average).

Once LocalSim is used as local topology information, the
model can easily learn an optimal node-level weight (75.16%
on average, higher than the baseline by 1.32%), which indi-
cates the superiority of LocalSim-Aware Multi-Hop Fusion.

When replacing the fixed self-loops with weighted self-
loops, the performance increases significantly (by 2.34% to
77.50% on average), especially on heterophilic graphs, such
as Chameleon and Squirrel. This is because self-loops might
not always be helpful on heterophilic graphs.

IRDC also brings a significant improvement (by an in-
crease of 1.71% to 79.21% on average). This suggests that
such a propagation method can extract more informative rep-
resentation for better performance.

7 Conclusion
In this paper, LSGNN is proposed for better performance
on both homophilic and heterophilic graphs. Many GNNs
use graph-level weight to fuse intermediate representations,
which does not fully consider the local structure of different
nodes. Some GNNs use node-level weight learned without
involving topology information, yielding suboptimal results.
Our empirical study and theoretical analysis on synthetic
graphs demonstrate the importance of node-level weight con-
sidering the local topology information of nodes. The pro-
posed LocalSim-aware multi-hop fusion uses local similarity
as guidance to generate a more appropriate node-level weight
for intermediate representations fusion, and it can also be
used as a plug-and-play module to improve the performance
of existing GNNs. For better fusion, IRDC is proposed to
extract more informative intermediate representations boost-
ing the performance. Evaluations over real-world benchmark
datasets show the superiority of LSGNN in handling both ho-
mophilic and heterophilic graphs and the effectiveness of all
the proposed components.
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