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Abstract
We study the problem of learning hierarchical
causal structure among latent variables from mea-
sured variables. While some existing methods
are able to recover the latent hierarchical causal
structure, they mostly suffer from restricted as-
sumptions, including the tree-structured graph con-
straint, no “triangle” structure, and non-Gaussian
assumptions. In this paper, we relax these restric-
tions above and consider a more general and chal-
lenging scenario where the beyond tree-structured
graph, the “triangle” structure, and the arbitrary
noise distribution are allowed. We investigate the
identifiability of the latent hierarchical causal struc-
ture and show that by using second-order statistics,
the latent hierarchical structure can be identified up
to the Markov equivalence classes over latent vari-
ables. Moreover, some directions in the Markov
equivalence classes of latent variables can be fur-
ther identified using partially non-Gaussian data.
Based on the theoretical results above, we design
an effective algorithm for learning the latent hier-
archical causal structure. The experimental results
on synthetic data verify the effectiveness of the pro-
posed method.

1 Introduction
In the traditional causal discovery task, researchers focus
on discovering the causal relationships between the mea-
sured (observed) variables [Pearl, 2009; Spirtes et al., 2000;
Peters et al., 2017]. There have been a number of attempts
to address this issue [Spirtes and Glymour, 1991; Chicker-
ing, 2002; Shimizu et al., 2006; Hoyer et al., 2009; Zhang
and Hyvärinen, 2009; Spirtes et al., 1995; Zhang, 2008;
Colombo et al., 2012] (also see [Spirtes and Zhang, 2016;
Kitson et al., 2021]). However, in some empirical studies,
scientists are interested in inferring causal relationships be-
tween latent (hidden) variables that they cannot directly mea-
sure, e.g., the relationship between industrialization and po-
litical democracy [Bollen, 1989; Bartholomew et al., 2008].

∗Corresponding author.

Thus, it is necessary to develop statistical methods for learn-
ing the causal relationships between latent variables.

By the measured variables that are influenced by the latent
variables, much effort has been made to recover causal struc-
ture among latent variables, such as Tetrad constraint-based
methods [Silva et al., 2006; Kummerfeld et al., 2014; Kum-
merfeld and Ramsey, 2016; Xie et al., 2023], non-Gaussianity
based-approaches [Shimizu et al., 2009; Cai et al., 2019;
Xie et al., 2020; Zeng et al., 2021; Adams et al., 2021; Chen
et al., 2022], expansion property-based method [Anandkumar
et al., 2013], copula model-based method [Cui et al., 2018],
and mixture oracle-based method [Kivva et al., 2021]. How-
ever, these methods assume that each latent variable has some
certain measured variables as children and fail to work when
latent variables have no measured variables.

There exist several works in the literature that tried to re-
cover the latent hierarchical causal structure (i.e., the children
of some latent variables may still be latent variables). One
classical framework for inferring latent hierarchical struc-
ture is the latent tree model [Pearl, 1988a; Zhang, 2004].
Many contributions along this line include [Poon et al., 2010;
Choi et al., 2011a; Mourad et al., 2013; Drton et al., 2017;
Zhou et al., 2020]. However, these methods assume that the
underlying structure is a tree-structured graph (there is only
one path between every pair of variables in the graph). In real-
world scenarios, they may not be tree-structured graphs. Re-
cently, [Xie et al., 2022] relaxed the tree-structured assump-
tion and provided a sufficient graphical condition for identify-
ing the latent hierarchical causal structure in the Linear Non-
Gaussian Latent Hierarchical Model (LiNGLaM). They pro-
posed a principled method to learn the latent causal structure
by using the non-Gaussianity of noise variables. However,
this method is inapplicable to partially Gaussian data. More
recently, [Huang et al., 2022] relax the non-Gaussianity as-
sumption and provided a new sufficient condition for recov-
ering the structure in the linear latent hierarchical structure.
They proposed a rank-deficiency constraint-based method to
search the latent hierarchical structure. Though the proposed
method does not restrict the non-Gaussinaity assumption, it
assumes that there is no “triangle” structure, i.e., the child of
the latent variable must be pure (without other parents), and
cannot distinguish between Markov equivalent models over
latent variables. Moreover, if the data is partially Gaussian,
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e.g., the setting described in Fig. 1, the above two methods
will give incorrect or uninformative answers.

L1

L2 L3

X16X17 L4 L5 L6 L7 L8 X18 X19

X1X2X3 X4X5X6X7X8X9X10X11X12 X13X14X15

Figure 1: A hierarchical causal structure involving 8 latent variables
(shaded nodes) and 19 observed variables (unshaded nodes), where
the red edge represents a triangle structure and the blue ellipses rep-
resent a structure that may cause the problem of previously intro-
ducing latent variables (discuss in Section 3.1.2). Moreover, the
rectangles represent node with non-Gaussian noise, while the cir-
cles represent the nodes with Gaussian noise.

We seek to find out new general identifiability conditions
of linear latent hierarchical causal structure in the case where
the structure is not limited to a tree-structured graph without
“triangle”, and moreover, the data can be partially Gaussian.
Meanwhile, we develop an efficient algorithm with theoret-
ical guarantees to answer the following questions. (1) How
can we locate the latent variables and recover the causal skele-
ton between them only from measured variables? (2) How
can we infer the causal direction among latent variables by
capturing the partially non-Gaussianity? Interestingly, these
questions can be well addressed under appropriate conditions,
by combining the Tetrad conditions and Generalized Indepen-
dent Noise (GIN) conditions in specific ways.

Our contributions are summarised as follows:
• We develop new sufficient identifiability conditions that

relax the existing assumptions, e.g., no “triangle” struc-
ture, and non-Gaussian assumption.

• We design an algorithm that can efficiently locate latent
variables and identify the latent hierarchical structure up
to a Markov equivalent class by leveraging Tetrad con-
straints, and meanwhile, can infer the causal direction in
the causal skeleton by testing GIN conditions.

• We theoretically show that the proposed algorithm can
find the correct hierarchical structure asymptotically un-
der mild conditions.

2 Problem Statement
2.1 Linear Latent Hierarchical Model
In this paper, we focus on a linear latent hierarchical causal
model with graph G, where both measured (observed) vari-
ables XG and latent variable LG are generated by their latent
parents in a directed acyclic graph (DAG) with the following
linear structural equation models:

Xi = ∑
Lj∈Pa(Xi)

βijLj + εXi
, Lj = ∑

Lk∈Pa(Lj)
αjkLk + εLj

,

(1)
where βij and αjk represent the causal strength from Lj to
Xi and from Lk to Lj , respectively, and εXi

and εLj
are

noise terms that are independent of each other. Without loss
of generality, we assume that all variables in XG and LG
have zero mean. Furthermore, Let VG denote all variables
in a graph G, V, X and L be a set of variables, set of mea-
sured variable and a set of latent variables, respectively. We
use Pa(Vi) = {Vj∣Vj → Vi}, Ch(Vi) = {Vj∣Vi → Vj},
Anc(Vi) = {Vj∣Vj ↝ Vi}, Des(Vi) = {Vj∣Vi ↝ Vj} to
denote the set of parents, children, ancestors, descendants of
Vi, respectively.
Definition 1 (Linear Latent Hierarchical Model (LHM)). A
graphical model, with its graph G = (VG ,EG), is a linear
latent hierarchical model if:

1. VG = XG ∪ LG , where XG is the set of measured vari-
ables and LG is the set of latent variables,

2. there is at least one undirected path between every pair
of variables, and

3. each variable in XG and LG are generated by the struc-
tural equation models in Eq. 1.

Goal. In this paper, we aim to establish new general sufficient
conditions of the latent hierarchical causal structure and also
design an efficient algorithm for learning the latent hierarchi-
cal causal structure only from measured variables XG .

2.2 General Identifiability Conditions for LHM
It is worth noting that, without further assumptions, there is
no hope to locate latent variables in an LHM. Recent evidence
suggests that under certain assumptions, e.g., tree-structured
graph assumption [Pearl, 1988b; Zhang, 2004; Choi et al.,
2011b], no “triangle” structure assumption [Huang et al.,
2022], or non-Gaussian model assumption [Xie et al., 2022],
the latent hierarchical structure is identifiable. However, these
assumptions are restrictive and may not hold in practice, e.g.,
for the example given in Figure 1. Below, we describe suffi-
cient general conditions under which the LHM becomes iden-
tifiable. Specifically, the task of identifiability of LHM can be
divided into two sub-problem: identifiability of causal skele-
ton under Irreducible condition, and identifiability of causal
direction under Distribution condition, as shown in Fig. 2.

Identifiability of LHM

Identifiability of
Causal Skeleton

Irreducible Condition

Identifiability of
Causal Direction

Distribution Condition

Figure 2: Identifiability of the Linear Latent hierarchical Structure.

Before giving the details of these two identifiability condi-
tions, we first introduce a concept, Children sets, which will
be used in the identifiability condition.
Definition 2 (Children Set). A variable set, denote by Vchild,
is a children set of latent variable L in a graph G if Vchild ⊂

Ch(L).
We now give the condition for structural identifiability

from measured variable XG .
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Condition 1 (Irreducible Condition). The irreducible condi-
tion of linear latent hierarchical structure G satisfies:

(1). for each latent variable Lp ∈ LG , there exists a chil-
dren set Vchild of Lp with its partition Vchild = V1 ∪
V2 ∪V3 with ∣Vi∣ ≥ 1, such that (a) ∀Lq ∈ LG , Lq /∈
Des(Vchild), Vchild ⫫ {Lq} ∪ Des(Lq)∣Lp and (b)
V1 ⫫ V2 ⫫ V3∣Lp,

(2). there exists a neighbour set B to L s.t. B ∩Vchild = ∅
and Dim(B) ≥ 1.

The key difference to existing researchers introducing the
similar “irreducible condition”, such as [Huang et al., 2022],
is that we relax this assumption and allow the triangle struc-
ture (i.e., children of a latent variable may not be entirely
pure). Fig. 1 shows a simple example that satisfies the
proposed irreducible condition 1 whereas violates the “irre-
ducible condition” given in [Huang et al., 2022] (the reason
is that the children of L1, i.e., {L2, L5, L6, L7, L3}, are not
fully pure due to the edge L2 → L5.).

The irreducible condition only ensures structural identifi-
ability up to a Markov equivalent class, i.e., there are some
edges that are undirected (see the Theorem 2). To fur-
ther identify the causal direction of the undirected edge in
the Markov equivalent class, the non-Gaussinaity of noise
terms has been shown to be needed [Shimizu et al., 2006;
Cai et al., 2019]. However, those works need to assume that
all noise terms are non-Gaussian distributions. Interestingly,
we found that the non-Gaussianity assumption can be relaxed
to only a (hopefully small) subset of variables that are non-
Gaussian (see the Theorem 3). We refer to the Distribution
condition in Condition 2.
Condition 2 (Distribution Condition). For each pair of adja-
cent latent variables Li, Lj in the causal skeleton G ′, (1) at
least one of latent variables Li, Lj has non-Gaussian noise or
(2) there exists a latent variable Lk ∈ {Anc(Li)∪Anc(Lj)}
that has non-Gaussian component ε such that ε is not condi-
tional independent from {Li, Lj} given the confounder set
S = {Pa(Li) ∩ Pa(Lj)}, i.e., ε /⫫ (Li, Lj)∣S.

Compared to existing work introducing the non-
Gaussianity assumption, such as [Xie et al., 2022], Condition
2 allows for identifying the causal direction in the more
general non-Gaussian setting. For example, as shown in
Fig. 1, the triangle structure among L1, L2, and L5 are
identifiable even if there is only L2 has non-Gaussian noise.

3 Algorithm for Estimating LHM
In this section, we propose a two-step efficient algorithm (Al-
gorithm 1) to discover the structure of the linear latent hierar-
chical structure from measured variables. The algorithm cov-
ers two aspects of the identifiability problem that are shown
in Fig. 2. Specifically, it first discovers the causal skeleton
of LHM up to a Markov equivalent class in a recursive man-
ner (Step I), and then infers the causal direction among the

1For the latent variable L1, (1) there is a children set Vchild =

{L2, L5, L6, L7} with its partition {L2, L5}, {L6} and {L7}, and
(2) there exist a neighbor set B = {L3} satisfies the above two con-
ditions.

latent variable in the Markov equivalent class (Step II). The
complete procedure is summarized in Algorithm 1.

Algorithm 1 Causal Discovery in LHM
Input: Data from a set of measured variables XG
Output: Partial causal structure G1

1: Initialize the active variable set A ≔ XG , and G ′
= ∅;

2: // Step I: Identify Causal Skeleton
3: Begin the recursive procedure
4: C = FindCausalClusters(A); // Step 1.1
5: L,G ′ = IntroduceLatentVariables(C,G ′); // Step 1.2
6: A, G ′ = UpdateCausalSkeleton(L, G ′); // Step 1.3
7: End the recursive procedure Until no causal cluster is

found or new latent variable is introduced
8: // Step II: Identify Causal Direction
9: G = OrientEdges(XG , G ′);

10: return Graph G.

Below, we provide the technical details of the two steps.

3.1 Step I: Identify Causal Skeleton
We adopt a recursive procedure to identify the causal skele-
ton (Step 1.1 ∼ Step 1.3). More specifically, in Step 1.1, the
causal cluster will be learned from the active variable set. In
Step 1.2, according to the learned causal cluster, the new la-
tent variable set will be introduced without redundancy. In
Step 1.3, the causal skeleton is reconstructed from the output
of the previous phase, and the active variable is updated such
that the new causal cluster can be learned in the next iteration.
By repeating the above phases until no new causal cluster is
learned or no new latent variable is introduced, the skeleton
will be recovered (Line 3 ∼ 7 in Algorithm 1).

Before giving the details of Step I, we first give a theorem
that relates the latent hierarchical structure to the Tetrad con-
straints over measured variables.
Theorem 1 (Graphical Implication of Tetrad Constraint in
LHM). Suppose G satisfies a linear latent hierarchical model
and the irreducible condition holds. Then two measured vari-
ables set XA and XB in G (with Dim(XA), Dim(XB) ≥

2) is d-separated by a latent variable in G if and only
if ∀Xi, Xj ∈ XA, ∀Xk, Xs ∈ XB , {Xi, Xj} and
{Xk, Xs} follows Tetrad Constraints, i.e., σXiXk

σXjXs
=

σXiXs
σXjXk

, where σViVj
is the co-variance between Vi and

Vj and it is not equal to zero.
Example 1. Consider the structure in Fig. 1. Let X =

{X7, X8, X9}. We can verify that ∀Xi, Xj ∈ X, ∀Xk, Xs ∈

XG\X, where XG = {X1, ..., X19}, {Xi, Xj} and {Xk, Xs}
follows Tetrad Constraints. This is because L1 d-separates X
from XG \X.

The classical Tetrad constraint [Spearman, 1928; Shafera
et al., 1993] has been used in the past to investigate linear la-
tent variable models under pure measurement model assump-
tion [Silva et al., 2006; Kummerfeld and Ramsey, 2016]. The
current study extends the application scenario and utilizes
Tetrad constraints to analyze the causal structure of the lin-
ear latent hierarchical model under some general conditions
(beyond the pure measurement model).
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Step 1.1: Find Causal Clusters
Step I begins with examining the existence of latent variables
by identifying the causal clusters in the active variable set 2.
We denote the active variable set as A, which is set to XG
initially. Next, we give the definition of the causal cluster and
provide a method to identify the causal cluster from the active
variable set (Proposition 1).

Definition 3 (Causal Cluster & Minimal Causal Cluster). Let
A be the active variable set that is under investigation. We
say a set C ⊂ A is a causal cluster if there exists a latent
variable L such that L d-separates C from A\C. Further-
more, we say C is a minimal causal cluster if no proper subset
C̃ ⊂ C (with Dim(C̃) ≥ 2) is a causal cluster.

It is worth noting that for a minimal causal cluster C, if C
is a pure child set of a latent variable L, then the dimension
of C is two and ∀Vi, Vj ∈ C, Vi ⫫ Vj∣L. To distinguish
the property of the causal clusters, we give a brief definition
of the pure (impure) causal cluster, which will be used in the
next phase. Generally, we use the pure (impure) causal clus-
ter to refer to any pair variable of C that is (not) d-separated
by a latent variable L, i.e., C is a pure causal cluster if there
exists a latent variable L such that ∀Vi, Vj ∈ C, Vi ⫫ Vj∣L.
For example, consider the structure in Fig. 1. Suppose the ac-
tive variable set A = {L2, L5, L6, L7, L8}. C1 = {L6, L7} is
a pure causal cluster while C2 = {L2, L5} is a impure causal
cluster.

We next show that the minimal causal cluster, fortunately,
will help us to find the existence of the latent variables, which
can be identified by appropriately testing for the Tetrad con-
straint, as formally stated in the following proposition.

Proposition 1 (Identify Minimal Causal Cluster). Let A be
the active variable set and C be a proper subset of A. Then
C is a minimal causal cluster if and only if the following two
conditions hold 1) ∀Vi, Vj ∈ C, ∀Vk, Vs ∈ A \C, {Vi, Vj}
and {Vk, Vs} follows Tetrad Constraints, and 2) no proper
subset of C satisfies condition 1).

According to Proposition 1, given an active variable set,
one may identify all minimal causal clusters in the current ac-
tive variable set. The detailed search procedure of Step 1.1 is
given in Algorithm 2 (named FindCausalClusters). Specif-
ically, given an active variable set A, we first identify the
causal cluster with size CLen = 2 based on Proposition 1 from
all possible combinations. Then we increase the size of find-
ing causal cluster Ci until no causal cluster of the active vari-
able set is found. An illustrative example is given below.

Example 2. Consider the causal structure in Fig. 1. Sup-
pose active variable set A = {X1, ..., X19}. Let the size of
causal cluster CLen = 2, one can find seventeen clusters, i.e.,
{X1, X2}, {X1, X3}, {X2, X3} ..., {X18, X19} .

Step 1.2: Introduce Latent Variables
By Algorithm 2 (FindCausalClusters), we already find all
minimal causal clusters in active set A. This will tell us that
there exist latent variables for those minimal causal clusters.
However, if we directly introduce the latent variable for the

2We say a set is active if selected in the current iteration.

Algorithm 2 FindCausalClusters
Input: A set of active variables A
Output: Causal Cluster set C

1: Let C = ∅ be a causal cluster set, and B is a copy of
active variable set A;

2: Initialize the finding causal size CLen = 2;
3: for ∣B∣ ≥ CLen + 2 do
4: for draw a set of test variables Ci ⊂ B with ∣Ci∣ =

CLen do
5: // Identify causal cluster by Proposition 1:
6: if IdentifyMinimalCausalCluster(Ci, A) then
7: C ← Ci;
8: B = B \Ci;
9: end if

10: end for
11: CLen = CLen +1;
12: end for
13: C ← A if ∣C∣ = 0;
14: return Causal Cluster set C.

learned cluster, some of the latent variables may be redun-
dant because there are some clusters that share a common la-
tent variable, or even the latent variable of the learned cluster
is introduced in the previous iteration. To ensure the intro-
duced latent variable is irredundant, there are two issues that
we need to address.

• (Merging causal clusters): which causal clusters share a
common latent variable, and

• (Identifying previously introduced latent variables):
whether the latent variable of the learned cluster is in-
troduced previously.

First issue: merging causal clusters. We now discuss the
first issue. To consider all merging case that two causal clus-
ter shares a common latent variable, we first provide a method
(Proposition 2) to identify the pure (impure) causal cluster we
learned, which will help us to address the different cases of
merging cluster.

Proposition 2 (Identifying Pure (Impure) Cluster). Given
a graph G and the active varaible set A. Suppose the ir-
reducible condition holds. A minila causal cluster C =

{Vi, Vj} is a pure causal cluster in G if ∃Vk, Vs ∈ A \ C
such that {Vi, Vk} and {Vj , Vs} follows the tetrad constraint,
otherwise C is an impure causal cluster.

By applying Proposition 2, the learned cluster set can be
classified into the pure or impure cluster set. Based on such
results, we now provide the conditions under which the clus-
ters of variables share a common latent variable and should
be merged.

Proposition 3 (Merge Cluster). Let A be the active variable
set and C1 and C2 be two causal clusters. Then C1 and C2

share a common latent variable if one of the following rules
hold.

• Rule 1. Both C1 and C2 are pure causal cluster, for
∀Vi, Vj ∈ C1 and ∀Vk, Vs ∈ C2, {Vi, Vk} and
{Vj , Vs} follows the Tetrad Constraint.
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• Rule 2. One of the clusters is a pure cluster and the other
is not, e.g., C1 is a pure causal cluster and C2 is an im-
pure causal cluster, ∀Vi, Vj ∈ C1 and ∀Vk ∈ C2 such
that {Vi, Vk} and {Vj , Vs} follows Tetrad Constraint for
all Vs ∈ A \ {Vi, Vj} ∪C2

• Rule 3.C1 and C2 both are impure clusters, ∀Vi ∈ C1

and ∀Vj ∈ C2 such that {Vi, Vj} and {Vk, Vs} follows
Tetrad Constraints for all Vk, Vs ∈ A \C1 ∪C2

We give an example to illustrate Rule 2 of Proposition 3
using the graph in Fig. 1.
Example 3. Suppose the current active variable set is A =

{L2, L5, L6, L7, L3}. By applying Algorithm 2 (FindCausal-
Clusters) to A, one may learn four causal clusters : {L2, L5},
{L6, L7}, {L6, L3} and {L3, L7}. According to Rule 2 of
Proposition 3, the impure causal cluster {L2, L5} (that is
identified by Proposition 2) should be merged into {L6, L7}
because they share a common latent variable L1.

Proposition 3 shows that two causal clusters that share a
common latent variable can be identified by testing the proper
Tetrad constraint. Thus, by checking these rules among the
learning causal cluster and merging these clusters that shares
a common latent variable into one causal cluster, the first is-
sue is solved.
Second issue: identifying previously introduced latent
variables. Next, we consider the second issue that the la-
tent variable of the learned cluster may be introduced in the
previous iteration. An example of this issue is shown in Fig.
1. For the left structure with blue ellipses, one may see that
the latent variable L2 and L4 are introduced for the learned
causal cluster {X1, X2, X3} and {X16, X17} in the same it-
eration. In the next iteration, a redundant latent variable L

′
2

would be introduced for the learned causal cluster {L2, L4}.
Interestingly, by checking the merge rule among {X16, X17}
and {L4}, one may find that {L4} and {X16, X17} share a
common latent variable, which can reject introducing redun-
dant L′

2 and merge {L4} into {X16, X17} as the causal cluster
of L2. To formalize the solution of the identifying redundant
latent variables problem, we present Proposition 4 as follows.
Proposition 4 (Identify Previously Introducing Latent Vari-
ables). Let L1 be a latent variable that was introduced in
previous iterations, C2 ⊂ A be a learned cluster, where A be
the active variable set in the current iteration. Suppose clus-
ter C1 was a causal cluster of L1 that is found in previous
iterations. Let A′

= A∪C1\L1 be a new active variable set,
then C1 and C2 share the common latent parent L1 if one of
the following rules holds.

• Rule 4. If L1 ∈ C2 and C
′
2 = C2 \ {L1}, Dim(C2) =

1, then ∀Vi, Vj ∈ C1 and Vk ∈ C
′
2, {Vi, Vk} and

{Vj , Vs} follows Tetrad constraint for all Vs ∈ A′\C1∪
C2. Otherwise, for Dim(C2) ≥ 2, one of the three rules
in Proposition 3 between C

′
2 and C1 holds.

• Rule 5. If L1 /∈ C2, one of the three rules in Proposition
3 holds.

Based on Proposition 4, the second problem can be solved.
By combining the solution to two problems, the latent vari-

able can be learned correctly and irredundantly. The com-
plete procedure of introducing latent variables for the current
active variable set is summarized in Algorithm 3.

Algorithm 3 IntroduceLatentVariables

Input: Causal cluster set C and causal skeleton G ′

Output: Latent set L and graph G ′

1: Initialize G ′′
= G ′, L = ∅;

2: C ←Merge clusters from C according to Proposition 2
and Rules 1 ∼ 3 of Proposition 3;

3: for each Ci ∈ C do
4: // Identifying previously introducd latent variables;
5: if ∃Lj ∈ G ′′ such that Ci and Lj satisfy the conditions

of Proposition 4 then
6: G ′

= G ′ ∪ {Lj − Vi∣Vi ∈ Ci};
7: else if Ci is a pure cluster or merged cluster then
8: Introduce a new latent variable Lk into L;
9: G ′

= G ′ ∪ {Lk − Vi∣Vi ∈ Ci};
10: end if
11: end for
12: return L, G ′

Step 1.3: Update Causal Skeleton
After Algorithm 2 (FindCausalClusters) and Algorithm 3 (In-
troduceLatentVariables), the number of latent variables is
identified correctly. To ensure the complete causal skeleton
can be identified correctly, in this phase, we deal with the fol-
lowing two problems: (i) reconstructing the causal skeleton
from the learned causal cluster and newly introduced latent
variables and (ii) updating the active variable to include the
latent variable that is learned in the current iteration.

Let us consider the first problem. In the previous phase, the
skeleton is constructed by adding an edge between the newly
learned latent variable L and their corresponding causal clus-
ter C (Line 7-10 in Algorithm 3). However, the reconstruc-
tion may suffer from a redundant edge problem. For exam-
ple, the variable Vi of an impure causal cluster may not di-
rectly connect with the corresponding latent variable. In other
words, the relations across the causal cluster, including their
corresponding latent variable remain unclear. To solve this
problem, one efficient way is to test the d-separated relations
across the causal cluster by rank constraint [Silva et al., 2006;
Xie et al., 2020; Huang et al., 2022] therefore correcting the
edges over each latent variable and its causal cluster.

For the second problem, we consider the problem of up-
dating the active variable to include learned latent variables
such that the new latent variable can be found in the updated
active variable set. The challenge is that, in a latent hierarchi-
cal structure, some children of latent variables still are latent,
which hinders using the observed children of latent variables
as surrogates. Thanks to the linear transitivity, we show that
the observed descendent of the latent variable can also be se-
lected as the surrogate of latent variables to update the active
variable set. We provide the updated principle in the follow-
ing Proposition 5.
Proposition 5 (Update Active Variable Set). For a graph
G, let A be the current active variable set and L be the
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latent variable sets discovered in the current iteration with
the learned causal cluster C. if the new active variable set
A′

= A ∪ L\C, where the value of L sets to their observed
descendant, then the Tetrad constraints over variables in A′

are equal to the Tetrad constraints implied by the correspond-
ing subgraph of G with the node set A′.

The above proposition shows that for the Tetrad constraints
over latent variables, we can initialize the value of the latent
variable with the value of any variable in its corresponding
observed descendant that may be found in the previous iter-
ation, without recovering the distribution of latent variables.
We give an illustrative example as follows.
Example 4. Consider the structure G in Fig. 1, for the in-
troduced latent variable L3, L7, L6 and L2, L5, one may
set the values of {L3, L7, L6, L2, L5} to their corresponding
observed descentant {X13, X10, X8, X16, X4}, respectively.
Then the Tetrad constraints among {X13, X10, X8, X16, X4}
is equal to {L3, L7, L6, L2, L5} in G.

The solution procedure of two problems is summarized in
Algorithm 4, which ensures the correct causal skeleton of lin-
ear latent hierarchical structure can be reconstructed.

Algorithm 4 UpdateCausalSkeleton

Input: Latent set L and skeleton G ′ from Algorithm 3
Output: Causal skeleton G ′

1: for each learned (or updated) latent variable Li ∈ L and
their causal cluster Ci in G ′ do

2: Remove the redundant edges and find the colliders
structure in G ′ by testing conditional independence
among {Li} ∪Ci;

3: end for
4: apply Meek’s rule to G ′ ;
5: Update active variable set according to Proposition 5;
6: return G ′

3.2 Step II: Identify Causal Direction
As the recursive procedure (Step I) is finished, the hierar-
chical structure is identified up to a Markov equivalent class
(see Theorem 2). There still remains an unclear identifiabil-
ity problem, i.e., how to identify the causal direction among
the latent variable on the hierarchical skeleton? It will be
discussed under the distribution condition where the non-
Gaussianity requirements are hopefully small.

We first introduce the GIN condition, which can be used to
capture the partial non-Gaussianity in the linear hierarchical
structure and identify the causal direction.
Definition 4 (GIN condition [Xie et al., 2020]). Let Y and
Z be two observed random vectors. Suppose the variables
follow the linear non-Gaussian acyclic causal model. Define
the surrogate-variable of Y relative to Z, as

EY∣∣Z ≔ ω
⊺
Y, (2)

where ω satisfies ω
⊺E[YZ

⊺] = 0 and ω ≠ 0. We say that
(Z,Y) follows GIN condition if and only if EY∣∣Z is inde-
pendent from Z.

Intuitively, GIN implies that ‘surrogate variable’ relative
to Z, i.e., ω

⊺
Y, shares no common non-Gaussian exoge-

nous noise components with Z. Based on the GIN condi-
tion, we will show that the causal direction among the la-
tent variable is identifiable under the distribution condition.
For notational convenience, we use notation GIN(Li, Lj)
to show that ({Xi2}, {Xi1, Xj1}) satisfy GIN condition, i.e.,
E(Xi1,Xj1)∣∣(Xi2) ⫫ Xi2, where {Xi1, Xi2} and {Xj1} are
the measured variable of Li and Lj , respectively. Fur-
thermore, we use notation GIN(Li, Lj∣Lk) to show that
({Xi2, Xk2}, {Xi1, Xj1, Xk1}) satisfy GIN condition, where
Xk1, Xk2 are measured variables of Lk.

For a skeleton of latent hierarchical structure, the undirect
edges among latent variables can be divided into two cases,
i.e., the edge in the pure causal cluster and the edge in the
impure causal cluster. To identify these undirected edges, we
give the following Proposition 6.
Proposition 6 (Orientation). Suppose the distribution condi-
tion hold, for a latent variable Lp and its causal cluster C =

{L1, ..., Ln}, and for each latent variable Li ∈ C∪{Lp}, let
{Xi, Xj} be a measured variable set of Li that satisfies (1)
{Xi, Xj} ⊂ Des(Li) and (2) Xi ⫫ Xj∣Li, if

• Rule 6. (Identify Causal Direction in Pure Cluster)
∀Li ∈ C, GIN(Lp, Li) hold and GIN(Li, Lp) does
not hold, then Lp → Li.

• Rule 7. (Identify Causal Direction in Impure Cluster)
∀Li, Lj ∈ C ∪ Lp, ∃L ⊂ C ∪ Lp and L ⊂

Adj(Li) ∩ Adj(Lj), such that GIN(Li, Lj∣L) hold
and GIN(Lj , Li∣L) does not hold, then Li → Lj .

Example 5. Consider the triangle structure L1, L2 and L5

in Fig. 1, where the noise of L2 and L5 are Gaussian. Let
{X7, X8} and {X4, X5} be the measured variable of L1 and
L5, respectively. The causal direction from L1 to L5 satis-
fies condition (2) of the distribution condition, where the non-
Gaussian noise εL2

is absorbed into L5. Thus, the direction
is identifiable by GIN(L1, L5) hold and GIN(L5, L1) does
not hold.

Below, we propose the orientation algorithm that orients
the undirected edges among the latent variable that satisfies
the distribution condition, as shown in Algorithm 5.

Algorithm 5 OrientEdges

Input: Causal skeleton G ′ and dataset XG
Output: Causal structure G

1: for ∀Li ∈ G ′ and the causal cluster C of Li do
2: for ∀Ci ⊂ C do
3: if Ci is a pure causal cluster then
4: Oriente the causal direction according to Rule 6;
5: else if Ci is an impure causal cluster then
6: Oriente the causal direction according to Rule 7;
7: end if
8: end for
9: end for

10: G ← G ′ by applying Meek rules;
11: return G
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4 Theoretical Results
In this section, we provide the theoretical results of the iden-
tification algorithm. We first show that the causal structure
is identified up to a Markov equivalence class under the irre-
ducible condition (Thm. 2), and the causal direction is iden-
tifiable under the distribution condition (Thm. 3). Then we
provide the complete identifiability of LHM (Thm. 4).

Before discussing the identifiability of the algorithm, we
first give the definition of the identification equivalent class.

Definition 5 (Markov Equivalence Class of LHM graphs).
Two LHM graphs G1 and G2 are in the same Markov equiva-
lence class iif (1) they have the same set of variables (both
measured and latent variables), (2) have the same causal
skeleton, and (3) have the same V-structures Li → Lk ← Lj

among latent variables.

As we discussed in Step 1.1 ∼ 1.2, latent variables are
learned correctly by finding the corresponding cluster under
certain merging rules. Furthermore, in Step 1.3, we show the
causal skeleton would be reconstructed from bottom to top by
correcting redundant edges and updating active data. Thus,
we conclude that Step I can correctly identify the Markov
equivalent classes, which is given in the following theorem.

Theorem 2 (Identifiability of Causal Skeleton). Suppose G is
an LHM graph with measured variables XG and irreducible
condition holds, Step I of Algorithm 1 can asymptotically
identify the Markov equivalence class of G.

We also provide the identification of the causal direction of
this skeleton with a general distribution condition.

Theorem 3 (Identifiability of Causal Direction). Given the
causal skeleton G ′ of an LHM graph G, for each pair of adja-
cent latent variables Li, Lj in the Markov equivalence class
G ′, the causal direction between Li and Lj is identifiable by
Step II of Algorithm 1 iif the distribution condition holds.

Combining two identifiability results, the full structure of
the linear latent hierarchy is identifiable under the irreducible
condition and the distribution condition.

Theorem 4 (Identifiability of LHM). Suppose G is an LHM
graph with measured variables XG and the irreducible con-
dition and the distribution condition holds. Algorithm 1 over
XG can identify the correctly causal structure of G.

It is worth noting that algorithm 1 only requires Condition
1 to ensure the correctness of the learned Markov equivalent
class no matter if Condition 2 is violated.

5 Experimental Results
In this section, we applied the proposed algorithm to synthetic
data to learn the latent hierarchical causal graph. Specifically,
we considered different types of latent graphs and different
sample sizes (with N = 2k, 5k, 10k), where structures are
provided in Fig. 3 (Measurement Model and Latent Tree)
and Fig. 1 (Hierarchical Model). The causal strength was
generated uniformly from [−2.5,−0.5] ∪ [0.5, 2.5], and the
noise term either follows a Gaussian distribution (represented
by circular in the graph) or a uniform distribution U(−2, 2)

X1X2X3X4X5X6X7X8X9 X1X2X3X4X5X6X7X8 X9 X10X11 X12

Figure 3: Latent structures used in our simulation studies (measure-
ment model and latent tree respectively), where the rectangles repre-
sent non-Gaussian noise, while the circles represent Gaussian noise.

RCC ↑ F1 ↑

Algorithm Ours LNG LHD Ours LNG LHD
2k 1.0 0.76 1.0 0.87 0.66 0.44

MM 5k 1.0 0.86 1.0 1.0 0.86 0.51
10k 1.0 0.93 1.0 1.0 0.9 0.51
2k 0.98 0.36 0.96 0.87 0.21 0.63

LT 5k 1.0 0.51 1.0 0.97 0.46 0.66
10k 1.0 0.6 1.0 1.0 0.55 0.66
2k 0.87 0.5 0.625 0.8 0.47 0.27

HM 5k 0.91 0.56 0.68 0.86 0.52 0.38
10k 0.96 0.66 0.75 0.93 0.58 0.47

Table 1: Performance on learning different types of latent graphs.

(represented by the triangle in the graph). Each experiment
was repeated ten times with randomly generated data.

We compare our method with the hierarchical-model-based
method, Latent Hierarchical Causal Structure Discovery
(LHD) [Huang et al., 2022] and Linear Non-Gaussian Latent
Hierarchical Model (LNG) [Xie et al., 2022]. Furthermore,
we used the percentage of correctly identified causal clusters
(RCC) [Huang et al., 2022] and the F1 score over the latent
structure to evaluate the performance.

The experimental results were reported in Table 1. Our
method gives the best results on all types of graphs, indicating
that it can handle not only the tree-based and measurement-
based structures but also the latent hierarchical structure. The
LHD method has a poor F1 score because it can not identify
the causal direction between latent variables, while LNG has
poor performance in two metrics because there is not enough
non-Gaussianity to ensure the correctness of learned clusters.

6 Conclusion

We proposed new sufficient identifiability conditions of linear
latent hierarchical causal structure. Theoretically, we show
that under the mild restriction of the graph structure, i.e., the
irreducible condition, and partial distribution condition, the
linear latent hierarchical structure is identifiable. Our theo-
retical results relax the application scope of the linear latent
hierarchical model and contribute to the general latent struc-
ture research. Future research directions include extending
the one-factor model assumption to an n-factor model set-
ting and allowing non-linear relations, existing techniques,
e.g., [Kummerfeld et al., 2014; Zhang and Hyvärinen, 2009;
Squires et al., 2022], may help to mitigate this issue.
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