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Abstract
One of the ultimate goals of Artificial Intelligence
is to assist humans in complex decision making. A
promising direction for achieving this goal is Neuro-
Symbolic AI, which aims to combine the inter-
pretability of symbolic techniques with the ability of
deep learning to learn from raw data. However, most
current approaches require manually engineered
symbolic knowledge, and where end-to-end training
is considered, such approaches are either restricted
to learning definite programs, or are restricted to
training binary neural networks. In this paper, we in-
troduce Neuro-Symbolic Inductive Learner (NSIL),
an approach that trains a general neural network to
extract latent concepts from raw data, whilst learn-
ing symbolic knowledge that maps latent concepts
to target labels. The novelty of our approach is a
method for biasing the learning of symbolic knowl-
edge, based on the in-training performance of both
neural and symbolic components. We evaluate NSIL
on three problem domains of different complexity,
including an NP-complete problem. Our results
demonstrate that NSIL learns expressive knowl-
edge, solves computationally complex problems,
and achieves state-of-the-art performance in terms
of accuracy and data efficiency. Code and technical
appendix: https://github.com/DanCunnington/NSIL

1 Introduction
Within Artificial Intelligence (AI), one of the ultimate goals is
to assist humans in complex decision making, a key challenge
in multiple industries such as healthcare, automated mainte-
nance, and security [Lyn Paul et al., 2019; Sittón et al., 2019;
Han et al., 2021]. Neuro-Symbolic AI aims to address this
challenge by combining the best features of both deep learn-
ing and symbolic reasoning techniques [d’Avila Garcez et al.,
2019; De Raedt et al., 2020]. For example, many existing
approaches improve the training of a neural network using
a given symbolic knowledge base [Manhaeve et al., 2018;
Dai et al., 2019; Riegel et al., 2020; Yang et al., 2020;
Badreddine et al., 2022], and systems that learn symbolic
knowledge can utilise pre-trained neural networks to han-
dle raw input data [Evans and Grefenstette, 2018; Cunning-

ton et al., 2023]. However, the assumption that either the
neural or symbolic component is given is not practical in
many real-world situations, as there may be no pre-trained
neural network(s) available (e.g., domain experts are time
constrained and can’t label vast quantities of raw data),
or the symbolic knowledge may be unknown, and there-
fore needs to be learned. Recent work aims to lift this
assumption by training both neural and symbolic compo-
nents in an end-to-end fashion [Dai and Muggleton, 2021;
Evans et al., 2021]. However, [Dai and Muggleton, 2021]
lacks the expressivity required to efficiently represent solu-
tions to many common-sense learning and reasoning tasks
[Dantsin et al., 2001], and [Evans et al., 2021] is restricted to
training Binary Neural Networks (BNNs) only.

In this paper, we introduce Neuro-Symbolic Inductive
Learner (NSIL), which trains a general neural network to
classify latent concepts from raw data, whilst learning an
expressive and interpretable knowledge base that solves com-
putationally complex problems. NSIL only requires a target
label for each training data point, and no latent concept la-
bels are given. NSIL uses a state-of-the-art symbolic learner
to learn a logic program in the language of Answer Set Pro-
gramming (ASP) [Gelfond and Kahl, 2014], a highly expres-
sive form of knowledge representation which can efficiently
represent solutions to problems of computational complexity
greater than P [Dantsin et al., 2001]. A general neural network
architecture is trained by reasoning over the learned knowl-
edge, where the latent concept values that the network should
output in order to obtain each target label are identified. We
use NeurASP to perform such computation [Yang et al., 2020],
and seamlessly integrate symbolic learning by creating correc-
tive examples for the symbolic learner. A specific mechanism
for weighting these examples is proposed, which biases the
symbolic learner to either refine or retain the learned knowl-
edge, balancing exploration with exploitation of the symbolic
search space.

We evaluate NSIL on three problem domains: (1) Cumu-
lative Arithmetic, where the learned programs perform the
cumulative addition or product over sequences of MNIST digit
images. (2) Two-Digit Arithmetic, where the learned programs
include arithmetic and logical operations over two MNIST
digit images. (3) the Hitting Set problem, which includes
the standard decision problem and a variant that remains NP-
complete [Karp, 1972]. In this domain, the learned programs
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not only solve the decision problem, but can also generate all
the hitting sets of a given collection. In all domains, the input
is a set of training data points, each containing a sequence of
raw images together with a target label. Also, the full space of
possible latent concepts is assumed to be known, together with
some structural properties of the search space for the symbolic
learner. The output is a trained neural network capable of clas-
sifying raw images into latent concepts, and an ASP program
that maps latent concepts into target labels.

Finally, we compare NSILs performance with purely neural
baselines, and where appropriate, MetaAbd [Dai and Mug-
gleton, 2021], the only existing system that trains a general
neural network and a symbolic learner. The results show that
NSIL: (1) Outperforms the baselines in terms of overall accu-
racy and data efficiency. (2) Learns expressive knowledge to
represent solutions to an NP-complete problem, which would
be difficult to express with any of the other systems. (3) Re-
quires significantly fewer data points than the neural baselines.
(4) Trains the neural network to predict latent concepts with
an accuracy comparable to fully supervised training, and (5)
achieves comparable performance to approaches that either
assume the latent concept labels are given, or the symbolic
component is given and only the neural network needs to be
trained.

2 Related Work
Many Neuro-Symbolic integrations have been proposed in
the literature to enhance data efficiency, transferability and
interpretability of neural networks using symbolic techniques
[Besold et al., 2022]. Some approaches inject symbolic knowl-
edge directly into neural architectures [Riegel et al., 2020;
Badreddine et al., 2022], whereas others preserve a clear
distinction between neural and symbolic components [Man-
haeve et al., 2018; Yang et al., 2020; Aspis et al., 2022;
Dasaratha et al., 2023]. The main drawback of these ap-
proaches is that they require a complete and manually engi-
neered symbolic knowledge base. On the other hand, sym-
bolic learning systems [Muggleton and De Raedt, 1994;
Corapi et al., 2010; Muggleton et al., 2015; Law, 2018;
Law et al., 2020] are capable of learning interpretable knowl-
edge in a data efficient manner, but are restricted to learning
from structured data, even when differentiable training meth-
ods are used [Payani and Fekri, 2019; Shindo et al., 2021;
Sen et al., 2022]. Therefore, pre-trained neural networks are
often required when learning from raw data [Evans and Grefen-
stette, 2018; Ferreira et al., 2022; Cunnington et al., 2023]. In
contrast to all of the aforementioned approaches, our method
performs joint Neuro-Symbolic learning, by training a neural
network and learning symbolic knowledge simultaneously,
which significantly reduces the amount of engineering and
labelling required.

NSIL is therefore closely related to the existing approaches
that also train both neural and symbolic components [Dai
and Muggleton, 2021; Evans et al., 2021; Daniele et al.,
2022]. MetaAbd [Dai and Muggleton, 2021] extends [Dai
et al., 2019] by using abduction and induction to jointly train a
neural network and learn symbolic knowledge from raw data.
Specifically, the symbolic knowledge learned by MetaAbd

is used to abduce possible latent concept values for training
the neural network. These values are pruned further and a
unique value is selected for each image within an input se-
quence, using the neural network confidence. As the authors
note, the network is therefore vulnerable to becoming stuck
in a local optima if the abductive space is very dense. During
the early stages of training, the network predicts with a more
equal distribution, which reduces the likelihood of selecting
the correct latent concept values. In contrast, NSIL relies on a
semantic loss function [Yang et al., 2020], and instead trains
the network with a set of possible values. This avoids incor-
rectly pruning the abductive space and the network is able to
escape local optima.

Also, the symbolic learner used by MetaAbd is restricted
in the expressivity of knowledge that can be learned [Law,
2018]. As NSIL learns ASP programs, we can represent
common-sense knowledge involving defaults, exceptions, con-
straints and choice [Gelfond and Kahl, 2014], all of which
are outside the scope of MetaAbd. Using ASP also enables
our learned programs to have multiple answer sets (multiple
models), whereas MetaAbd is restricted to learning definite
programs that accept only one model. These features enable
NSIL to learn knowledge that efficiently represents solutions
to complex, NP-complete problems, which would be difficult
to represent using MetaAbd.

The approach in [Evans et al., 2021] encodes the neural
network into an ASP program, which enables joint neural
network training and symbolic learning within ASP. However,
ASP does not support continuous arithmetic, which restricts
[Evans et al., 2021] to using BNNs. BNNs are an active area of
research, but are currently limited to relatively small network
architectures. Due to our modular approach, NSIL does not
place such restrictions on the neural network architecture,
and can take advantage of GPU-accelerated hardware and
software. Finally, [Daniele et al., 2022] learns a perception
and reasoning function, but the reasoning function is a look-up
table that simply maps symbolic inputs to outputs. In contrast,
NSIL is able to learn complex reasoning functions in the form
of ASP programs, which are more expressive than a lookup-
table, and can generalise beyond the specific task used during
training.

3 Neuro-Symbolic Inductive Learner
3.1 Problem Setting
We decompose the task of learning complex knowledge from
raw data into a perception function g : X → Z and a reasoning
function h : Za,b → Y . X is the space of raw inputs (e.g.,
images), Z is the space of latent concept values, and Y is the
space of target labels. h is defined over sequences of latent
concept values, with (possibly) varying length. Therefore,
Za,b is the set of all possible sequences of Z with length ≥ a
and≤ b. A latent concept is a tuple C = ⟨n,Z⟩, where n is the
name for the latent concept. In this paper, we assume w.l.o.g.
there is a single latent concept for a given task. Supporting
multiple latent concepts could be achieved by partitioning
Z into different classes, and assigning each class a different
name with a different perception function. During training,
we observe a dataset of samples D = {⟨X, y⟩, . . .}, where
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(a) Learning

(b) Inference

Figure 1: (a) NSIL learning with a single data point ⟨X, y⟩ ∈ D. (b) NSIL inference over a single input X .

X is a sequence of raw inputs x ∈ X , and y ∈ Y is a target
label. We assume the latent concept C is given as background
knowledge, but crucially, the samples in D are not annotated
with latent concept labels.

Example 1. Consider the MNIST Addition task from [Man-
haeve et al., 2018]. The goal is to learn a perception func-
tion g that classifies raw MNIST images into a latent con-
cept C = ⟨digit, {0 .. 9}⟩, and a reasoning function h
that returns the sum of two latent concept values, where
Y = {0 .. 18}. D contains training samples of two MNIST
images, and the label indicates the sum, e.g., X = [ , ]
and y = 3.

To combine the benefits of neural perception with symbolic
reasoning, we implement g using a neural network, and h us-
ing a first-order logic program in the language of ASP. Jointly
learning both g and h is challenging, as h is not differentiable
and cannot be learned using standard gradient-based optimi-
sation. To learn h, we use a symbolic learner that explores
a search space constructed from symbolic relations given in
a domain knowledge B. Therefore, assuming B and C are
given as input, the objective of NSIL is to learn g and h, s.t.
∀⟨X, y⟩ ∈ D, h([g(xi) : xi ∈ X]) = y. Let us now describe
how g and h are learned within the NSIL architecture.

3.2 Neural and Symbolic Components
The NSIL architecture is presented in Figure 1. During learn-
ing, NSIL trains a neural network using knowledge learned
by a symbolic learner. Corrective examples then bias the sym-
bolic learner to refine or retain the learned knowledge based
on the current system performance. The neural network is then
updated again, as part of an iterative training process. During
inference, the trained neural network forms the perception
function g, and the learned knowledge forms the reasoning
function h, to enable target predictions ŷ ∈ Y from unseen
raw data. Let us now describe the optimisation of the neural
and symbolic components.

Symbolic learner. The symbolic component is a Learning
from Answer Sets (LAS) symbolic learner [Law et al., 2019].
The input is a domain knowledge B that contains any (op-
tional) background knowledge, and relations used to construct
a search spaceH. The symbolic learner also accepts a set of
examples E as input, where in NSIL, each example associates

a sequence of latent concept values Z ∈ Za,b with a target
label y ∈ Y . The output is a learned knowledge base H ∈ H
which is a first-order logic program in the language of ASP. H ,
together with B, forms the reasoning function h = H ∪B that
maps sequences of latent concept values to target labels. We
configure each example e ∈ E to represent the label either pos-
itively (i.e., y should be output for Z), or negatively (y should
not be output for Z). H is said to cover an example, if H ∪B
outputs a desired label for the sequence of latent concept val-
ues (where a desired label depends on the positive or negative
example configuration). Also, e is weighted with an integer
penalty W (e), paid by H for leaving the example uncovered.
Details of how the examples are constructed are presented in
Section 3.3. During learning, we add constraints to B to en-
sure H is guaranteed to output each target label we observe in
D, i.e., ∀⟨X, y⟩ ∈ D, there exists a sequence of latent concept
values Z ∈ Za,b s.t. h(Z) = y, where h = H ∪B. Also, H
minimises a scoring function, based on the length of H (i.e.,
the number of literals), and the coverage over the examples
E. Let us assume the set of examples uncovered by H is
denoted by UNCOV (H, (B,E)). The score of H is given
by score(H, (B,E)) = |H| +

∑
e∈UNCOV (H,(B,E)) W (e).

A LAS symbolic learner solves the following optimisation:

H∗ = argmin
H∈H

[score(H, (B,E))] (1)

This can be equivalently interpreted as jointly maximising the
generality of H (i.e., the most compressed ASP program), and
the coverage of the examples in E.

Neural network. For the neural component, we define
a neural network ηθ : X → [0, 1]|Z| that maps a raw input
x ∈ X to a probability distribution over the possible latent
concept values Z . θ denotes the neural network parameters
which need to be learned. During inference, the perception
function g returns the latent concept value with the maxi-
mum probability using the standard argmax function, i.e.,
g(x) = argmaxz∈Z(ηθ(x)[z]). As there are no latent con-
cept labels available, the neural network is trained using a
symbolic knowledge H , alongside B and the target label y.
Recall that the space of possible latent concept values Z is
given as background knowledge. As H is in the language
of ASP, we use NeurASP [Yang et al., 2020] to optimise a
semantic loss function [Xu et al., 2018] for neural network
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training. Informally, for each training data point, the neural
network is trained to predict the latent concept values that
result in the target label, given H and B.
Example 2. Following Example 1, let us assume H is the
correct addition rule. For X = [ , ], y = 3, the neural
network would be trained to output either [0, 3], [1, 2], [2, 1], or
[3, 0] for these images. Note that each of these latent concept
values receives a gradient update, and the network learns to
distinguish individual digits by observing multiple data points.

Formally, consider a training sample ⟨X, y⟩ ∈ D. We define
a matrix Mθ(X) which contains all neural network outputs
for each image within X . Mθ(X)[i, z] denotes the neural
network output for image xi ∈ X and latent concept value z.
E.g., following Example 2, Mθ(X)[1, 2] corresponds to the
probability of the first image having latent concept value
2. We also define an ASP program Πy = H ∪ B ∪ Z ∪ {←
not y}, with answer sets1 denoted AS(Πy). Each answer
set contains a sequence of latent concept values Z that output
label y, given H and B. We define the probability of each Z ∈
AS(Πy) in terms of the neural network output: Pθ,X(Z) =∏

zi∈Z Mθ(X)[i, zi]. The probability of an ⟨X, y⟩ training
sample is then defined as Pθ(X, y) =

∑
Z∈AS(Πy)

Pθ,X(Z),
and the neural network is trained to optimise:

θ∗ = argmax
θ

[
∑

⟨X,y⟩∈D

log(Pθ(X, y))] (2)

Intuitively, this can be interpreted as training the neural
network to maximise the probability of the latent concept
values that output each downstream label, given H and B.
For further details, we refer the reader to [Yang et al., 2020].2
Now we have outlined the neural and symbolic components,
we can introduce our novel method of integration. Recall
that the symbolic learner learns a knowledge base which is
used to train the neural network. An immediate question is;
what happens if the learned knowledge is incorrect, as that
may lead to a sub-optimal neural network? To tackle this
problem, NSIL adopts an iterative training procedure where
both the symbolic learner and the neural network are updated
on each iteration. This integration relies upon a set of weighted
corrective examples for the symbolic learner, that encourages
the current knowledge to be refined or retained on the next
iteration. Let us now outline how the corrective examples are
structured and how their weights are updated on each iteration.

3.3 Corrective Examples
A corrective example eZ,y associates a sequence of latent con-
cept values Z ∈ Za,b with a target label y ∈ Y . Each example
is configured to represent the label either positively (i.e., y
should be output for Z, denoted epos

Z,y), or negatively (y should
not be output for Z, denoted eneg

Z,y). Also, recall that each
example is weighted with a penalty, paid if the example is left

1The answer sets correspond to the solutions of the program. See
[Gelfond and Kahl, 2014] for an overview of ASP.

2In this paper, we assume each data point has a single y label. To
simplify notation, we have presented a modified version of NeurASP
that also assumes a single label. Generalising NSIL to multi-label
tasks is left as future work.

uncovered. A pair of corrective examples ⟨epos
Z,y, e

neg
Z,y⟩ repre-

sents both positive and negative cases for a given Z, y combi-
nation. In NSIL, the set of symbolic examples E contains a
pair of corrective examples for all possible Z, y combinations,
and initially, all of the examples have equal weight set to 0.
This means there is no bias given to the symbolic learner as to
which examples should be covered. We restrict the weights to
the interval [0, 100], and the goal is to maximise the weights
of the positive examples that contain correct combinations of
latent concept values with target labels, whilst minimising the
weights of the corresponding negative examples.

On each iteration, the neural network is trained with a can-
didate knowledge base, denoted H ′. The corrective example
weights are then updated, using two sources of information:
(1) The overall performance when predicting training set la-
bels y. (2) The neural network confidence when predicting
Z. In each case, we calculate a weight value, and associate
this with a specific Z, y combination. To capture the overall
performance, we obtain ŷ predictions with a forward pass over
the training set using both neural and symbolic components.
We then calculate the False Negative Rate (FNR) of each label
y ∈ Y , which depends on the current H ′ and current neural
network parameters, denoted θ′:

FNRH′,θ′(y) = 100×
(
1− TPH′,θ′(y)

TPH′,θ′(y) + FNH′,θ′(y)

)
(3)

where TPH′,θ′(y) and FNH′,θ′(y) are the number of true pos-
itives and false negatives of label y respectively. We multiply
by 100 to map the FNR into our [0, 100] weight range. Intu-
itively, if NSIL accurately predicts label y, FNRH′,θ′(y) will
be close to 0, otherwise FNRH′,θ′(y) will be close to 100.
To associate the FNR with a Z, y combination, we obtain all
possible Z that currently output label y given the current H ′,
by intercepting the answer sets of Πy within NeurASP (see
Section 3.2). We divide the FNR by the number of answer
sets of Πy , i.e., FNRH′,θ′ (y)

|AS(πy)| , as there could be multiple Z that
lead to each y. E.g., in Example 2 there are four sequences of
latent concept values that lead to the label y = 3, so the FNR
is shared between these possibilities.

To capture the neural network confidence, and associate
it with a Z, y combination, we compute an average confi-
dence over all training data points with a label y, where the
neural network predicts Z. Formally, let DZ,y be the set
of ⟨X, y⟩ ∈ D with label y, where the neural network pre-
dicts the sequence of latent concept values Z for the input
sequence X , i.e., [g(xi) : xi ∈ X] = Z. Let us also de-
fine the probability of X as the product of the maximal neu-
ral network confidence score for each input in the sequence:
Pθ′(X) =

∏
xi∈X max(ηθ′(xi)). The overall confidence for

a Z, y combination is defined as:

CONFθ′(Z, y) =
100

|DZ,y|
×

∑
⟨X,y⟩∈DZ,y

Pθ′(X) (4)

Again, we multiply by 100 to map into our [0, 100] weight
range. Given our two sources of information, we now outline
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how the corrective example weights are updated. On each
iteration, we firstly set the weights of the Z, y pairs that we
have observed from the answer sets of Πy as follows:

W (epos
Z,y) = 0 (5)

W (eneg
Z,y) =

FNRH′,θ′(y)

|AS(πy)|
(6)

The negative example weight is set by the FNR, as if the
FNR is large, this will encourage a different label for Z. The
positive example weight is set to 0 because the FNR may
apply to multiple Z, y pairs, and may not indicate any positive
information for an individual pair. We then update the example
weights using the neural network confidence to ensure positive
information for an individual Z, y pair is captured:

W (epos
Z,y) = W (epos

Z,y) + λCONFθ′(Z, y) (7)

W (eneg
Z,y) = W (eneg

Z,y)− λCONFθ′(Z, y) (8)

where λ ∈ [0, 1] controls the effect of the CONFθ′ update
and is set to 1 in all of our experiments.3 Example weights
are allowed to persist across iterations, and in Equations 7 and
8, the W terms in the equation body could equal the weights
set by Equations 5 and 6, or the weights set on a previous
iteration, if a Z, y pair predicted by the neural network does
not exist in the answer sets of Πy . If there are no latent concept
predictions of a certain Z, CONFθ′(Z, y) = 0. Finally, the
weights are clipped to the range [0, 100].
Example 3. Following Example 2, let H ′ be the correct ad-
dition rule, y = 3 and FNRH′,θ′(y) = 5, indicating 95% of
training data points with label 3 have been predicted correctly.
The answer sets of Πy are [0, 3], [1, 2], [2, 1], and [3, 0]. Let us
also assume that for training data points with label 3, the cor-
rect Z are predicted with 98% confidence, and λ = 1. There-
fore, the positive corrective examples associated with these
latent concept values all have weight 98, and the correspond-
ing negative examples all have weight ( 54 ) − 98 = −96.75,
which is clipped to 0. This encourages the symbolic learner
to cover the positive examples on the next iteration, and leave
the negative examples uncovered.
Example 4. Conversely, let H ′ be an incorrect knowledge
base, y = 3, λ = 1, and FNRH′,θ′(y) = 95 (indicating only
5% of training data points with label 3 have been predicted
correctly). Let us assume the answer sets of Πy are [0, 4],
[1, 2], [2, 3], and, for all data points labelled 3, the neural
network only predicts [1, 2] with 75% confidence. Therefore:

W (epos
[1,2],3) = 75, W (epos

[0,4],3) = W (epos
[2,3],3) = 0,

W (eneg
[0,4],3) = W (eneg

[2,3],3) =
95

3
= 31.67,

W (neg
[1,2],3) =

(
95

3

)
− 75 = −43.33 (which is clipped to 0).

This encourages the symbolic learner to cover epos
[1,2],3,

eneg
[0,4],3 and eneg

[2,3],3 on the next iteration.

3Please see Appendix A.1 for results with varying values of λ.

For computational efficiency, example pairs with equal
weights are not given to the symbolic learner. Also, weights
are rounded to the nearest integer and shifted to the range
{1 .. 101} as the LAS systems require integer weight penal-
ties > 0. To summarise, NSIL solves Equations 1 and 2 with
the following steps:

1. The symbolic learner learns an initial knowledge base H ′

that satisfies B and covers each possible label in Y . The
neural network parameters θ′ are initialised randomly.

2. The neural network is trained for 1 epoch on the training
set D to update θ′, using the ASP program Πy for each
⟨X, y⟩ ∈ D. Note that Πy is constructed using H ′.

3. The weights of the corrective examples are updated (see
Section 3.3), and a new H ′ is learned.

4. Steps 2-3 are repeated for a fixed number of iterations.
NSIL outputs the learned neural network parameters θ
and the learned knowledge base H .

4 Experiments
Our experiments address the following questions: (1) Can
NSIL train both neural and symbolic components, learning
general, expressive and interpretable knowledge from raw
data? (2) Is NSIL vulnerable to becoming stuck in local optima
when training with limited data? (3) Can NSIL learn the
correct knowledge in large search spaces? (4) How does NSIL
compare to the closest existing system MetaAbd? (5) How
does NSIL compare to end-to-end neural networks? Finally,
(6) can NSIL learn expressive solutions to complex tasks that
would be difficult to represent with other systems?

To answer these questions, we consider three problem do-
mains; Cumulative Arithmetic, Two-Digit Arithmetic, and the
Hitting Set problem. The Cumulative Arithmetic tasks fol-
low [Dai and Muggleton, 2021] and enable a comparison to
MetaAbd, where NSIL achieves state-of-the-art performance,
thus addressing question 4. To concretely demonstrate the
contribution of NSIL, the other domains require learning more
expressive knowledge that MetaAbd can’t learn, including
negation as failure, choice rules, and programs with multiple
answer sets. We demonstrate NSIL trains both neural and
symbolic components successfully, outperforms fully neural
baselines, and learns the correct knowledge in large search
spaces. This addresses questions 1, 3, and 5. Question 2 is
also addressed here, where a reduced amount of training data
is used in the Two-Digit Arithmetic domain, and NSIL is able
to train successfully under these conditions. Question 6 is
addressed in the Hitting Set domain, where NSIL is able to
solve an NP-complete problem and genererate all the hitting
sets of a given collection, despite learning from binary labels.

Baselines. Aside from the comparison to MetaAbd, we
compare to Concept Bottleneck Models (CBMs) [Koh et al.,
2020], which are end-to-end neural networks that model both
perception and reasoning components. We ensure the percep-
tion network is the same as in NSIL, but the reasoning network
is a multi-layer perceptron instead of a symbolic learner. We
train two variants end-to-end (i.e., no concept labels are used),
therefore using the same weak supervision as NSIL. One
variant (denoted CBM) uses a linear layer as output from the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3590



Addition Product
Acc. MAE Acc. log MAE

Seq. Len. 1 5 10 100 1 5 10 15

MetaAbd 0.953 0.510 1.299 6.587 0.977 0.334 0.495 2.374

NSIL 0.984 0.208 0.550 3.960 0.983 0.291 0.469 2.098

Table 1: Cumulative Arithmetic task results.

perception network, and the second variant (denoted CBM-S)
uses a softmax layer, replicating more closely the perception
network used in NSIL. For the Two-Digit Arithmetic tasks, we
also evaluate: (1) The CNN from [Manhaeve et al., 2018] that
accepts a concatenated set of images as input and is trained to
output the final prediction directly. (2) A CNN-LSTM with a
Neural Arithmetic Logic Unit (NALU), and (3) a CNN-LSTM
with a Neural Accumulator (NAC). For the Hitting Set tasks,
we instead use a CNN-LSTM alongside the two CBM variants.

We also perform an ablation study where we firstly assume
the symbolic knowledge is given, and secondly, assume the
neural network is pre-trained with latent concept labels. NSIL
has equivalent performance in these cases, whilst learning
symbolic knowledge, and, training without latent concept la-
bels. Finally, we demonstrate the effect of the novel corrective
examples introduced in this paper, by presenting NSIL re-
sults without corrective examples. The ablation results are
discussed in more detail in Section 5.

Experiment setup. In the Cumulative Arithmetic tasks, we
use the same setup as [Dai and Muggleton, 2021], although
use ILASP [Law, 2018] as our symbolic learner. In all other
tasks, the neural network in NSIL is the MNIST CNN from
[Manhaeve et al., 2018], and the symbolic learner is FastLAS
[Law et al., 2020] for the Two-Digit Arithmetic tasks, and
ILASP [Law, 2018] for the Hitting Set tasks. We use ILASP
for the Cumulative Arithmetic task as ILASP enables the
search space to be expressed using meta-rules. This ensures
a fair comparison to MetaAbd, which requires a meta-rule
specification. ILASP also enables us to learn choice rules
in the Hitting Set tasks. We use FastLAS for the Two-Digit
Arithmetic tasks to demonstrate NSIL’s flexibility to support
different symbolic learners, and due to FastLAS’ increased
efficiency in larger search spaces for this specific class of
problems. To evaluate NSIL, we compare the final prediction
to the ground truth label. Each experiment is repeated 20
times using 20 randomly generated seeds, and we measure
mean classification accuracy per training epoch, as well as the
standard error over the 20 repeats, where 1 epoch = 1 NSIL
iteration. We perform hyper-parameter tuning for all methods
using a held-out validation set and a separate random seed.
Each experimental repeat is allowed to run for a maximum of
24 hours. The ASP encodings of the domain knowledge and
corrective examples are presented in Appendix A.1.

4.1 Cumulative Arithmetic
We first consider the Cumulative Addition and Product tasks
from [Dai and Muggleton, 2021]. The dataset D contains
⟨X, y⟩ samples where X is a sequence of MNIST digit images,
and y is the cumulative addition or product of the digits in
X . The latent concept has the name digit with values Z =

NSIL Addition
NSIL Product
Meta_Abd Add. Avg
Meta_Abd Add. Best
Meta_Abd Prod. Avg
Meta_Abd Prod. Best
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Figure 2: Cumulative Arithmetic network accuracy.

{0 .. 9}. The goal is to train the neural network to classify
the digit images in X , and learn a recursive knowledge base
that defines the cumulative arithmetic operation. The training
set contains 3,000 samples of sequences of length 2-5, and
three test sets with sequences of lengths 5, 10, and 100 in the
Addition task, and 5, 10, and 15 in the Product task, to verify
the trained network and learned knowledge can extrapolate to
longer inputs. Each test set contains 10,000 samples. As in
[Dai and Muggleton, 2021], we evaluate the neural network
accuracy (Acc.) on predicting single digits, and the mean
average error (MAE), and log mean average error (log MAE)
when extrapolating to longer inputs in the addition and product
tasks respectively. For this experiment only, we report results
over 5 repeats to match [Dai and Muggleton, 2021].

In both tasks, NSIL learns the correct recursive knowledge
(see Figure 5), and outperforms MetaAbd (Table 1). NSIL has
a higher neural network accuracy, closer to the state-of-the-art
accuracy of 0.9991 when a CNN is trained in a fully super-
vised fashion [An et al., 2020], despite NSIL being trained
without latent concept labels. Also, NSIL trains the neural net-
work to its maximal accuracy with significantly less training
epochs than MetaAbd (see Figure 2). MetaAbd relies upon
computing the exact psuedo-labels for each image in order to
train the network accurately, whereas in NSIL, NeurASP can
train the network with multiple digit choices for each image
using a semantic loss function. In Figure 2, the error bars and
shaded regions indicate standard error over the 5 repeats. We
plot the MetaAbd Addition results from their GitHub reposi-
tory, and re-run their Product task with 5 randomly generated
seeds as these results are not available. We also plot the best
MetaAbd result compared to the average, to demonstrate that
MetaAbd can be highly sensitive to the random seed used to
initialise the network in tasks with dense abductive spaces.

4.2 Two-Digit Arithmetic
We consider the MNIST Addition task for two single digit
numbers used in [Manhaeve et al., 2018], and a variation called
MNIST Even9Plus (E9P) that requires learning negation as
failure, which is not supported by MetaAbd. In this task, the
same pair of images are used, but the label is equal to the digit
value of the second image, if the digit value of the first image
is even, or 9 plus the digit value in the second image otherwise.
The purpose of the E9P task is to demonstrate NSIL can be
used to solve multiple tasks within the same domain, i.e., the
search space does not have to be engineered exactly to solve a
particular task. In this case, both sub-tasks are defined over the
same set of inputs and outputs, which is more challenging than
the Cumulative Arithmetic domain where the output space is
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(a) Addition 100%
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Figure 3: Two-Digit Arithmetic results with reduced training sets.

significantly different between the Addition and Product sub-
tasks. We include a comparison to MetaAbd on the MNIST
Addition task, but note that a significantly reduced search
space is used compared to NSIL, as the relations required for
E9P are not included, given that MetaAbd does not support
learning negation as failure. Both tasks use training, validation
and test datasets of size 24,000, 6,000, and 5,000 samples
respectively. The relations even, not even, plus nine, and
‘=’, as well as the function ‘+’ are given in B to specify the
search space for the symbolic learner. The latent concept is
the same as in the Cumulative Arithmetic tasks.

The overall accuracy results are shown in Figure 3 for re-
ducing percentages of training data (100% - 5%). NSIL out-
performs the neural baselines on both tasks for all dataset
percentages, and learns the correct knowledge (see Figure 5).
On the Addition task, NSIL achieves superior performance in
a much larger search space compared to MetaAbd, which also
times out after iteration 4 with 100% of the data. NSIL trains
the neural network to classify MNIST images with a mean
accuracy of 0.989, 0.970, and 0.891, for each dataset percent-
age respectively, which in the 100% case is within 1% of the
performance of a fully supervised model (0.9991) [An et al.,
2020]. For the E9P task, the mean network accuracy is 0.986,
0.974, and 0.962, for each dataset percentage respectively.
NSIL has greater performance in the E9P task than in the Ad-
dition task because the label is more informative, despite the
same domain knowledge and search space. There is a reduced
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Figure 4: Hitting Set accuracy.

number of possible latent concept values for certain labels,
which gives a stronger back-propagation signal for training
the network. Finally, we increased the search space in the E9P
task with the additional functions; ‘-’, ‘×’, ‘÷’, as well as
plus eight, ..., plus one relations, and NSIL converged to
the expected knowledge in all of these cases (see Table 2a).

4.3 Hitting Set Problem
We consider two variations of the Hitting Set problem [Karp,
1972]. The first is the standard formulation: Consider a uni-
verse of elements U , and a collection of sets S which contains
subsets of U . A hitting set is a special set Φ ⊆ U that inter-
sects with every subset in S. Given S and an integer k, the
task is to decide if there is a hitting set of S with size ≤ k.
Example 5. Let U = {1 .. 5}, S1 = {{1}, {1, 3}, {4}}, and
k = 3. S1 has a hitting set of size ≤ 3: Φ = {1, 4}. We say
that each subset in S is “hit” if it intersects with the hitting
set. Now consider S2 = {{1}, {2, 3}, {4}}. S2 has no hitting
set of size ≤ 3.

In our experiments, we replace elements {1 .. 5} in U
with corresponding MNIST images from classes 1-5 (i.e.,
Z = {1 .. 5}). We assume k = 2 and construct ⟨X, y⟩
data points where X represents a collection of sets S, and
y is a binary label indicating whether X has a hitting set of
size ≤ k. We also assume a maximum of 4 elements, X is
well-formed, with no duplicate elements in a set, and elements
within the same set are arranged in ascending order. For ex-
ample; X = {{ }, { , }, { }}, y = 1. We denote this
standard hitting set variant as HS. To demonstrate NSIL can
solve multiple tasks within the same domain, we introduce a
second variant, denoted CHS, which adds the constraint that
no hitting sets occur if |X| ≥ 3, and element 1 (in image form)
exists in any subset in X . We also present results for both
variants with a more difficult perception task using Fashion-
MNIST images instead of MNIST. The goal is to train the
neural network to classify images, whilst learning the HS or
CHS rules to decide the existence of a hitting set. Training,
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Addition
f(A,B) :- eq(A,B).
f(A,B) :- add(A,C), f(C,B).

Product
f(A,B) :- eq(A,B).
f(A,B) :- mult(A,C), f(C,B).

(a) Cumulative Arithmetic

Addition
result(V0,V1,V2) :- V2 = V0 + V1.

E9P
result(V0,V1,V2) :- even(V0),V2 = V1.
result(V0,V1,V2) :- not even(V0),

plus_nine(V1,V2).

(b) Two-Digit Arithmetic

HS
0 {hs(V1,V2) } 1.
hit(V1) :- hs(V3,V2), ss_element(V1,V2).
:- ss_element(V1,V2), not hit(V1).
:- hs(V3,V1), hs(V3,V2), V1 != V2.
CHS
0 {hs(V1,V2) } 1.
hit(V1) :- hs(V3,V2), ss_element(V1,V2).
:- ss_element(V1,V2), not hit(V1).
:- hs(V3,V1), hs(V3,V2), V1 != V2.
:- ss_element(3,V2), ss_element(V1,1).

(c) Hitting Sets

Figure 5: NSIL learned knowledge.

validation and test datasets contain 1502, 376, and 316 ex-
amples respectively. Each latent concept value is represented
in ASP as ss element(s, z), where s ∈ {1 .. 4} is a subset
identifier, and z ∈ {1 .. 5} is the associated element. The
domain knowledge B contains k = 2, the relation ‘!=’ and the
relation hs, which defines an element of the hitting set. B also
contains the relations for the CHS task: ss element(3, V1)
and ss element(V2, 1) that define respectively subset 3 (and
any element V1), and element 1 in any subset V2. In these
tasks, we use a CNN-LSTM baseline in addition to the CBM
variants, where a CNN firstly encodes a feature vector for
each image in a sequence X , and an LSTM returns a binary
classification as to the existence of a hitting set. To encode the
subset structure of X for the CNN-LSTM, we create an image
of ‘{’ and ‘}’ characters and pass in the entire sequence as
input. Note that in NSIL, the structure is passed directly into
the symbolic learner using the ss element relations.

Figure 4 shows the overall accuracy for both Hitting Set
tasks using MNIST and FashionMNIST images. NSIL out-
performs the baselines on both tasks and learns the correct
knowledge (see Figure 5). When classifying images, the neu-
ral network achieves a mean accuracy of 0.993 (MNIST) and
0.897 (FashionMNIST) on the HS task, and 0.993 (MNIST)
and 0.894 (FashionMNIST) on the CHS task. Note that the
neural network accuracy is for concepts 1-5 only. All methods
perform better on the CHS task than the HS task. This is due
to a shortcut; a negative test example with 3 subsets can be
correctly predicted if the neural network predicts element 1
for any image within the subset, as opposed to having to rely
on accurate predictions for more images in the HS task.

The knowledge learned by NSIL has multiple answer sets
as there could be multiple hitting sets of a given collection.
Therefore, despite training labels indicating the existence of a
hitting set, NSIL can generate all the hitting sets at inference
time. We verified this by computing the hamming loss against
the ground truth hitting sets for all test samples. The results
are 0.003 and 0.150 on the HS task, and 0.003 and 0.126 on
the CHS task, for the MNIST and FashionMNIST images re-
spectively. This indicates almost perfect hitting set generation,
with the minor errors due to mis-classifications by the neural
network, as opposed to errors in the learned knowledge. Also,
it is crucial to note that the learned knowledge does not de-
pend on the number of elements, the value of k, or the possible
latent concept values, despite these restrictions during training.

This demonstrates NSIL is able to generalise beyond the train-
ing setup. Finally, in the more challenging HS FashionMNIST
task, we also sampled 6 sets of additional ss element domain
relations to extend the search space for the symbolic learner.
The results are presented in Table 2b, and NSIL learned the
correct knowledge in all of these cases, but sometimes required
more iterations and/or time to do so. The Standard domain
knowledge contains only the predicates required to learn the
expected rules of the HS task. This includes k = 2, the ‘!=’
relation, and the relation hs which defines an element of the
hitting set. The additional ss element relations contain a
combination of elements {1 .. 5} (denoted ‘el’) and subset
identifiers {1 .. 4} (denoted ‘ssID’).

Domain
knowledge

Convergence
iteration

Convergence
time (s)

* +, =, even, not even,
plus nine

2 475.44

+, -, ×, ÷, =, even,
not even, plus nine

2 547.81

=, even, not even,
plus nine, ..., plus one

1 402.03

+, =, even, not even,
plus nine, ..., plus one

2 881.35

+, -, ×, ÷, =, even, not even,
plus nine, ..., plus one

2 57869.12

(a) E9P

Domain
knowledge

Convergence
iteration

Convergence
time (s)

Standard, ssID 2, ssID 4 1 111.34

Standard, ssID 2, el 2 1 113.21

Standard 1 115.77

Standard, ssID 1, el 4 1 130.71

Standard, ssID 3, el 4 2 734.70

* Standard, ssID 3, el 1 2 852.84

Standard, ssID 1, ssID 3 2 888.54

(b) HS FashionMNIST

Table 2: Increasing the search space for the symbolic learner. The
asterisks indicate the configuration used in the main results.

Run-times in italics indicate that weight pruning is used to remove
corrective examples with weight < 5, to obtain results efficiently.
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Addition E9P
Dataset % 100 10 5 100 10 5

FF-NSL 0.9753 (0.0021) 0.9362 (0.0029) 0.9151 (0.0058) 0.9809 (0.0016) 0.9513 (0.0030) 0.9346 (0.0051)
NeurASP 0.9762 (0.0013) 0.9492 (0.0016) 0.9149 (0.0051) 0.9797 (0.0015) 0.9642 (0.0009) 0.9500 (0.0014)

NSIL 0.9762 (0.0013) 0.9449 (0.0025) 0.8782 (0.0134) 0.9816 (0.0009) 0.9634 (0.0007) 0.9510 (0.0016)

Table 3: Two-Digit Arithmetic ablation results. Best results highlighted in bold (we declare a tie in the case of overlapping error bars).

HS CHS
Images MNIST FashionMNIST MNIST FashionMNIST

FF-NSL 0.9937 (0.0017) 0.8816 (0.0110) 0.9962 (0.0012) 0.9563 (0.0034)
NeurASP 0.9981 (0.0013) 0.8975 (0.0041) 0.9994 (0.0006) 0.9538 (0.0070)

NSIL 0.9962 (0.0012) 0.8747 (0.0053) 0.9981 (0.0013) 0.9544 (0.0021)

Table 4: Hitting Set ablation results. Best results highlighted in bold (we declare a tie in the case of overlapping error bars).

5 Ablations
In this section, we present three ablations: (1) We remove the
requirement to learn the symbolic knowledge and assume the
knowledge is given. (2) We pre-train the neural network with
manually annotated latent concept labels, and (3) we evaluate
NSIL without corrective examples in order to demonstrate the
impact of the novel contribution of this paper. To implement
the first two ablations, we respectively evaluate NeurASP
[Yang et al., 2020], which assumes the symbolic knowledge is
given, and FF-NSL [Cunnington et al., 2023] which pre-trains
the neural network on a separate dataset. FF-NSL then uses
the neural network predictions to train the symbolic learner.
We provide a comparison to NSIL, and train each method on
the experiments presented in Section 4 for 20 epochs (where 1
epoch = 1 NSIL iteration). We evaluate the mean performance
and standard error over 5 repeats.

The Two-Digit Arithmetic results are presented in Table 3
for reducing percentages of training data (100% - 5%). The
results indicate final task accuracy after performing a forward
pass on the neural and symbolic components. In both the
Addition and E9P tasks, NSIL achieves comparable accuracy
to the fully supervised approach of FF-NSL, even when no
latent concept labels are observed during training. Also, NSIL
achieves comparable accuracy to NeurASP, whilst also learn-
ing the symbolic knowledge. The Hitting Set results are shown
in Table 4, where the results also indicate final task accuracy.
Again, NSIL performs comparably to FF-NSL and NeurASP
in each experiment.

In the final ablation study, the corrective examples enable
NSIL to converge to a more accurate solution in most cases,
by biasing the symbolic learner to explore the symbolic search
space. This is evidenced in the E9P task shown in Figures
3d-3f, where the correct knowledge is not learned on the
first iteration (compare NSIL to NSIL Without Corrective Ex.).
In cases where the correct knowledge is learned on the first
iteration, the effect of the corrective examples depends on the
size of the dataset. When there are sufficient data points to
train the neural network accurately, the corrective examples
don’t offer any improvement, because the network can be
trained given the correct knowledge (see Figure 3a). For small
datasets, the corrective examples together with a sub-optimal

network may lead to a delay in convergence compared to the
case where there are no corrective examples (see Figures 3b
and 3c). However, in real-world applications, we consider
these to be very special cases, as it’s unlikely the correct
knowledge will be learned on the first iteration. Therefore,
corrective examples are important to NSIL’s performance.

6 Conclusion
This paper presents NSIL which learns expressive knowledge
to solve computationally complex problems, whilst training
a general neural network to classify latent concepts from raw
data. The novelty is the method of biasing the symbolic learner
using corrective examples weighted to balance exploration and
exploitation of the symbolic search space. The results show
that NSIL outperforms the closest existing system MetaAbd,
and a variety of purely neural baselines, whilst learning more
expressive and general knowledge.

Limitations. During NSIL’s iterative training cycle, using
the corrective examples may require more iterations to con-
verge given a small dataset. However, the benefit is that a
high accuracy is reached in cases where the correct knowledge
is not learned on the first iteration. Also, the neural base-
lines learn faster than NSIL, although given more time, NSIL
achieves a greater accuracy (see Appendix A.2).

Future work. One could investigate theoretical proper-
ties of NSIL’s corrective examples, and also apply NSIL to
more challenging tasks with more complex imagery. In these
cases, the neural network could be trained for more epochs on
each NSIL iteration, or utilise pre-trained weights on a larger
dataset such as ImageNet. This would enable NSIL to be
used as a “fine-tuning” approach to learn the weights of a lin-
ear layer for classifying latent concepts. Finally, future work
could generalise NSIL to support multiple latent concepts by
integrating multiple neural networks, and extend NSIL to take
advantage of unsupervised learning techniques.

Ethical Statement
There are no direct negative impacts that we can envisage
for our work, given we introduce a general machine learning
approach. However, NSIL inherits general concerns regarding
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the deployment of machine learning systems, and appropriate
precautions should be taken, such as ensuring training data is
unbiased, and model inputs/outputs are monitored for adver-
sarial attacks. As NSIL learns human interpretable knowledge
using symbolic learning, this may help to mitigate these is-
sues in some applications, by revealing potential bias, and
providing a level of assurance regarding possible downstream
predictions based on the learned knowledge. The usual perfor-
mance monitoring will still be required if NSIL is deployed
into production, to prevent adversarial attacks, and to detect
when re-training may be required if the input data is subject to
distributional shifts.
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