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Abstract

Neuro-Symbolic (NeSy) integration combines
symbolic reasoning with Neural Networks (NNs)
for tasks requiring perception and reasoning. Most
NeSy systems rely on continuous relaxation of log-
ical knowledge, and no discrete decisions are made
within the model pipeline. Furthermore, these
methods assume that the symbolic rules are given.
In this paper, we propose Deep Symbolic Learning
(DSL), a NeSy system that learns NeSy-functions,
i.e., the composition of a (set of) perception func-
tions which map continuous data to discrete sym-
bols, and a symbolic function over the set of sym-
bols. DSL simultaneously learns the perception
and symbolic functions while being trained only on
their composition (NeSy-function). The key nov-
elty of DSL is that it can create internal (inter-
pretable) symbolic representations and map them
to perception inputs within a differentiable NN
learning pipeline. The created symbols are auto-
matically selected to generate symbolic functions
that best explain the data. We provide experimen-
tal analysis to substantiate the efficacy of DSL in
simultaneously learning perception and symbolic
functions.

1 Introduction
Neuro-Symbolic (NeSy) Systems combine deep neural net-
works and symbolic reasoning so that learning and reasoning
can occur in a symbiotic fashion. The fundamental goal of
NeSy systems is to incorporate and potentially learn the sym-
bolic rules while still exploiting neural networks (NNs) for
interpreting perception and guiding exploration in the com-
binatorial search space. In general, a NeSy system can be
seen as a composition of perception functions and symbolic
functions. Perception functions map perception, usually rep-
resented as real-valued tensors, to symbols, whereas symbolic
functions map symbols to other symbols. The first challenge
to any NeSy system is to reconcile the dichotomy between the
intrinsically discrete nature of symbolic reasoning and the im-
plicit continuity requirement of gradient descent-based learn-
ing methods. Recent works have tried to resolve this problem

by exploiting different types of continuous relaxations to log-
ical rules. However, with few exceptions, most such works
assume the symbolic functions to be given a priori, and they
use these functions to guide the training of a perception func-
tion, parameterized as a NN. A key challenge to such sys-
tems is the lack of a method capable of performing symbolic
manipulations and meaningfully associating symbols to per-
ception inputs, also known as the Symbol Grounding Problem
[Harnad, 1990].

In this paper, we introduce the concept of NeSy-function,
i.e., a composition of a set of perception and symbolic
functions. Moreover, we propose Deep Symbolic Learning
(DSL)1, a framework that can jointly learn perception and
symbolic functions while supervised only on the NeSy func-
tion. This is done by introducing policy functions, similar
to Reinforcement Learning (RL) [Sutton and Barto, 1998],
within the neural architecture. The policy function chooses
internal symbolic representations to be associated with the
perception inputs based on the confidence values generated
by the neural networks. The selected symbols are then com-
bined to form a unique prediction for the NeSy function,
while their confidences are interpreted under fuzzy logic
semantics to estimate the confidence of such a prediction.
Moreover, DSL can learn symbolic functions by applying the
same policy to select their outputs. The key contributions of
DSL are:

• Learning the symbolic and the perception function
through supervision only on the NeSy function. To the
best of our knowledge, DSL is the first NeSy system that
can simultaneously learn symbolic and perception func-
tions in an end-to-end fashion, from supervision only on
their composition and with minimal biases on the sym-
bolic function. It has been shown that previous such
claims [Wang et al., 2019] contained some form of la-
bel leakage leading to supervision on the individual per-
ception functions [Chang et al., 2020], and the system
completely fails (with 0% accuracy on visual-sudoku
task) when supervision on the perception function is re-
moved. Furthermore, later works on this idea rely on
clustering-based pre-processing [Topan et al., 2021] and
do not constitute an end-to-end system.

• Symbol Grounding Problem (SGP) refers to the prob-
1Project webpage: https://dkm-fbk.github.io/projects/dsl.html
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lem of associating symbols to abstract concepts with-
out explicit supervision [Harnad, 1990] on this associ-
ation. The SGP is considered a major prerequisite for
intelligent agents to perform real-world logical reason-
ing. Recent works [Chang et al., 2020] have also pro-
vided extensive empirical evidence on the non-triviality
of this task, even on the simplest of problems. In DSL
we can create internal (interpretable) symbolic repre-
sentations that are then associated to perception inputs
(e.g., handwritten digits) while getting supervision only
on higher order operations (e.g., the sum of the digits).
Furthermore, unlike previous works [Topan et al., 2021],
DSL does not rely on clustering based pre-processing.
This is important as such pre-processing informs the sys-
tem about the number of symbols, whereas DSL can in-
fer such number and create meaningful associations be-
tween symbols and perception inputs.

• Differentiable Discrete Choices. DSL is the first NeSy
architecture that provides a method for making discrete
symbolic choices within an end-to-end differentiable ar-
chitecture. It achieves this by exploiting a policy func-
tion that, given confidence values on an arbitrarily large
set of symbols, is able to discretely choose one of them.
Furthermore, the policy function can be changed to ex-
ploit varying strategies for the choice of symbols.

Finally, we provide extensive empirical verification of the
aforementioned claims by testing DSL on three different
tasks. Firstly, we test our system on a variant of the MNIST
[LeCun et al., 1998] Sum task proposed in [Manhaeve et al.,
2018], where the knowledge about the sum operation is not
given but learned (see Example 1). Moreover, we also test
DSL with no prior information on the number of required
internal symbols, showing that DSL can correctly associate
them with perception inputs while learning the summation
rules. DSL provides competitive results, even in comparison
to systems that exploit prior knowledge.

Finally, in the last two experiments, we test a recursive
variant of DSL on the Visual Parity (see Example 2) and
the Multi-digit Sum tasks (see Example 3). In these exper-
iments, DSL shows great generalization capabilities. Indeed,
we trained it on short sequences, finding that it can generalize
to sequences of any length.

2 Related Works
NeSy has emerged as an increasingly exciting field of AI,
with several directions [Besold et al., 2021]. Approaches
like Logic Tensor Networks [Badreddine et al., 2022] and
Semantic-Based Regularization [Diligenti et al., 2017] en-
code logical knowledge into a differentiable function based
on fuzzy logic semantics, which is then used as a regulariza-
tion in the loss function. Semantic Loss [Xu et al., 2018],
also aims at guiding the NN training through a logic-based
differentiable regularization function based on probabilistic
semantics, which is obtained by compiling logical knowledge
into a Sentential Decision Diagram (SDD) [Darwiche, 2011].
In comparison to DSL these approaches assume that the sym-
bolic function is already given and is not learned from data.
Furthermore, the symbolic function is only used to guide the

learning of the perception function and does not influence the
NN predictions at test time.

A parallel set of approaches incorporates NN’s as atomic
inputs to the conventional symbolic solvers. DeepProbLog
[Manhaeve et al., 2018], a neural extension to ProbLog
[Bruynooghe et al., 2010], admits neural predicates that pro-
vide the output of an NN, interpreted as probabilities. The
system then exploits SDDs enriched with gradient semirings
to provide an end-to-end differentiable system for learning
the NN and the program parameters simultaneously. Recent
works have aimed at providing similar neural extensions to
other symbolic solvers. DeepStochLog [Winters et al., 2022]
and NeurASP [Yang et al., 2020] provide such extensions to
Stochastic Definite Clause Grammars and Answer Set Pro-
gramming respectively. In comparison to the regularization-
based approaches, these approaches are able to exploit the
symbolic function at inference time. However, they also as-
sume the symbolic function to be given. NeSy methods like
NeuroLog [Tsamoura et al., 2021], ABL [Dai et al., 2019]
and ABLSim [Huang et al., 2021] are based on abduction-
based learning framework, where the perception functions
have supervision on assigning symbolic labels to perception
data. However, the reasoning framework provides additional
supervision to make the perception output consistent with the
knowledge base i.e., the symbolic function. An abduction
based approach closely related to our work is MetaAbd [Dai
and Muggleton, 2021] where latent symbols are associated
to perception inputs, while simultaneously learning a logi-
cal theory and latent symbols based on a probability-based
score function. However, MetaAbd assumes given knowl-
edge of a series of primitives and learns their composition,
while DSL fixes the compositional structure and learns the
primitives. Furthermore, MetaAbd samples the space of log-
ical hypothesis, whereas DSL is an E2E differentiable frame-
work learning logical theories and perception symbols within
the same differentiable pipeline. Apperception Engine [Evans
et al., 2021] also aims at learning logical theories from raw
data. However, when raw data is continuous, i.e., consists
of a perception-based tasks like recognizing images, they use
pre-trained NNs. Hence, unlike DSL, Apperception Engine
cannot simultaneously learn to create symbols for perception
inputs and learn logical theories on those symbols.

Another paradigm of NeSy integration consists of works
that aim at learning the symbolic function, with either no
perception component or with supervision on the perception
function. Neural Theorem Prover [Rocktäschel and Riedel,
2017] uses soft unification to learn symbol embeddings to
correctly satisfy logical queries. Logical Neural Networks
[Riegel et al., 2020] is a NeSy system that creates a 1-to-1
mapping between neurons and elements of a logical formu-
lae. Hence, treating the entire architecture as a weighted real-
valued logic formula. SATNet [Wang et al., 2019] aims to
learn both the symbolic and perception functions. It does so
by encoding MAXSAT in a semi-definite programming based
continuous relaxation, and integrating it into a larger deep
learning system. However, it has been shown that it can only
learn the symbolic function when supervision on perception
is given [Chang et al., 2020]. [Topan et al., 2021] extends
SATNet to learn perception and symbolic functions, aiming at
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resolving the symbol grounding problem in SATNet. This ex-
tension relies on a pre-processing pipeline that uses InfoGAN
[Chen et al., 2016] based latent space clustering. Besides not
being end-to-end, their method assumes that the number of
symbols (i.e., the number of digits in their experiments) is
given apriori. [Aspis et al., 2022] is another approach that
exploits latent space clustering for extracting symbolic con-
cepts. Furthermore, they assume the number of symbols and
the logical rules to be given apriori. In DSL, only an upper
bound needs to be provided on the number of required sym-
bols. If the amount of symbols provided is higher than the
correct one, it learns to ignore the additional symbols, map-
ping the perceptions to only the required number of symbols.

Most of the NeSy systems in literature have distinct per-
ception and symbolic components. To the best of our knowl-
edge, none of these systems can learn both the components
from supervision provided only on their composition. In
DSL, we provide an approach that is able to learn both the
symbolic functions and the perception functions separately,
from supervision only on their composition. Furthermore,
the symbols required to create the rules are created internally
and are associated to perception within a unique NN learning
pipeline. In comparison to the SOTA NeSy methods, DSL is
the first end-to-end NeSy system to resolve a non-trivial in-
stance of both the symbol grounding problem and rule learn-
ing from perception.

3 Background
Notation.We denote sets with math calligraphic font and its
elements with corresponding indexed lower case letter, e.g.,
S = {si|∀i ∈ N, 0 < i ≤ k}, where k = |S| is the cardi-
nality of the set. Tensors are denoted with capital bold letters
(e.g. G) and the [. . . ] operator is used to index values in a
tensor. For instance, given a matrix G ∈ R10×10, the element
G[1, 2] corresponds to the entry in row 1 and column 2 of
G. Similar to python syntax, we introduce the colon symbol
for indexing slices of a tensor. As an example, G[1, :] cor-
responds to the vector ⟨G[1, 1], . . . ,G[1, 10]⟩. We use a bar
on top of functions and elements of a set to denote a tuple of
functions and elements, respectively. For instance, s̄ = f̄(x̄)
is equivalent to:

(s1, . . . , sn) = (f1(x1), . . . , fn(xn))

Note that the length n of the tuple is omitted from the bar
notation since it will always be clear from the context.
Fuzzy Logic. Fuzzy Logic is a multi-valued generalization
of classical logic, where truth values are reals in the range
[0, 1]. In this work, we will only be dealing with conjunc-
tions, which in fuzzy logic are interpreted using t-norms. A
t-norm t : [0, 1] × [0, 1] → [0, 1] is a function that, given the
truth values t1 and t2 for two logical variables, computes the
truth value of their conjunction. In this paper, we will exploit
Gödel t-norm, which defines the truth value of a conjunction
as the minimum of t1 and t2.
Problem Definition. Our approach to NeSy can be ab-
stractly described as the problem of jointly learning a set
of perception and symbolic functions providing supervision
only on their composition. We define X to be the space of

possible perception inputs. Given a finite set S of discrete
symbols, a perception functions f : X → S maps from
X to symbolic output in S . We define a symbolic function,
g : Sn → S , that maps an n-tuple of symbols to a single
output symbol. We will also consider g with a typed domain,
i.e., given some sets of symbols S1, ...,Sn and S , g could
map from S1 × · · · × Sn to S . Finally, we define a NeSy
functions ϕ : Xn → S as a composition of perception and
symbolic functions. In this paper, we will provide supervi-
sion only on the NeSy-function through a training set Tr of
the form Tr =

{(
x̄i, yi

)}m

i=1
, where yi = ϕ(x̄i) and m is

the dimension of the training set. The goal is learning both
the NeSy function and its components. NeSy-functions can
constitute arbitrary compositions of symbolic and perception
functions. In this paper we consider two such cases, namely
Direct NeSy function, and Recurrent NeSy function.
Definition 1 (Direct NeSy function). Let g : S1×· · ·×Sn →
S be a symbolic function and fi : X → Si, for i = 1, . . . , n
be n perception functions. A Direct NeSy-function is defined
as the composition of g with the fi

ϕ(x1, . . . , xn) = g(f1(x1), . . . , fn(xn)) (1)

Example 1 (Sum task). Let S1 and S be the following set of
symbols: S1 are the integers from 0 to 9 and S is the set of
integers from 0 to 18. Let us have a training set, consisting of
tuples (x1, x2, y) where x1 and x2 are images of handwritten
digits and y is the result of adding the digits x1 and x2. Our
goal is to learn the Direct NeSy-function:

ϕ(x1, x2) = g(f(x1), f(x2))

where f is handwritten digit classifiers. Hence, our goal is to
learn f and g with supervision provided only on g(f̄(x̄)).

As a second type of composition we will consider Recur-
rent NeSy functions, i.e., NeSy functions defined recursively.
In general, it is possible to define complex types of recur-
rent compositions involving multiple perception and sym-
bolic functions. In this work, we focus on a few such pos-
sibilities.
Definition 2 (Simple Recurrent NeSy-function). Let g : S ×
S → S be a symbolic function and f : X → S be a per-
ception function. Moreover, it is given an ordered list of per-
ceptions X = {x(k)}Kk=1, with x(k) ∈ X . We define X(k)

as the sequence of first k elements of X . A Simple Recurrent
NeSy-function ϕ is defined recursively as:

ϕ(X(k)) = g(f(x(k)), ϕ(X(k−1)))

ϕ(X(0)) = s(0) ∈ S

Example 2 (Visual Parity). Let S = {s0, s1} be a set com-
posed of two symbols, representing binary values, and ϕ(X)
the Simple Recurrent NeSy function which represents the par-
ity function, i.e., the function that returns s0 if the number
of s1 in the sequence is even, s1 if it is odd. ϕ(X) can be
expressed in terms of a perception function f and a symbolic
function g using previous definition of Simple Recurrent NeSy
function: the f converts the perceptions in binary values,
while the g represents the XOR operator, with s(0) = s0.
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Figure 1: Architecture of Deep Symbolic Learning for the Sum task. Red arrows represent the backward signal during learning.

Example 3 (Multi-digit Sum). Let S be the set of symbols
corresponding to the integers from 0 to 9, and Sc = {s0, s1}
another set of symbols. We have a training set composed of
pairs of multi-digit numbers and their sum as labels. Each
number is represented by a list of MNIST digit images. The
goal is to learn the NeSy function ϕ that computes the sum of
the given numbers. Similarly to Example 2, the NeSy func-
tion can be defined recursively. However, in this case, there
are two symbolic functions, which compute the single-digit
summation modulo 10 and the carry, respectively.

4 Method
Policy Functions. In this paper we will exploit the concept
of policy functions inspired by Reinforcement Learning (RL).
In RL, an agent has at its disposal a set of available actions,
and at each time frame only one action can be performed. The
goal is to select actions that maximize the expected reward.
A strategy for choosing the actions, based on the current state
of the system, is called a policy. In this work we consider two
specific policies, namely the greedy and the ϵ-greedy, and we
adapt them to the context of NeSy. In our setting, a policy
selects a symbol instead of an action, and it is defined as a
function π : [0, 1]|S| → S that, given a vector t ∈ [0, 1]|S|,
returns a symbol si ∈ S . Intuitively, t is a vector of confi-
dences returned by a neural network, which in our framework
are interpreted as a vector of fuzzy truth values. Formally, ti
corresponds to the truth value of the proposition (si = s∗),
where s∗ is the correct (unknown) symbol. Moreover, we de-
fine the function µ : [0, 1]|S| → [0, 1] as the function that
returns the truth value of the symbol chosen by the policy.

The greedy policy selects the symbol with highest truth
value: π(t) = argmaxiti. The function µ returns the corre-
sponding truth value: µ(t) = maxiti. DSL exploits the dif-
ferentiability of µ to indirectly influence the policy π, which
is not differentiable. In the case of the greedy policy, by de-
creasing the highest confidence (µ(t)), we reduce the chances
for the current symbol to be selected again.

ϵ-greedy behaves like the greedy policy with probability
1 − ϵ, while it chooses a random symbol with probability ϵ.
The advantage of ϵ-greedy over greedy is a better ability to
explore the solutions space. In our experiments, we use ϵ-
greedy during training, and greedy policy at test time.
DSL for Direct NeSy-functions. For sake of presentation,
we first assume symbolic functions to be given, and our goal
is to learn the perception functions. We will then extend DSL
to learn also the symbolic function.

We first define the representation of the perception func-
tions fi : X → Si and the symbolic function g. W.l.o.g., we
assume that symbols in any set Si are represented by integers
from 1 to |Si|. The symbolic function g : S1 × · · ·×Sn → S
is stored as a |S1|× · · ·× |Sn| tensor G, where G[s1, . . . , sn]
contains the integer representing the symbolic output of g(s̄).
Every perception function fi : X → Si is modelled as π(Ni),
where Ni : X → [0, 1]|Si| is a neural network (NN), and
π : [0, 1]|Si| → Si is a policy function. For every x ∈ X ,
Ni(x) is an |Si|-dimensional vector t̄i ∈ [0, 1]|Si| whose en-
tries sum to 1. Intuitively, the lth entry in t̄i represents the
predicted truth value associated with the lth symbol being the
output of fi(x). The policy function π makes a choice and
picks a single symbol from Si based on t̄i. In summary, our
model is defined as:

ϕ′(x̄) = G[π(N1(x1)), . . . , π(Nn(xn))]

where ϕ′ is the learned approximation of target function ϕ.
Example 4 (Example 1 continued). We assume the same
setup as Example 1, with an addition that fi(xi) is π(Ni(xi))
(with i ∈ 1, 2), as presented above. Let the prediction of f1
and f2 be the integers 3 and 5 respectively. In this context,
G is a matrix that contains the sum of every possible pair of
digits, so that G[i, j] = i + j. Therefore, the prediction is:
ϕ′(x̄) = G[3, 5] = 8.
Learning the Perception Functions. In example 4, if one
of the two internal predictions were wrong, then the final pre-
diction 8 would be wrong as well. Hence, we define the confi-
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dence of the final prediction to be the same as the confidence
of having both internal symbols correct simultaneously. In
other words, we could consider the output ϕ′(x̄) of the model
to be correct if the following formula holds for all perception
input xi:(

π(N1(x1)) = s∗1
)
∧ · · · ∧

(
π(Nn(xn)) = s∗n

)
(2)

where s∗i is the (unknown) ground truth symbol associated
to perception xi. We interpret formula in Equation 2 using
Gödel semantics, where the conjunctions are interpreted by
the min function. We use t∗i to denote the truth value (or the
confidence) given by the NN for the symbol selected by π,
i.e., t∗i = µ(Ni(xi)). Hence, the truth value t∗ associated to
the final prediction ϕ′(x̄) is given as:

t∗ = mini t
∗
i = mini µ(Ni(xi)) (3)

To train the model we use the binary cross entropy loss on
the confidence t∗ of the predicted symbol. If it is the right pre-
diction, the confidence should be increased. In such a case,
the ground truth label is set to one. If ϕ′(x̄) is the wrong pre-
diction, the confidence should be reduced, and the label is set
to zero. In summary, the entire architecture is trained with the
following loss function:

L = −
∑

(x̄,y)∈Tr

l · log(t∗) + (1− l) · log(1− t∗)

where l = 1(ϕ′(x̄) = y), and 1 is the indicator function. The
architecture is summarized in Figure 1, where we show an
instance of DSL in the context of Example 1.

DSL for Recurrent NeSy-functions. In DSL, a simple re-
current NeSy function is represented recursively as:

ϕ′(X(k)) = G[π(N(x(k))), ϕ′(X(k−1))]

ϕ′(X(0)) = π(σ(W0))

where W0 ∈ R|S| is the set of weights associated to the ini-
tial output symbol. Again, we define t∗ = minit

∗
i as the

minimum among the truth values of the internally selected
symbols. The architecture is presented in Figure 2. It is worth
noticing the similarity between the DSL model and the Equa-
tion 2. In general, a DSL model can be instantiated by fol-
lowing the same compositional structure of the NeSy func-
tion we want to learn, applying the policy when a value is
expected to be symbolic. For instance, in the multi-digit task
of Example 3, we can change the model by exploiting two
distinct matrices (Gc and Gs) of size [10, 10, 2], instead of
one. Gc maps the two current images and the carry to two
possible outputs (the next carry values), while Gs to 10 (the
output digits). Differently from the visual parity case, here
the output is a list of numbers, whose dimension is same as
the inputs (e.g., [3,2]+[4,1]=[7,3]) or one digit longer (e.g.,
[9,2]+[4,1]=[1,3,3]). For this reason, we add a padding con-
sisting of zeros at the beginning of the input lists, making
their length the same as the output.

Learning Symbolic Functions. So far we have assumed
the symbolic function g to be given. We now lift this as-
sumption and define a strategy for learning the g. The idea

Figure 2: Architecture of Deep Symbolic Learning for the simple
recurrent NeSy functions.

Figure 3: Tensor W is used by the policy to generate tensor G.
This is done by applying the policy on the output dimension (vertical
axes in the image), selecting a single output element for each pair of
symbols (s1, s2) ∈ S1 × S2.

comes from a simple observation: for each tuple s̄ there exists
exactly one output symbol g(s̄). Note that the mechanism in-
troduced to select a unique symbol from the NN output can be
also used for selecting propositional symbols, i.e. static sym-
bols that do not depend on the current perceptions. We use
the policy functions on learnable weights, allowing to learn
the symbolic rules directly from the data.

Formally, we define a tensor W ∈ R|S1|×···×|Sn|×|S| as the
weight tensor of G. Note that the tensor shape is the same as
G, except for the additional final dimension, which is used to
store the weights for all of the output symbols. The entry in
G corresponding to tuple s̄ is defined as:

G[s̄] = π(σ(W[s̄, :]))

where the softmax function σ and the policy π are applied
along the last dimension of W. The method is summarized
by Figure 3.

Since the tensor G is now learned, we need to consider the
confidence associated with the choice of symbols in G. The
confidence of the final prediction is now defined as

t∗ = min(t∗G,mini t
∗
i ) (4)

where t∗G is the confidence of the output symbol for the cur-
rent prediction:

t∗G = µ(σ(W[s̄, :])

with s̄ = π(N̄(x̄)) corresponding to the tuple of predictions
made by the perception functions.

Gradient Analysis for the Greedy Policy. We analyze the
partial derivatives of the loss function with respect to the truth
values t∗i and t∗G. However, notice that t∗ in equation (3)
and (4) are computed by selecting minimum over {t∗i }

|S|
i=1 and

{t∗i }
|S|
i=1 ∪ {t∗G} respectively. Hence, for simplicity of nota-

tion, in this analysis we denote t∗G by t∗0. We consider only
a single training sample, and assume that the policy is the
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greedy one.

∂L
∂t∗i

= −l
∂ log(t∗)

∂t∗i
− (1− l)

∂ log(1− t∗)

∂t∗i

= − l

t∗
∂t∗

∂t∗i
+

1− l

1− t∗i

∂t∗

∂t∗i

Now, since t∗ is the minimum of all {t∗i }
|S|
i=0, the term ∂t∗

∂t∗i

is 1 if ti is the minimum value in {t∗i }
|S|
i=0 and 0 otherwise,

reducing the total gradient to the following equation :

∂L
∂t∗i

=

{
− l

t∗ + 1−l
1−t∗ i = argminj t

∗
j

0 otherwise
(5)

For each sample, only one confidence value t∗i has a non-
zero gradient, meaning that only a single symbolic choice is
supervised, i.e., the choice of a rule symbol (when i = 0 in
equation (5)) or the choice of a perception symbol. Hence,
depending on the performance on a given sample, DSL man-
ages to modify either a perception or the symbolic function.
This behaviour is shown in Figure 1 by using red arrows to
represent the backward signal generated by the backpropaga-
tion algorithm. The signal moves from the loss to f1, which
corresponds to the symbol with lower confidence, and when
it reaches the softmax function (σ), it is spread to the entire
network. In DSL, we have not only interpretable predictions,
but gradients are interpretable as well. Indeed, for each sam-
ple, there is a unique function fi or g taking all the blame (or
glory) for a bad (or good) prediction of the entire model ϕ′.

5 Experiments
We evaluate our approach on a set of tasks where a com-
bination of perception and reasoning is essential. Our goal
is to demonstrate that: i) DSL can learn the NeSy function
while simultaneously learning the two components f and g,
in an end-to-end fashion (MNIST sum); ii) The perception
functions fi learned on a given task are easily transferable
to new problems, where the symbolic function g has to be
learned from scratch, with only a few examples (MNIST Mi-
nus - One-Shot Transfer); iii) DSL can also be generalized
to problems with a recurrent nature (MNIST visual parity),
iv) when we provide a smaller representation for G DSL can
solve harder tasks, like the multi-digits sum. Furthermore, it
can easily generalize up to N -digits sum, with a very large N
(MNIST Multi-Digit sum).
Evaluation. The standard metric used for this type of tasks
is the accuracy applied directly to the predictions of the NeSy
function ϕ. This allows to understand the general behaviour
of the entire model. However, different from previous mod-
els, the symbolic function is also learned from the data. For
this reason, we also considered the quality of the learned sym-
bolic rules. Nevertheless, the symbols associated with per-
ception inputs in DSL are internally generated and form a
permutation-invariant representation. Any permutation of the
symbols leads to the same behavior of the model, given that
the same permutation is applied to the indices of the tensor
G. Hence, to evaluate the model on learning of gs, we need
to select a permutation that best explains the model w.r.t the

Figure 4: Confusion matrix for the MNIST digits: (left) before the
permutation; (right) after permutation.

“human” interpretation of symbols for digits. The problem
is highlighted in Figure 4(left), where the confusion matrix
of the MNIST digit classifier is introduced. Note that for
each row (digit), only one column (predicted symbol) has a
high value. The same is true for the columns. The network
can distinguish the various digits, but the internal symbols are
randomly assigned. To obviate this problem, we calculate the
permutation of columns of the confusion matrix which pro-
duces the highest diagonal values (Figure 4(right)). We then
apply the same permutation on the confusion matrix and G,
allowing us to obtain a human interpretable set of rules. This
procedure allows for measuring the performances of DSL
on learning the rules. However, we will omit this metric in
the next sections since in all of our experiments tensor G is
perfectly learned, i.e., we have an accuracy of 100% on the
learned rules.
Implementation Details. All the experiments were con-
ducted with a machine equipped with an NVIDIA GTX 3070
with 12GB RAM. For digit classification, we use the same
CNN as [Manhaeve et al., 2018]. We used MadGrad [De-
fazio and Jelassi, 2022] for optimization and optuna to select
the best hyperparameters for every experiment. Results are
averaged over 10 runs.
MNIST Sum. We first tackled the MNIST sum task pre-
sented in Example 1. A dataset consisting of triples (X,Y, Z)
is given, where X and Y are two images of hand-written dig-
its, while Z is the result of the sum of the two digits, e.g.,
( , , 8). The goal is to learn an image classifier for the
digits and the function g which maps digits to their sum. We
implemented two different variants of our approach: DSL is
the naive version of DSL, where the two digits are mapped
to symbols by the same perception function, and the cor-
rect number of digits is given a priori; DSL-NB is a ver-
sion of DSL where we removed the two aforementioned bi-
ases: we use two different neural networks, N1 and N2, to
map perceptions to symbols, and the model is unaware of
the right amount of latent symbols, with the neural network
returning confidence on 20 symbols instead of 10. In table
1, we show that DSL variants have competitive performance
w.r.t the state of the art [Yang et al., 2020], [Winters et al.,
2022], [Manhaeve et al., 2018]. Notice that all the SOTA
methods receive a complete knowledge of the symbolic func-
tion g, while DSL needs to learn it, making the task much
harder. Another important result is the accuracy of the DSL-
NB method, which proves that DSL can work even with two
perception networks and, most importantly, without knowing
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Accuracy (%) TE/#E
NAP 97.3±0.3 109s/1
DPL 97.2±0.5 367s/1
DStL 97.9±0.1 25.49s/2
DSL 98.8±0.3 0.95s/50
DSL-NB 97.9±0.3 0.99s/200

Table 1: Results obtained on the MNIST sum task. TE is the time
required for 1 epoch, and #E is the number of epochs of training.
The SOTA methods are NeurASP (NAP), DeepProbLog (DPL), and
DeepStochLog (DStL).

the right amount of internal symbols.
MNIST Minus - One-Shot Transfer. One of the main ad-
vantages of NeSy frameworks is that the perception functions
learned in the presence of a given knowledge (g in our frame-
work) can be applied to different tasks without retraining, just
by changing the knowledge. For instance, after learning to
recognize digits from supervision on the addition task, meth-
ods like DeepProblog can be used to predict the difference
between two numbers. However, it is required for a human
to create different knowledge bases for the two tasks. In our
framework, the g function is learnable, and the mapping from
perception to symbols does not follow human intuition (see
Evaluation Metrics section). Instead of writing a new knowl-
edge for the Minus task, we replace the tensor G with a new
one and learn it from scratch. In our experiment, we started
from the perception function learned from the Sum task and
used a single sample for each pair of digits to learn the new
G. We obtained an accuracy of 98.1 ± 0.5 after 300 epochs,
each requiring 0.004s. Note that we did not need to freeze
the weights of the f . Since the perception functions already
produce outputs with high confidence, DSL applies changes
mainly on the tensor G.
MNIST Visual Parity. We used the model in Figure 2
for the parity task using images of zeros and ones from the
MNIST dataset, and the same CNN used for the MNIST
sum task (with 2 output symbols instead of 10). Learning
the parity function from sequences of bits is a hard problem
for neural networks, which struggle to generalize to long se-
quences [Shalev-Shwartz et al., 2017]. The parity function
corresponds to the symbolic function g, and learning the per-
ception function is an additional sub-task. We used sequences
of 4 images during training and 20 on the test and only pro-
vided supervision on the final output. DSL reached an ac-
curacy of 98.7 ± 0.4 in 1000 epochs, showing great general-
ization capabilities. As in other tasks, DSL learned the XOR
function perfectly. Tnhe errors made by the model only de-
pend on the perception functions. If the perceptions are cor-
rectly recognized, the model works regardless of the sequence
length.
MNIST Multi-digit Sum. The previous experiment on the
Visual Parity have demonstrated the ability of DSL to learn
recursive NeSy functions. However, this experiment was con-
ducted on a simple task where the number of allowed sym-
bols was limited to two, and the symbolic function g could be
directly stored in a 2x2 matrix.The multi-digit sum is more
challenging since the hypothesis space becomes much larger,

Accuracy (%)
2 4 15 1000

NAP 93.9±0.7 T/O T/O T/O
DPL 95.2±1.7 T/O T/O T/O
DStL 96.4±0.1 92.7±0.6 T/O T/O
DSL 95.0±0.7 88.9±0.5 64.1±1.5 0.0±0.0

Fine-grained Accuracy (%)
2 4 15 1000

DSL 97.9±0.1 97.3±0.1 96.7±0.1 96.5±0.1

Table 2: Results obtained on the MNIST Multi-digit sum task. T/O
stands for timeout.

and we need to learn two symbolic functions (gc and gs) si-
multaneously. Thus, we decided to rely on Curriculum Learn-
ing [Bengio et al., 2009], where initially we provide only
samples composed of a single digit and no padding, reducing
the problem to learning the digit sum modulo 10. We then
provide another training set composed of two digits num-
bers and the padding, allowing the model to learn the miss-
ing rules. We trained our model on the 2-digits sum and we
evaluate the learned model on sequences of varying length,
showing the generalization capabilities of DSL.

Table 2 reports the results obtained by NeurASP, Deep-
Problog, DeepStochLog and DSL. We tested our model on
N -digit sums, with N up to 1000. Also in this case, DSL
learned perfect rules; thus, the accuracy degradation obtained
by increasing the value of N is only due to errors made by the
perception function (98.5% accuracy). For this reason, our
performance follows a similar trend of 0.985(2N). To better
understand the true performance of DSL, we also measured
a fine-grained accuracy that measures the mean ratio of cor-
rect digits in the final output. Furthermore, our approach took
only 0.27 seconds to infer on the entire test set for N = 1000,
while no other methods scale to more than 4 digits.

6 Conclusion and Future Work
We presented Deep Symbolic Learning, a NeSy framework
for learning the composition of perception and symbolic
functions. To the best of our knowledge, DSL is the first
NeSy system that can create and map symbolic representa-
tions to perception while learning the symbolic rules simul-
taneously. A key technical contribution of DSL is the in-
tegration of discrete symbolic choices within an end-to-end
differentiable neural architecture. For this, DSL exploits the
notion of policy deriving from Reinforcement Learning. Fur-
thermore, DSL can learn the perception and symbolic func-
tions while performing comparably to SOTA NeSy systems,
where complete supervision of the symbolic component is
given. Moreover, in the multi-digit sum, DSL’s inference
scales linearly, allowing the evaluation of huge sequences. In
the future, we aim to extend DSL to problems with a larger
combinatorial search space. To this end, we aim to consider
factorized matrix representations for the symbolic function g,
and its weight matrix W . Furthermore, we aim to generalize
DSL to more complex perception inputs involving text, audio,
and vision.
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