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Abstract
Transformer-based methods have proven to be ef-
fective in achieving long-distance modeling, cap-
turing the spatial and spectral information, and
exhibiting strong inductive bias in various com-
puter vision tasks. Generally, the Transformer
model includes two common modes of multi-head
self-attention (MSA): spatial MSA (Spa-MSA) and
spectral MSA (Spe-MSA). However, Spa-MSA
is computationally efficient but limits the global
spatial response within a local window. On the
other hand, Spe-MSA can calculate channel self-
attention to accommodate high-resolution images,
but it disregards the crucial local information that
is essential for low-level vision tasks. In this study,
we propose a bidirectional dilation Transformer
(BDT) for multispectral and hyperspectral image
fusion (MHIF), which aims to leverage the advan-
tages of both MSA and the latent multiscale infor-
mation specific to MHIF tasks. The BDT consists
of two designed modules: the dilation Spa-MSA
(D-Spa), which dynamically expands the spatial re-
ceptive field through a given hollow strategy, and
the grouped Spe-MSA (G-Spe), which extracts la-
tent features within the feature map and learns lo-
cal data behavior. Additionally, to fully exploit
the multiscale information from both inputs with
different spatial resolutions, we employ a bidirec-
tional hierarchy strategy in the BDT, resulting in
improved performance. Finally, extensive experi-
ments on two commonly used datasets, CAVE and
Harvard, demonstrate the superiority of BDT both
visually and quantitatively. Furthermore, the re-
lated code will be available at the GitHub page of
the authors.

1 Introduction
Hyperspectral imaging (HSI) is a widely used technology
in various fields, including agriculture [Lu et al., 2020;
Wu et al., 2011], food safety [Feng and Sun, 2012], biomed-
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Figure 1: The comparison of (a) Spa-MSA [Liu et al., 2021], (b)
the proposed D-Spa based on Spa-MSA, (c) Spe-MSA [Zamir et al.,
2022], and (d) the proposed G-Spe based on Spe-MSA. The blue
clusters indicate the image tokens in (a) and (b). Utilizing the dila-
tion operation, the proposed D-Spa can expand the receptive field of
Spa-MSA. In (c) and (d), the blue slices denote the image tokens,
and we design G-Spe to allow the model to learn more data behavior
inside the feature map.

ical diagnostics [Piqueras et al., 2011], and atmospheric en-
vironment detection [Gao et al., 2006]. HSIs with high spec-
tral resolution produce precise spectral characteristic curves,
and the abundance of bands makes it convenient for mutual
band correction. However, due to the current physical imag-
ing technology’s constraints, there is a trade-off between the
spatial and spectral resolution of the natural imaging pro-
cess. Therefore, it is impossible to produce an image with
high spatial and spectral resolution simultaneously. As a re-
sult, multispectral and hyperspectral image fusion (MHIF)
has emerged as a promising method to generate the neces-
sary high-resolution hyperspectral images (HR-HSI). Numer-
ous approaches have been developed for MHIF and can be
broadly categorized into two categories: traditional meth-
ods [Guo et al., 2020; Yang et al., 2020b; Yang et al., 2020a]
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and deep learning (DL)-based techniques [Yan et al., 2022;
Zhou et al., 2022; Cao et al., 2020].

In recent years, deep learning (DL)-based techniques have
become increasingly popular, with CNN modules being
the current state-of-the-art for MHIF problems due to their
spatial-agnostic and channel-specific convolutional proper-
ties [Li et al., 2021]. Researchers have designed specific
convolution modules and stacked them to construct a gen-
eral network structure that effectively extracts potential be-
havior from databases. However, the local receptive field in
CNNs limits long-range dependencies and may hinder the in-
ternal modeling of the image. Recently, the Vision Trans-
former (ViT)[Kolesnikov et al., 2021] has demonstrated im-
pressive performance on various computer vision tasks[Hu et
al., 2022]. For concision, this method is also referred to as
Spa-MSA.

We propose a fusion architecture that integrates spatial and
spectral information and fully exploits MSA to model simi-
lar patches in a hyperspectral image, considering the proper-
ties of the MHIF task. While Spa-MSA lacks the modeling
of longer-distance information, Spe-MSA does not make full
use of the information inside the data. To achieve a more
wide-range correlation, our proposed architecture includes
dilation Spa-MSA and grouped Spe-MSA modules. The con-
tributions of this paper are listed as follows (also find more
details in Fig. 1):

• We present a novel bidirectional dilation Transformer
(BDT) architecture that utilizes both dilation Spa-MSA
(D-Spa) and grouped Spe-MSA (G-Spe) modules for
MHIF. Our experimental results on benchmark datasets
demonstrate that our method achieves state-of-the-art
(SOTA) performance. We also conduct additional ex-
periments to evaluate the efficiency of D-Spa and G-Spe
modules, the bidirectional structures, and the impact of
dilation rates on the overall performance.

• To improve the receptive field of Spa-MSA, we design
the D-Spa to extract a broader range of local informa-
tion for the MHIF task. Specifically, D-Spa does not
require additional parameters and calculations, which
can be viewed as a plug-and-play module for all Spa-
MSA based approaches. Various experiments in Sect. 3
demonstrate the effectiveness of the proposed dilation
strategy.

• To fully exploit the spatial information along channel di-
mension, we design a so-called G-Spe to extract latent
features inside the feature map and learn local data be-
havior.

2 Related Works

2.1 Transformer in MHIF
The Transformer architecture has demonstrated strong per-
formance in various vision tasks, and many researchers are
attempting to leverage it for the MHIF problem with promis-
ing results. For instance, Hu et al.[Hu et al., 2022] were
the first to use Transformer for MHIF and achieved powerful
performance with a lightweight network. Additionally, Meng

et al.[Meng et al., 2022] proposed an advanced transformer-
based model for remote sensing pansharpening. Ma et al.[Ma
et al., 2021] utilized Transformer instead of CNN to learn the
prior of hyperspectral images (HSIs) and then used an un-
folding network to simulate iterative solution processes for
HSI super-resolution. Furthermore, Zhou et al. [Zhou et al.,
2021] proposed a customized Transformer that facilitates col-
laborative feature learning across two modalities for remote
sensing pansharpening.

2.2 Motivation
Despite the promising outcomes of the aforementioned meth-
ods, which largely rely on the powerful self-attention mod-
ule, they often adopt the self-attention or Transformer struc-
ture for various image fusion tasks without fully considering
their deficiencies, especially for the specific MHIF problem.
For instance, Spa-MSA can restore image details and reduce
computational complexity by correlating local pixels, but its
receptive field is significantly restricted by the window size.
Similarly, previous Spe-MSA treats channels as tokens and
uses the information of the entire space for self-attention, but
this does not fully utilize the information inside the image.
To address the issue of Spa-MSA, we are inspired by the con-
cept of dilation convolution [Li et al., 2018b] to design a new
2D dilation structure specifically for Spa-MSA called D-Spa.
D-Spa can effectively enlarge the receptive field without in-
troducing additional parameters or computational complex-
ity. To address the issue of Spe-MSA, we propose a Grouped
G-Spe that groups the space and then performs Spe-MSA in
small groups, which may extract information within the fea-
ture and better learn local data behavior. Additionally, we
design a bidirectional hierarchy structure for better exploiting
multiscale information of the two inputs, which have different
spatial resolutions, for the specific application of MHIF.

3 Methodology
In this section, we present our BDT designed for the MHIF
task. We first introduce the overall architecture of our BDT in
Sec. 3.1. Subsequently, we analyse the function of D-Spa in
Sec. 3.2. Finally, we describe the design of G-Spe in Sec. 3.3.

3.1 The Overall Architecture
Our BDT is outlined in Fig. 2, which is a hierarchical bidirec-
tional input architecture with two stages, i.e., Bimodal Fea-
ture Extraction (BFE) and Bimodal Feature Fusion (BFF).
In order to extract spatial information, we concatenate the
bicubic interpolated LR-HSI XU ∈ RH×W×S and HR-MSI
Y ∈ RH×W×s as the input of the spatial branch. Besides, D-
Spa in BFE is designed to learn the spatial information, where
output feature maps are Di, i = 1, 2, 3. In detail, the process
of BFE is as follows:

Di = SpatialBranch
(
Conv1

(
Cat

(
Y,XU

)))
, (1)

where Conv1 is a convolutional structure. Using HR-HSI
X ∈ Rh×w×S as the input of the spectral branch, the in-
formation on the spectrum is dynamically learned through G-
Spe, and outputs feature maps Gi (i = 1, 2, 3) as shown in the
following formula:

Gi = SpectralBranch (Conv2 (X )) , (2)
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(a) bimodal feature extraction (BFE)
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Figure 2: The overall architecture of the proposed BDT approach. (a) The diagram of proposed BFE consisted of spatial and spectral branches.
(b) The inputs of proposed BFF are the output of the spectral branch and the spatial branch in the BFE, respectively. Please note that X is the
LR-HSI, Y is the HR-MSI, and XU is the bicubic interpolation LR-HSI. Di and Gi respectively represent spatial information and spectral
information extracted from bimodal feature extraction (BFE), i.e., the subgraph on the left. Then, Di and Gi are paired into the bimodal
feature fusion (BFF) to generate the final output, i.e., the subgraph on the right.

where Conv2 is a multi-layer convolution structure used to in-
crease the channels. To fuse the feature maps, i.e., Di and Gi,
we design the BFF model, which is an efficient two-layer con-
volutional structure. In detail, we concatenateD3 and G1 first,
and send the concatenated one to the fusion module which in-
volves a 3 × 3 kernel and a 5 × 5 kernel, and then upsample
through PixelShuffle, as shown in the following formula:

F1 = PixelShuffle (Fuse (Cat (D3,G1))) . (3)

Then, we concatenate F1, D2 and G2 together, and upsample
the concatenated result. After that, we fuse the upsampled
result as the following formula:

F2 = PixelShuffle (Fuse (Cat (F1,D2,G2))) . (4)

Finally, we add the fusion results of F2, D3 and G1 to the
Bicubic interpolated LR-HSI XU , and the final output X̃ ∈
RH×W×S is expressed by the following formula:

X̃ = Fuse (Cat (F2,D3,G1)) + XU . (5)

3.2 D-Spa
Vanilla convolution is a fundamental building block of
convolutional neural networks (CNNs) which have seen
tremendous success in several computer vision tasks, e.g.,
image classification [Hong et al., 2021], image super-
resolution [Liang et al., 2021], and image segmentation[Liu
et al., 2021]. Dilation convolution increases the receptive
field of the convolution kernel without adding additional pa-
rameters, retains the internal structure of data and avoids us-
ing a pooling layer to downsample the feature map. The di-
lation convolution operation with elements k × k in the ker-
nel and a dilation rate d at the (i, j)th pixel position can be
expressed as a linear combination of input F ∈ RC×H×W

around (i, j)th pixel position, which can be expressed as fol-
lows:

F
′

(:,i,j) =
∑

(x,y)∈Ω(i,j)

W
[
P(i,j) − P(x,y)

]
F(:,x,y), (6)

where F(:,x,y) ∈ RC indicates the vector of the (x, y)th pixel
position in the input feature map F; Ω (i, j) represents the co-
ordinate set of the dilation area centered on the (i, j)th pixel
position; F

′

(:,i,j) ∈ RC
′

indicates the vector of the (i, j)th

pixel position in the output feature map F
′ ∈ RC

′
×H×W and

W ∈ RC
′
×C×k×k is the convolution kernel of k × k, where

W
[
P(i,j) − P(x,y)

]
∈ RC

′
×C means the convolution kernel

weight which contains coordinate offset
[
P(i,j) − P(x,y)

]
∈{(

−k+1
2 d,−k+1

2 d
)
,
(
−k−1

2 d,−k−1
2 d
)
, ...,

(
k−1

2 d, k−1
2 d
)}

with dilation rate d. Jiao et al. [Jiao et al., 2023] used the
unfold operation to implement the expansion of the window
and designed a sliding mode. However, our D-Spa expands
the window in fixed position, instead of sliding it pixel by
pixel, and expands windows by index values. Han et al. [Han
et al., 2021] present a novel point of view, which regards
Spa-MSA as a variant of convolution, with the properties of
sparse connectivity, weight sharing, depth separation, and
dynamic weight. To this end, we can represent D-Spa in the
form of convolution.

We operate three 1 × 1 convolutions on the input fea-
ture F ∈ RC×H×W to generate three tensors, i.e., Q ∈
RC×H×W , K ∈ RC×H×W and V ∈ RC×H×W , respec-
tively. Taking only one head in D-Spa as an example, given
a window size k and a dilation rate d of 2, the output V

′ ∈
RC×H×W of D-Spa operation at the (i, j)th pixel position
can be expressed as a linear aggregation of corresponding
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A window applying self-attention Valid content in the window

Step 1 Step 2

Figure 3: The dilation in D-Spa (dilation rate = 2) consists of two
steps, i.e., expanding and hollowing. Step 1 expands the 3×3 win-
dow to 5×5, and step 2 hollows out part of the window.

values V ∈ RC×H×W in the local window containing the
(i, j)th pixel position.

V
′

(:,i,j) =
∑

(x,y)∈Ω(i,j)

W(i,j→x,y)V(:,x,y), (7)

where V(:,x,y) ∈ RC indicates the value of the (x, y)th pixel
position in the values map V ∈ RC×H×W ; Ω (i, j) indicates
the coordinate set of a dilation window which contains k × k
pixel positions. In Fig. 3, the solid blue box represents the
window applied self-attention. Taking the window size of
3× 3 and dilation rate of 2 as an example, the window shape
becomes 5× 5 after dilating, and the blue patches in the win-
dow indicate the tokens that validly participates in the self-
attention computation. The area Ω (i, j) is generated by two
steps, i.e., the first step is to expand the original window, and
the second is to prohibit some tokens from participating in the
calculation of Spa-MSA. In Eq. 7, D is a constant variable;
V

′

(:,i,j) ∈ RC indicates the vector of the (i, j)th pixel position

in the output feature map V
′ ∈ RC×H×W ; W(i,j→x,y) ∈ R

indicates an element in the attention matrix which is com-
puted as the softmax normalization of the dot-product be-
tween the query Q(i,j) ∈ RC and the key K(x,y) ∈ RC :

W(i,j→x,y) =
e

1√
D
QT

(i,j)K(x,y)

Si
, (8)

where

Si =

k,k∑
x=1,y=1

e
1√
D
QT

(i,j)K(x,y) . (9)

By observing the generation of W ∈ Rk×k in the Eq. 8, the
D-Spa is a convolution operation with the content-aware char-
acteristic. In other words, it dynamically generates weights
at each position. Fig. 1 above shows the properties of Spa-
MSA and D-Spa. It can find that D-Spa can expand receptive
fields like dilation convolution and learn the local informa-
tion simultaneously. Furthermore, the D-Spa is pre-fixed, has
no sliding characteristic, and adopts a multi-head attention
mechanism, which groups the channels first, and each group
shares a learned parameter.

3.3 G-Spe
Fully connected layer (FC) [Gardner and Dorling, 1998] is a
basic linear unit in the CNNs, which connects the two hid-
den layers with the learnable parameters. Given input is

F ∈ RHW×C , and the parameters of FC can be expressed
as a matrix W ∈ RC×C

′

, the FC can be expressed in the
form of matrix multiplication:

F
′

= FW, (10)

where F
′ ∈ RHW×C

′

is the output of FC, and W is updated
by the backpropagating gradient. However, the weight of FC
is as spatial-agnostic as the vanilla convolution kernel, which
does not build a relationship with the input. In order to bet-
ter express the channel-wise relationship with the input, Hu
et al. [Hu et al., 2018] propose the idea of channel-attention
(CA), which can be represented by:

F
′

= F�W, (11)

where F
′ ∈ RHW×C is the output of CA, � represents dot

product operation and W ∈ RC is learned from the following
formula:

W = Φ (F) , (12)
where W is a weight learned by the network Φ from the input
F, whose value is content-aware with the input. From this
view, the weights in Spe-MSA are also content-aware, i.e.,
Spe-MSA generates a weight matrix using spatial similarity.

In the Spe-MSA, the weight contains spatially related in-
formation, and the matrix multiplication operation can be
regarded as a dynamic FC operation on one head of Spe-
MSA. Given the Spe-MSA with one head, the process can
be demonstrated as follows:

V
′

= VW, (13)

where V
′ ∈ RHW×C indicates the output of Spe-MSA, V ∈

RHW×C means the value of Spe-MSA, and W ∈ RC×C is
generated by the following formula:

W(i,j) =
e

1√
D

(K(:,i))
T
Q(:,j)

Sj
, (14)

in which

Sj =
C∑
i=1

e
1√
D

(K(:,i))
T
Q(:,j) , (15)

where Q ∈ RHW×C means the query of input; K ∈
RHW×C means the key of input; W(i,j) indicates the (i, j)th
position of weight matrix W ∈ RC×C , which is generated
by softmax normalization of the dot product between query
Q(:,j) ∈ RHW and key K(:,i) ∈ RHW ; Sj is the result of
summing the jth column in the matrix generated by the nu-
merator in Eq. 14 andD is a constant variable. By comparing
the weight generation in Eq. 10, Eq. 11, and Eq. 13, we can
find that Spe-MSA has the dense connection properties of FC
and the content-aware ability of CA, which means that Spe-
MSA dynamically establishes the connection between chan-
nels. To make full use of high-resolution spatial information
and local content in HR-MSI, we envisage the G-Spe as a
grouped design for space. In detail, we subdivide the value
V ∈ RHW×C , Q ∈ RHW×C , and K ∈ RHW×C into
g2 groups, and in the kth group we get the corresponding
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Vk ∈ R
HW
g2
×C , Qk ∈ R

HW
g2
×C and Kk ∈ R

HW
g2
×C , where

k ∈
{

1, 2, 3, · · · , HW
g2

}
. Then we calculate the weight ma-

trix Wk ∈ RC×C in the kth group independently as follows:

Wk
(i,j) =

e
1√
D

(Kk
(:,i))

T
Qk

(:,j)

Sk
j

, (16)

where the Sk
j is calculated by the following formula:

Sk
j =

C∑
i=1

e
1√
D

(Kk
(:,i))

T
Qk

(:,j) . (17)

We will perform matrix multiplication between Wk and Vk,
as shown in the following formula:

Vk′
= VkWk. (18)

Each group of G-Spe realizes a kind of dynamic FC op-
eration, i.e., a content-aware weight generator. We merge
together the calculated Vk′ ∈ R

HW
g2
×C according to the

spatial dimension to get the output V
′ ∈ RHW×C , where

k ∈
{

1, 2, 3, · · · , HW
g2

}
. In this way, G-Spe realizes the

grouped design along the spatial dimension through the regu-
lar space subdivision so that the model has a rich information
expression capability.
Overall Loss Function: We optimize the parameters of the
network in a unified and end-to-end manner. The overall loss
function consists of the weighted sum of two losses:

Ltotal = L1 + λssimLssim, (19)

where L1 means Sum of Absolute Difference, the loss Lssim

is expressed as:

Lssim = 1− SSIM(X̄ , X̃ ), (20)

where the SSIM1 means Structural SIMilarity, X̄ represents
the reference, X̃ denotes the output of our network, and λssim
is a positive hyperparameter fixed to 0.1 in our experiments.

4 Experiments
Datasets: To test the performance of our model, we conduct
experiments on the CAVE 2 and Harvard3 datasets. CAVE
dataset contains 32 HSIs, including 31 spectral bands rang-
ing from 400 nm to 700 nm at 10 nm steps. We randomly
select 20 images for training the network, and the remaining
11 images constitute the testing dataset. In addition, Harvard
dataset contains 77 HSIs of indoor and outdoor scenes, and
each HSI has a size of 1392× 1040× 31, covering the spec-
tral range from 420 nm to 720 nm. We crop the upper left
part (1000 × 1000) of the 20 Harvard images, 10 of which
have been used for training, and the rest has been exploited
for testing.
Data Simulation: The proposed network takes LR-HSI and
HR-MSI (X ,Y) as input pairs, while the ground-truth (GT)

1https://en.wikipedia.org/wiki/Structural similarity
2https://www.cs.columbia.edu/CAVE/databases/multispectral/
3http://vision.seas.harvard.edu/hyperspec/index.html

for training is HR-HSI X̄ . However, since HR-HSI is not
available as a reference, a simulation stage is required. In our
experiments using the CAVE dataset, we produce 3920 over-
lapping patches with a size of 64 × 64 × 31 by cropping 20
chosen training images. These patches serve as the HR-HSI
(ground-truth) X̄ patches. To simulate appropriate LR-HSIs,
we apply a 3 × 3 Gaussian blur kernel with a standard devi-
ation of 0.5 to the original HR-HSIs. We then downsample
the blurred patches with a scaling factor of 4. The HR-MSI
patches are generated using the common spectral response
function of the Nikon D7004 camera. Therefore, the input
pairs (X ,Y) consist of 3920 LR-HSI patches with a size of
16×16×31 and RGB image patches with a size of 64×64×3.
The pairs and their related GTs are randomly divided into
training data (80%) and validation data (20%). The same
procedure is used to simulate the input LR-HSI and HR-MSI
products and GTs for the Harvard dataset.
Benchmark: To assess the performance of our approach, we
compare it with various state-of-the-art methods for MHIF.
The upsampled LR-HSI in Fig. 2 is the bicubic-interpolated
result, which is added to the experiment as a baseline. Model-
based techniques include the MTF-GLP-HS [Selva et al.,
2015], the CSTF-FUS [Li et al., 2018a], the LTTR[Dian
et al., 2019], the LTMR[Dian and Li, 2019], and the IR-
TenSR[Xu et al., 2022] approaches. In addition, we perform
a comparison with other deep learning methods, such as the
DBIN [Wang et al., 2019], the SSRNet [Zhang et al., 2020],
the ResTFNet [Liu et al., 2020], the HSRNet [Hu et al.,
2021], the MoG-DCN [Dong et al., 2021], the Fusformer [Hu
et al., 2022] and the DHIF [Huang et al., 2022] network. All
the deep learning approaches are trained with the same input
pairs for a fair comparison. Moreover, the related hyperpa-
rameters are selected consistent with the original papers.
Implementation Details: The proposed network implements
in PyTorch 1.11.0 and Python 3.7.0 using AdamW opti-
mizer with a learning rate of 0.0001 to minimize Ltotal by
2000 epochs and Linux operating system with a NVIDIA
RTX3090 GPU.
Results on CAVE Dataset: We test our model on the CAVE
dataset. Fig. 4 presents the 11 testing images in an RGB
color composition. From Tab. 1, we can see that the proposed
approach overcomes the other methods in 4 quality indexes
(QIs), i.e., PSNR, SAM, ERGAS, and SSIM. Specifically,
we observe an improvement of ∼1.30/4.93/8.11/0.028% in
PSNR/SAM/ERGAS/SSIM compared to the second best
method, i.e., MoG-DCN [Dong et al., 2021]. Com-
pared with the third best method, DHIF [Huang et al.,
2022], our approach gets the gains ∼2.41/3.98/16/0.09% in
PSNR/SAM/ERGAS/SSIM. In terms of visual assessments
(see Fig. 5), we present the pseudo-color representations of
the fused products and some error maps to aid the visual in-
spection. Compared to the benchmark, our approach has bet-
ter details and visual effects. Having a look at the error maps,
the reconstruction of BDT is closest to the all zero map, and
significantly lower values than compared approaches.
Results on Harvard Dataset: Besides, we evaluate the per-
formance of our BDT on another hyperspectral image dataset

4https://www.maxmax.com/nikon d700 study.htm
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Methods
CAVE Harvard

PSNR SAM ERGAS SSIM #params PSNR SAM ERGAS SSIM #params

Bicubic 34.33±3.88 4.45±1.62 7.21±4.90 0.944±0.0291 − 38.71±4.33 2.53±0.67 4.45±41.81 0.948±0.0268 −
MTF-GLP-HS [Selva et al., 2015] 37.69±3.85 5.33±1.91 4.57±2.66 0.973±0.0158 − 33.81±3.50 6.25±2.42 3.47±1.82 0.952±0.0321 −

CSTF-FUS [Li et al., 2018a] 34.46±4.28 14.37±5.30 8.29±5.29 0.866±0.0747 − 39.13±3.50 6.91±2.66 4.64±1.80 0.913±0.0487 −
LTTR[Dian et al., 2019] 35.85±3.49 6.99±2.55 5.99±2.92 0.956±0.0288 − 37.91±3.58 5.35±1.94 2.44±1.06 0.972±0.0183 −

LTMR[Dian and Li, 2019] 36.54±3.30 6.71±2.19 5.39±2.53 0.963±0.0208 − 38.41±3.58 5.05±1.70 2.24±0.97 0.970±0.0166 −
IR-TenSR[Xu et al., 2022] 35.61±3.45 12.30±4.68 5.90±3.05 0.945±0.0267 − 40.47±3.04 4.36±1.52 5.57±1.57 0.962±0.0140 −
DBIN [Wang et al., 2019] 50.83±4.29 2.21±0.63 1.24±1.06 0.996±0.0026 0.469M 47.88±3.87 2.31±0.46 1.95±0.81 0.988±0.0066 0.469M

ResTFNet [Liu et al., 2020] 45.58±5.47 2.82±0.70 2.36±2.59 0.993±0.0056 2.387M 45.93±4.35 2.61±0.69 2.56±1.32 0.985±0.0082 2.387M
SSRNet [Zhang et al., 2020] 48.62±3.92 2.54±0.84 1.63±1.21 0.995±0.0023 0.027M 47.95±3.37 2.31±0.60 2.30±1.42 0.987±0.0070 0.027M

HSRNet [Hu et al., 2021] 50.38±3.38 2.23±0.66 1.20±0.75 0.996±0.0014 0.633M 48.29±3.03 2.26±0.56 1.87±0.81 0.988±0.0064 0.633M
MoG-DCN [Dong et al., 2021] 51.63±4.10 2.03±0.62 1.11±0.82 0.997±0.0018 6.840M 47.89±4.09 2.11±0.52 1.89±0.82 0.988±0.0073 6.840M

Fusformer [Hu et al., 2022] 49.98±8.10 2.20±0.85 2.50±5.21 0.994±0.0111 0.504M 47.87±5.13 2.84±2.07 2.04±0.99 0.986±0.0101 0.467M
DHIF [Huang et al., 2022] 51.07±4.17 2.01±0.63 1.22±0.97 0.997±0.0016 22.462M 47.68±3.85 2.32±0.53 1.95±0.92 0.988±0.0074 22.462M

BDT (ours) 52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014 2.668 M 48.83±3.45 2.07±0.49 1.83±0.81 0.989±0.0067 2.668 M

Ideal value ∞ 0 0 1 - ∞ 0 0 1 -

Table 1: Average quantitative comparisons on 11 CAVE examples and 10 Harvard examples simulating a scaling factor of 4. The best values
are highlighted in bold, and the second best values are underlined. M refers to millions.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 4: The testing images from the CAVE dataset: (a) balloons,
(b) cd, (c) chart and stuffed toy, (d) clay, (e) fake and real beers, (f)
fake and real lemon slices, (g) fake and real tomatoes, (h) feathers,
(i) flowers, (j) hairs, and (k) jelly beans. An RGB color representa-
tion is used to depict the images.

(i.e., Harvard). We consider the original HSI as ground-
truth, and simulate the LR-HSI in the same way as the CAVE
dataset. From Tab. 1, the results show that deep learning ap-
proaches outperform traditional ones. Our method gets the
best results (outperforms high-performance approaches such
as DHIF and Fusformer). The proposed approach shows an
excellent trade-off between performance and computational
costs on the Harvard dataset.

4.1 Ablation Study
In this section, we provide an in-depth discussion of D-Spa
and G-Spe in the BDT to demonstrate their effectiveness and
rationale. We compare their performance with ablation on
self-structure and other existing networks. To maintain gen-
erality and conciseness, we present our analysis based on the
CAVE dataset.

1) D-Spa and G-Spe: To verify the effectiveness, in Tab. 2,
results show that replacing D-Spa with Spa-MSA will bring
the performance gain, and replacing G-Spe with Spe-MSA
will also boost performance. And our BDT utilizes both D-
Spa and G-Spe obtaining the best results. It proves that the
designed modules boost performance of networks. Please

D-Spa G-Spe PSNR SAM ERGAS SSIM
52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014
52.03±3.79 2.02±0.59 1.04±0.75 0.997±0.0014
51.96±3.72 2.03±0.59 1.04±0.74 0.997±0.0013
51.91±3.77 2.02±0.59 1.05±0.76 0.997±0.0014

Table 2: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4.

note that Spa-MSA and Spe-MSA indicates the dilation 1 of
D-Spa and the group 1 of G-Spe in BDT, respectively.

Methods PSNR SAM ERGAS SSIM

Swin-Shift 51.47 ± 3.88 2.08 ± 0.60 1.09 ± 0.81 0.997 ± 0.0015
Swin-D 51.57 ± 4.00 2.04 ± 0.58 1.10 ± 0.85 0.997 ± 0.0016
Restormer-T 50.67 ± 4.36 2.34 ± 0.72 1.29 ± 1.06 0.996 ± 0.0024
Restormer-G 51.16 ± 3.93 2.22 ± 0.67 1.15 ± 0.79 0.996 ± 0.0017

Table 3: The average four QIs and the corresponding parameters on
the CAVE dataset simulating a scaling factor of 4.

2) Embedding in existing networks: We test D-Spa against
the Shifted Window operation in Swin Transformer and G-
Spe against the Spe-MSA in Restormer. We use a Swin
Transformer structure comparing the Shifted Window ap-
proach (Swin-Shift) with our D-Spa (Swin-D). And we
also compare Restormer network structure with the trans-
pose MSA (T-MSA) approach (Restormer-T) and our G-Spe
(Restormer-G). After using the proposed D-Spa and G-Spe,
the performance of Swin Transformer and Restormer have
corresponding enhancement in Tab. 3. It proves that the pro-
posed D-Spa and G-Spe improve the network performance
for solving the MHIF task.

3) Spatial grouped design in G-Spe: In the Tab. 4, we
tested the performance of Spe-MSA and G-Spe without spec-
tral multi-head (w/o head), using BFE in BDT as the back-
bone. Specifically, the Spe-MSA structure is grouped in the
spectral dimension, and the G-Spe structure is grouped in the
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Figure 5: The first and third rows show the results using the pseudo-color representation on “balloons” and “chart and stuffed toy”, respec-
tively, from the CAVE dataset. Some close-ups are depicted in the red rectangles. The second and fourth rows show the residuals between the
GT and the fused products. (a) IR-TenSR [Xu et al., 2022], (b) DBIN [Wang et al., 2019], (c) ResTFNet [Liu et al., 2020], (d) SSRNet [Zhang
et al., 2020], (e) HSRNet [Hu et al., 2021], (f) MoG-DCN [Dong et al., 2021], (g) Fusformer [Hu et al., 2022], (h) DHIF [Huang et al., 2022],
(i) Ours, and (j) GT.

spatial dimension. The result shows that the effect of the spa-
tial grouped design outperforms slightly than spectral dimen-
sion on the MHIF task.

Methods PSNR SAM ERGAS SSIM #Flops

Spe-MSA 52.03 ± 3.79 2.02 ± 0.59 1.04 ± 0.75 0.997 ± 0.0014 33.52G
w/o head 52.09 ± 3.78 2.00 ± 0.58 1.03 ± 0.75 0.997 ± 0.0013 33.87G

Table 4: The average four QIs and the corresponding flops on the
CAVE dataset simulating a scaling factor of 4. w/o head means G-
Spe without spectral multi-head. G means gillions.

4) D-Spa with different dilations: We investigated the im-
pact of different dilation rates on the MHIF task by designing
D-Spa. The proposed D-Spa has adjustable dilations that can
expand and hollow the window shown in Fig.3, thereby in-
creasing the receptive field. As shown in Tab.5, we found
that a dilation rate of 2 yields the best results. Thus, D-Spa
can provide a long-range response from a flexible range, and
it outperforms Spa-MSA in terms of achieving better results.

Method PSNR SAM ERGAS SSIM

d = 1 52.03±3.79 2.02±0.59 1.04±0.75 0.997±0.0014
d = 2 52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014
d = 3 51.51±3.91 2.18±0.65 1.11±0.83 0.997±0.0019

Table 5: The average four QIs on the CAVE dataset simulating a
scaling factor of 4. d indicates the dilation rate in D-Spa.

5) Test of multi-scaled input in bidirectional branch: We
gradually reduced the participation of the spectral branch in
the BFF process. The results in Tab. 6 show the spectral
branch plays a vital role in the restoration of image details.

G1 G3 G3 PSNR SAM ERGAS SSIM #Flops

52.30±3.98 1.93±0.55 1.02±0.77 0.997±0.0014 33.52G
52.04±3.84 1.99±0.57 1.03±0.76 0.997±0.0014 33.44G
51.91±3.70 2.02±0.59 1.03±0.73 0.997±0.0012 33.10G
50.72±3.48 4.48±1.38 3.84±1.15 0.993±0.0013 27.74G

Table 6: The four average QIs and the corresponding flops on the 11
testing images from the CAVE dataset simulating a scaling factor of
4. G1, G2, and G3 indicate the output which is the result of G-Spe in
spectal branch. G refers gillions.

5 Conclusions
This paper proposes the BDT, a Transformer fusion frame-
work, to address the MHIF problem, which employs D-Spa,
G-Spe, and bidirectional modules. Specifically, motivated by
the MHIF problem, D-Spa and G-Spe are used for spatial and
spectral information extraction, respectively. Moreover, the
proposed BDT can extract and fuse multi-scale information
to obtain high-quality results with moderate parameters.
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