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Abstract

Recently, information-theoretic analysis has be-
come a popular framework for understanding the
generalization behavior of deep neural networks.
It allows a direct analysis for stochastic gradient
/ Langevin descent (SGD/SGLD) learning algo-
rithms without strong assumptions such as Lips-
chitz or convexity conditions. However, the cur-
rent generalization error bounds within this frame-
work are still far from optimal, while substantial
improvements on these bounds are quite challeng-
ing due to the intractability of high-dimensional
information quantities. To address this issue, we
first propose a novel information theoretical mea-
sure: kernelized Rényi’s entropy, by utilizing op-
erator representation in Hilbert space. It inherits
the properties of Shannon’s entropy and can be ef-
fectively calculated via simple random sampling,
while remaining independent of the input dimen-
sion. We then establish the generalization error
bounds for SGD/SGLD under kernelized Rényi’s
entropy, where the mutual information quantities
can be directly calculated, enabling evaluation of
the tightness of each intermediate step. We show
that our information-theoretical bounds depend on
the statistics of the stochastic gradients evalu-
ated along with the iterates, and are rigorously
tighter than the current state-of-the-art (SOTA) re-
sults. The theoretical findings are also supported by
large-scale empirical studies.

1 Introduction
Modern deep neural networks (DNNs) achieve astonishing
success through their ability to memorize the entire train-
ing data while also generalizing well to unseen data. Gen-
eralization bounds in conventional statistical learning theory
fail to explain this empirical observation since they attribute
the generalization to the constrained complexity of hypoth-
esis spaces, which are usually scale-sensitive [Zhang et al.,
2021]. Instead, recent studies discovered that the algorithmic
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choice has a significant influence on the generalization behav-
ior of DNNs [Hardt et al., 2016; Bartlett et al., 2017], raising
broad research interests in investigating the theoretical prop-
erties of different learning algorithms [Pensia et al., 2018;
Neu et al., 2021; Wang et al., 2021; Li and Liu, 2022].

Stochastic gradient descent (SGD) has become the
workhorse behind modern DNNs training. Despite its sim-
plicity, SGD also enables high efficiency in complex and non-
convex optimization problems [Bottou et al., 2018]. This mo-
tivates extensive research into provable generalization bounds
for deep learning algorithms. The first line of research em-
ploys the concept of uniform stability, beginning with [Hardt
et al., 2016] on investigating convergence in expectation
and followed by enormous efforts exploiting similar ideas
[Bassily et al., 2020; Lei et al., 2021b; Yang et al., 2021b;
Yang et al., 2021a]. Another line of research connects the
generalization of DNNs with information-theoretic analysis
[Xu and Raginsky, 2017], also demonstrating great potential
in analyzing noisy and iterative learning algorithms: [Pensia
et al., 2018] is the first to investigate the generalization ability
of stochastic gradient Langevin dynamics (SGLD, a variant of
SGD that injects Gaussian noise at each iteration), whose re-
sult is improved by following studies [Negrea et al., 2019;
Wang et al., 2021]; [Neu et al., 2021] then establishes
information-theoretic bounds for SGD by introducing virtual
noises through an auxiliary weight process, whose bounds
are subsequently tightened in [Wang and Mao, 2021]. Be-
sides stability and information-theoretic views, researchers
also provide PAC-Bayesian [Neyshabur et al., 2018; Yang
et al., 2019] and model compression [Arora et al., 2018;
Zhou et al., 2018] perspectives for generalization analysis.

Although current efforts on understanding and explaining
the generalization of deep learning algorithms have yielded
appealing results, these bounds are still restrictive due to
their heavy reliance on strong assumptions or dimensionality
of hypothesis spaces, making them easily become vacuous
when applied to large-scale DNNs. For example, uniform
stability-based generalization bounds usually assume Lips-
chitz continuity and smoothness of the empirical risk func-
tion [Hardt et al., 2016; Lei et al., 2021b] or global optimum
assumptions such as convexity and the Polyak-Lojasiewicz
(PL) condition [Lei et al., 2021a; Li and Liu, 2022] to guar-
antee convergence, which is hard to meet in practice. On the
contrary, information-theoretic generalization results do not
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Figure 1: Generalization error of SGLD with MLP and CNN mod-
els. We provide more detailed analysis in Section 5.

rely on strong assumptions about the risk function, but the di-
mensionality of the hypothesis space, which often results in
severely over-estimated upper bounds. As shown in Figure
1, there exists a 102 to 103 gap between the true generaliza-
tion error and the SOTA information-theoretic generalization
bound [Wang et al., 2021]. Furthermore, the intractability of
high-dimensional information quantities possesses extra ob-
stacles to further tightening these bounds, since it is impracti-
cal to evaluate their tightness compared to the actual value of
intermediate information quantities used in the proof, neither
numerically nor theoretically.

In this paper, we establish computable information-
theoretic bounds for noisy and iterative learning algorithms
by adopting an alternative information measure, namely ker-
nelized Rényi’s entropy1. This new information quantity in-
herits the elegant properties of the original Shannon’s def-
inition, while being directly computable from given sam-
ples and independent of the input dimensionality. We then
bound the expected generalization error of these learning al-
gorithms with kernelized Rényi’s entropy, where each key in-
formation quantity in the bound could be directly accessed
and visualized by simple random sampling during the train-
ing process. Based on our visualization results, we improve
previous information-theoretic bounds by strictly tightened
ones. As an example, the above-mentioned work [Wang et
al., 2021] upper bounds the key mutual information quan-
tity in eq.(1) by the variance of the gradient, which is
grossly over-estimated, being 10 to 102 times looser than
the actual value (Intermediate Bound) as shown in Figure
1. This motivates us to reduce the gap by incorporating co-
variance between different dimensions of the gradient vec-
tor, which also applies to the work of [Pensia et al., 2018;
Wang and Mao, 2021], showing significant improvement on
multiple deep learning benchmarks. In summary, the key con-
tributions of this work include:
• We propose kernelized Rényi’s entropy based on operator

representation in Hilbert space. Unlike the classical Shan-
non’s entropy, our information quantity is directly com-
putable regardless of the dimensionality, while still being
compatible with existing information-theoretic generaliza-
tion frameworks.

• We establish mutual information generalization bounds for
SGD and SGLD under the notion of kernelized Rényi’s en-

1Proofs available at https://github.com/Gamepiaynmo/KRE

tropy and then visualize them on synthetic and real-world
learning tasks. Our visualization results indicate multiple
potential improvements in previous information-theoretic
generalization results.

• We provide improved bounds based on one of our observa-
tions by considering correlations between different dimen-
sions of the gradient vector. Empirical studies then demon-
strate that our bounds are 5 more times tighter compared to
previous SOTA results.

2 Preliminaries
Given random variable X , we denote the corresponding sam-
ple space by X , samples by lower-case letter x, and probabil-
ity distribution function (PDF) by pX . We write ∥·∥ to denote
the Euclidean norm of a vector or the Frobenius norm of a
matrix, and Id to denote the d-dimensional identity matrix.

2.1 Problem Setting
Let Z be the instance space of interest and W be the hypothe-
ses space. Let S = {Zi}ni=1 be a dataset of n i.i.d. samples
taking values in Z and W ∈ W ⊂ Rd be the output of learn-
ing algorithm A according to some conditional distribution
PW |S mapping from Zn to W . Let ℓ : W × Z → R be a
loss function. We aim to seek for a parameter w ∈ Rd that
minimizes the population risk L, defined by

L(w) ≜ EZ [ℓ(w,Z)].

Since the data distribution is usually unknown, we turn to
minimize the empirical risk

LS(w) ≜
1

n

n∑
i=1

ℓ(w,Zi).

For a learning algorithm A characterized by PW |S , the corre-
sponding generalization error is defined as the expected dif-
ference between L(w) and LS(w), i.e.

gen(W,S) ≜ EW,S [L(W )− LS(W )].

We assume throughout that ℓ(w, z) is differentiable almost
everywhere with respect to w for any Z, and ℓ(w,Z) is R-
subgaussian for any w ∈ W . Under these assumptions, [Xu
and Raginsky, 2017] shows that the generalization error of
any learning algorithm A is bounded by

|gen(W,S)| ≤
√

2R2I(S;W )

n
, (1)

where I(S;W ) is the mutual information between the input
dataset S and the output parameter vector W . Due to the
high-dimensional nature of modern DNNs, this quantity is
generally uncomputable, possessing extra obstacles to derive
tightened generalization bounds.

2.2 Rényi’s Entropy and Extensions
Recall that the Rényi’s α-order entropy Hα(X) is defined on
the PDF pX for a given continuous random variable X in X :

Hα(X) ≜
1

1− α
log

∫
X
pα(x) dx, (2)
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where the limit case α → 1 recovers Shannon’s entropy. Ex-
actly calculating this information quantity requires knowl-
edge about the underlying data distribution, which is usu-
ally unknown in practice. To alleviate this issue, [Giraldo
et al., 2014] proposes a novel measure of entropy by utiliz-
ing the Hilbert space representation with finite data points.
Specifically, it resembles quantum Rényi’s entropy in terms
of the eigenspectrum of a normalized Hermitian matrix con-
structed by projecting data points to a reproducing kernel
Hilbert space (RKHS). In this paper, we follow this Hilbert
space representation framework, with slight restrictions on
the associated reproducing kernel:
Assumption 1. Let κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ be a reproduc-
ing kernel, where ϕ: X 7→ H is the corresponding feature
mapping. Assume that κ satisfies

• Normalized: κ(x,x) = 1 for any x ∈ X ;

• Shift invariant: κ(x,x′) = f(∥x − x′∥) for some function
f : R+ 7→ R+;

• L2 integrable: ∀x ∈ X ,
∫
X κ2(x,x′) dx′ < ∞.

Given random variable X ∈ X , define linear operator GX :
H 7→ H as GXf ≜ EX [ϕ(x)⟨ϕ(x), f⟩]. One can verify that
tr(GX) = 1 when the kernel κ is normalized, so that the
eigenvalues of GX constitute a probability distribution which
is a natural density estimator for the distribution of X .

3 Kernelized Rényi’s Entropy: An Alternative
Information Measure

In this section, we introduce kernelized Rényi’s Entropy by
extending the work of [Giraldo et al., 2014] from finite-
sample cases to infinite-sample cases, enabling direct anal-
ysis of entropy quantities based on the PDF, uninfluenced by
the actual sampling process. Our definition inherits the ele-
gant properties of the original Shannon’s entropy by setting
α → 1, while still being able to be directly accessed via sim-
ple random sampling.
Proposition 1. Given linear operator GX defined as above
on random variable X ∈ X with PDF pX , we have

lim
α→1

1

1− α
log tr(Gα

X) = −tr(GX logGX)

= −
∫∫

X 2

pX(x) log pX(x′)κ2(x,x′) dx dx′.

Proposition 1 directly implies the following definition of
kernelized Rényi’s entropy of order α → 1:
Definition 1. Given continuous random variable X and its
PDF pX , the kernelized Rényi’s entropy for X of order α →
1 is defined as

S1(X) ≜ −Cκ

∫∫
X 2

pX(x) log pX(x′)κ2(x,x′) dx dx′.

where Cκ = 1/
∫
X κ2(0,x) dx > 0 is the normalizing factor

that let the squared kernel function integrate to 1.

Compared with the classical Shannon’s definition which
is intractable for high-dimensional distributions, Definition 1

could be directly accessed regardless of the dimensionality.
To this end, one can randomly sample m data points {xi}mi=1

from pX , and denote ĜX : H 7→ H as an empirical version of
GX by ĜXf ≜ 1

m

∑m
i=1 ϕ(xi)⟨ϕ(xi), f⟩. It can be verified

that ĜX is an unbiased estimate of GX , which further im-
plies the following finite-sample approximation to kernelized
Rényi’s entropy:
Proposition 2. Let {xi}mi=1 be i.i.d. data points sampled
from X , and let K ∈ Rm×m be the kernel matrix constructed
by Kij =

1
mκ(xi,xj). Then with confidence 1− δ,

|S1(X)− Ŝ1(X)| ≤
9Cκ

√
2 log 2

δ

3
√
m

, (3)

where Ŝ1(X) = −Cκtr(K logK).
Note that the above concentration result only involves the

number of samples while remaining independent of the di-
mension, which allows our kernelized entropy to be directly
accessed in high-dimensional cases. This property is a sig-
nificant benefit in analyzing the behavior of modern DNNs,
which usually involve thousands or even millions of parame-
ters. One can also notice that Definition 1 can be easily ex-
tended to multivariate joint entropy by taking κ = κX ⊗ κY

as the kernel function for the joint distribution PX,Y . With
these settings, kernelized Rényi’s divergence and mutual in-
formation can be derived accordingly:
Definition 2. Given probability measures P , Q on X and
their PDF p, q, the kernelized Rényi’s divergence between P
and Q is defined as:

D1(P ∥ Q) ≜ Cκ

∫∫
X 2

p(x) log
p(x′)

q(x′)
κ2(x,x′) dx dx′.

Definition 3. Given normalized kernels κX , κY , continuous
random variables X , Y and their PDF pX , pY , the kernelized
Rényi’s mutual information between X and Y is defined as:

I1(X;Y ) ≜ CκX
CκY

∫∫∫∫
Y2×X 2

pX,Y (x,y)·

log
pX,Y (x

′,y′)

pX(x′)pY (y′)
κ2
X(x,x′)κ2

Y (y,y
′) dx dx′ dy dy′.

The main difference between Shannon’s entropy and ker-
nelized Rényi’s entropy lies in the kernel function κ. Specif-
ically, our definition recovers the original Shannon’s entropy
when κ is the Dirac-Delta function. To characterize the dif-
ference between them, we introduce the discrepancy function

uκ
X(x) ≜ Cκ

∫
X
[log pX(x)− log pX(x′)]κ2(x,x′) dx′,

and its expected version

Eκ
X(p) ≜

∣∣∣∣∫
X
p(x)uX(x) dx

∣∣∣∣.
We simply denote the expected discrepancy Eκ

X(pX) by
Eκ

X
′ and Eκ

X(p̂X) by Eκ
X for convenience, where p̂X(x) ≜

Cκ

∫
X pX(x′)κ2(x,x′) dx′.
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Proposition 3. Let κ(x,x′) = 1∥x−x′∥<c. Assume that the
PDF pX(·) satisfies:
• Continuous: ∀x ∈ X , limx′→x pX(x′) = pX(x);
• Positive: ∀x ∈ X , limx′→x pX(x′) > 0;
then we have limc→0 E

κ
X → 0 and limc→0 E

κ
X

′ → 0.
Proposition 3 indicates that when the normalized kernel

function Cκ · κ2 has a very peaked bump, i.e. c is small, the
expected discrepancy terms Eκ

X and Eκ
X

′ both tend to 0. As
we will show in Proposition 4, setting c → 0 corresponds to
the case where kernelized Rényi’s entropy recovers the origi-
nal Shannon’s definition. The continuity assumption above is
easily satisfied when X is a continuous random variable. The
positiveness assumption is also naturally satisfied when X is
truncated between some interval [a, b] so that pX(x) > 0 for
any x ∈ [a, b] (e.g. randomly sampled image data are always
truncated by [0, 255]), or the distribution of X is tailed so that
pX(x) > 0 for any finite x ∈ X (e.g. the Gaussian distribu-
tion is widely used for model parameter initialization), which
are common cases in modern DNNs.
Proposition 4. Let X,X ′ ∈ X , Y ∈ Y , Z ∈ Z be contin-
uous random variables with probability measures PX , PX′ ,
PY and PZ respectively. Then

1. H(X) ≤ S1(X) ≤ H(X) + Eκ
X

′.
2. D1(PX ∥ PX′) ≥ −Eκ

X .
3. I1(X;Y ) = D1(PX,Y ∥ PX ⊗ PY ) ≥ 0.
4. I1(X;Y ) = S1(X) + S1(Y )− S1(X,Y ).
5. I1(X;Y |Z) = I1(X;Y, Z)− I1(X;Z).
6. Let X,Y, Z form Markov chain X → Y → Z, then

I1(X;Y ) ≥ I1(X;Z) and I1(Y ;Z) ≥ I1(X;Z).
Proposition 4 shows that kernelized Rényi’s entropy in-

herits the essential properties of the original Shannon’s en-
tropy, thus guaranteeing compatibility with existing informa-
tion theoretical analysis frameworks. Property 1 verifies that
when c → 0 in Proposition 3, kernelized Rényi’s entropy re-
covers the original Shannon’s entropy. Combining with the
following properties, this conclusion also applies to diver-
gence and mutual information quantities. Property 2 indicates
that although kernelized Rényi’s divergence is not guaranteed
to be positive, it cannot be significantly less than 0 when the
kernel κ is chosen properly. Property 4 and 5 imply that an
estimate of the mutual information quantity could be acquired
by estimating the value of multiple individual entropy quan-
tities. Property 6 is the kernelized Rényi’s entropy version of
the data processing inequality.

In the sequel, we will use Gaussian kernel in kernelized
Rényi’s information quantities to bound the expected gener-
alization error, i.e.

κ(x,x′) = exp(−∥x− x′∥22/2σ2
κ),

where σκ is the kernel width. Note that there is a trade-off for
the choice of σκ: A small σκ implies Eκ

X ≈ 0 and reduces
to Shannon’s entropy. However, this will cause a large nor-
malization factor Cκ and result in a large estimation error as
shown in Proposition 2. In practice, we usually select σκ ac-
cording to the top 10% to 20% Euclidean distances between
all pairwise data points as suggested by [Yu et al., 2019].

4 Generalization Bounds with Kernelized
Rényi’s Entropy

This section presents information-theoretic generalization
bounds for iterative and noisy learning algorithms under ker-
nelized Rényi’s entropy. Firstly, we show that the mutual in-
formation bound for expected generalization error in eq.(1)
also holds for our kernelized one:
Theorem 1. Suppose that ℓ(w,Z) is R-subgaussian with re-
spect to Z for every w ∈ W , then

|ES,W [L(W )− LS(W )]| ≤

√
2R2Î1(S;W )

n
, and

ES,W [L(W )− LS(W )]2 ≤ 4R2(Î1(S;W ) + log 3)

n
,

where Î1(S;W ) = I1(S;W ) + Eκ
S,W .

Remark 1. Theorem 1 provides a kernelized Rényi’s entropy
perspective for information-theoretic generalization [Xu and
Raginsky, 2017]. As indicated by Proposition 3, Eκ

S,W is the
expected discrepancy of the joint distribution between S and
W associated with κ, which vanishes when σκ → 0. It is
worth noting that Theorem 1 upper bounds both the expec-
tation and the variance of gen(W,S) by the same quantity
I1(S;W ), thus also yields high-probability bounds for the
generalization error through concentration inequalities e.g.
Markov’s and Chebyshev’s inequalities.

Next, we apply our generalization result on mini-batched
iterative and noisy learning algorithms for empirical risk min-
imization. Suppose algorithm A finishes in T steps, and let
W0 ∈ W be the initial parameter vector. At the t-th step, a
batch of data points Bt ⊂ S independent from the current
parameter vector is randomly selected and used to compute a
direction for gradient descent:

g(w,Bt) ≜
1

|Bt|
∑
z∈Bt

∇wℓ(w, z).

Then the updating rule can be formalized by
Wt = Wt−1 − ηtg(Wt−1, Bt) + ξt, (4)

where Wt denotes the parameter vector at t-th step, ηt is the
learning rate and ξt ∈ W is a random vector independent
from Wt−1 and Bt. Obviously, W0 → W1 → · · · → WT

forms a Markov chain.

4.1 Stochastic Gradient Langevin Dynamics
The SGLD algorithm is a variant of the classical SGD algo-
rithm by injecting random noises in each gradient update as
shown in eq.(4). A common choice is the isotropic Gaus-
sian noise, i.e. ξt ∼ N(0, σ2

t Id), since it has the maximum
entropy for a fixed variance σ2

t which leads to the tightest
upper bound. [Pensia et al., 2018] derived the following
information-theoretic generalization bound for SGLD:
Lemma 1. Let WT be the parameter vector acquired by the
SGLD algorithm after T updates, then

I(WT ;S) ≤
T∑

t=1

d

2
log

(
η2tL

dσ2
t

+ 1

)
, (5)

where L = maxw∈W,z∈Z∥g(w, z)∥22.
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Note that the constant L in Lemma 1 is upper bounded by
the square of the Lipschitz constant if ℓ(w, z) is Lipschitz
continuous with regard to w, and the bound is dimension-
dependent. This result is then improved in [Wang et al., 2021]
by removing the Lipschitz assumption:
Lemma 2. Under the same conditions of Lemma 1:

I(WT ;S) ≤
T∑

t=1

η2t Vt

2σ2
t

, (6)

where Vt is the gradient variance at step t, defined by

Vt ≜ EWt−1,Bt

[
∥g(Wt−1, Bt)− EBt [g(Wt−1, Bt)]∥22

]
.

At first glance, the above bound does not depend on the di-
mensionality d. The gradient variance Vt, however, actually
relies on d since it is the summation of the variance raised by
each dimension of the stochastic gradient vector. The main
reason is that they use isotropic Gaussian distributions to up-
per bound the entropy of stochastic gradient, being severely
over-estimated according to our empirical results (see Figure
2 and 3). To address this issue, we consider using the cor-
relation between different dimensions of the gradient, which
yields strictly tighter bounds for SGLD:
Theorem 2. Under the same conditions of Lemma 1:

I1(WT ;S) ≤
T∑

t=1

I1(Wt;Bt|Wt−1) (7)

≤
T∑

t=1

(
1

2
log

∣∣∣∣ η2tσ2
t

Vt + I

∣∣∣∣+ Eκ
Wt|Wt−1

)
, (8)

I(WT ;S) ≤
T∑

t=1

1

2
log

∣∣∣∣ η2tσ2
t

Vt + I

∣∣∣∣, (9)

where Vt = Cov[g(Wt−1, Bt)] is the gradient covariance
matrix and |·| denotes the matrix determinant.
Remark 2. Theorem 2 asserts that the kernelized Rényi’s mu-
tual information I1(WT ;S) is upper bounded by the deter-
minant of the gradient covariance matrix, which involves the
full correlation between different dimensions of the gradient
vector. The limit case σκ → 0 implies an upper bound for
Shannon’s mutual information I(WT ;S) in eq.(9). Note that
the kernelized Rényi’s information quantities in eq.(7) can be
directly calculated from Bt, enabling us to validate the tight-
ness of these intermediate bounds. Combining with Theorem
1, one can obtain upper bounds for the expected generaliza-
tion error of SGLD.

The following proposition shows that our bound is strictly
tighter than that of Lemma 1 and 2.
Proposition 5. Given Vt, Vt and L defined as above, let
{ci}ri=1 be a disjoint partition of {n}, i.e. c1∪· · ·∪cr = {n}
and ci ∩ cj = Φ for any i ̸= j. Let Vi

t be the sub-matrix of
Vt with columns and rows indexed by ci, and define

θc(V) =
1

2
log

∣∣∣∣ η2tσ2
t

V+ I

∣∣∣∣, θv(V ) =
d

2
log

(
η2t V

dσ2
t

+ 1

)
,

then θc(Vt) ≤
r∑

i=1

θc(Vi
t) ≤ θv(Vt) ≤ θv(L).

0 10 20 30 40 50

101

102

103

104

SG
LD

True Gap
Lemma 2
IWS
IWB|W
Theorem 2

0 100 200 300 400 500

101

102

0 10 20 30 40 50
epoch

101

102

103

SG
D

True Gap
Lemma 3
IWS
IWB|W
Theorem 3

0 100 200 300 400 500
step

100

101

102
µv(Vt)

µc(t)

Figure 2: Comparison of generalization bounds on synthetic data.

Remark 3. The quantities θc and θv correspond to the up-
per bounds in Theorem 2 and Lemma 2 respectively. When
the model size d is large, it is infeasible to calculate the en-
tire covariance matrix Vt due to limited memory. Proposi-
tion 5 suggests an alternative upper bound for θc(Vt), which
could be calculated using much lower memory by dividing
the parameter vector into different groups according to their
correlation (e.g. let each layer of the model be a group), cal-
culating θc(Vi

t) for each group and then summing them up.
In the limit case where every single parameter of W repre-
sents a group, calculating θc requires no more memory than
θv , while still being strictly tighter than the latter one.

4.2 Stochastic Gradient Descent
Unlike SGLD, the SGD algorithm does not involve random
noises in each update, i.e. ξt = 0. This actually causes ex-
tra difficulty for information-theoretic generalization analysis
as the strategy used to derive the SGLD bound is no longer
available. To circumvent the issue, [Neu et al., 2021] pro-
poses to introduce an auxiliary weight process W̃t that man-
ually includes virtual noises, and then bridges the differences
between these two processes (Wt and W̃t). Let

W̃0 = W0, and

W̃t = W̃t−1 − ηtg(Wt−1, Bt) + ξ̃t, for t > 0,

where ξ̃t ∼ N(0, σ2
t I) are random Gaussian vectors. Obvi-

ously, we have W̃t = Wt + ∆t, where ∆t =
∑t

i=1 ξ̃i. The
recent work [Wang and Mao, 2021] establishes the following
information-theoretic generalization bound for SGD:
Lemma 3. Assume that L(WT ) ≤ E∆t

[L(WT +∆t)] and ℓ
is twice differentiable. Then for any σ1, · · · , σT > 0, we have

gen(WT ;S) ≤
1

2

T∑
t=1

σ2
tEWT

[H(WT )] + |gen(W̃T ;S)|,

and I
(
W̃T ;S

)
≤

T∑
t=1

d

2
log

(
η2t Vt

dσ2
t

+ 1

)
, (10)
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Figure 3: Visualization and comparison of information-theoretic generalization bounds for SGLD and SGD on MNIST and CIFAR10.

where H(WT ) = EZ [tr(HWT
(Z))] and HWT

(Z) is the Hes-
sian matrix of the loss ℓ(WT , Z) with respect to WT .

Again, the above mutual information bound relies on d.
We adopt the same strategy that was explored in Theorem 2
to alleviate this issue:
Theorem 3. Assume κ satisfies Assumption 1 and under the
same conditions of Lemma 3:

I1

(
W̃T ;S

)
≤

T∑
t=1

(
1

2
log

∣∣∣∣ η2tσ2
t

Vt + I

∣∣∣∣+ Eκ
W̃t|W̃t−1

)
,

I
(
W̃T ;S

)
≤

T∑
t=1

1

2
log

∣∣∣∣ η2tσ2
t

Vt + I

∣∣∣∣. (11)

Remark 4. Theorem 3 establishes information-theoretic gen-
eralization bound for the SGD algorithm within the frame-
work of kernelized Rényi’s entropy, where eq.(11) corre-
sponds to the limit case σκ → 0. We highlight that our
result upper bounds the generalization error by gradient co-
variance, which is strictly tighter than that of Lemma 3 since
θc(Vt) ≤ θv(Vt) as shown in Proposition 5. Note that the
bounds in Theorem 2 and 3 could be further improved by
taking into account higher order moments of the stochastic
gradient, but this would impose a significant computational
burden because the s-th moment tensor is of size ds, making
the potential improvement less meaningful in practice.

5 Empirical Studies
In this section, we visualize the computable generalization
bounds for SGLD/SGD derived in the previous sections, and
verify the tightness of previous results as well as our im-
proved ones in Theorem 2 and 3. For simplicity, we use con-
stant values for learning rates ηt = η and Gaussian noises
σt = σ. We ignore the expected discrepancy Eκ

X terms in
computation since they tend to 0 by taking appropriate σκ

values, and are in fact not computable. Advanced tuning tech-
niques such as momentum, weight decay, and batch normal-
ization are not adopted. To compute R in Theorem 1, we

collect the loss values of each batch in each epoch and let
R = 1

2 [maxt ℓ(Wt−1, Bt)−mint ℓ(Wt−1, Bt)]. To compute
Vt and Vt in the mutual information upper bounds above, we
use the BackPack Pytorch library [Dangel et al., 2020] to ac-
quire an empirical estimate of Vt and Vt from each batch in-
put of data. To compute H(WT ) in Theorem 3, we use the
PyHessian library to acquire the Hessian matrix. Each exper-
iment is repeated 100 times to acquire i.i.d. samples of Wt

and Bt, which are then used to construct the kernel matrix K
in eq.(3) to compute the kernelized Rényi’s mutual informa-
tion in our information-theoretic upper bounds.

5.1 Synthetic Data
Our first experiment incorporates a simple linear regression
problem

y = w⊤x+ ε,

where x is the 10 dimensional input vector, y is the regres-
sion target, w is the linear coefficient and ε is some zero-
mean random noise. We train an MLP with one hidden layer
of width 10. For each of the 100 independent training pro-
cesses, we generate an independent training dataset of size
n = 100 using the same strategy. The comparison of existing
theoretical generalization bounds against the true generaliza-
tion gap is shown in the left side of Figure 2, in which we
denote the information-theoretic bounds by the correspond-
ing key information quantities: I1(WT ;S) by IWS, and the
summation of I1(Wt;Bt|Wt−1) by IWB|W. Note that al-
though eq.(7) is derived under the context of the SGLD al-
gorithm, it still holds for the SGD algorithm since the only
prerequisite of this inequality is the Markov chain relation-
ship S → {Bt}Tt=1 → {Wt}Tt=1.

As can be seen, IWS is always smaller than IWB|W, and
both of them consistently fall in the interval between the
curve of the True Gap and the bound of eq.(9) for SGLD (or
eq.(11) for SGD), indicating that our approximations success-
fully reflect the actual behavior of these information-theoretic
quantities I(Wt;S) and I(Wt;Bt|Wt−1). We can gain sev-
eral important insights from the visualization results:
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1) The gap between IWS and the true generalization gap in-
dicates that the sub-gaussian constant R of the loss function
ℓ(w,Z) with respect to Z is over-estimated. It is natural to as-
sume that well-trained DNNs yield lower loss than a random
initialization, and thus the constant R is expected to decrease
along with the training process. This observation could be
adopted to further tighten the bound in eq.(1) and Theorem 1.

2) IWS quickly reaches the peak and then turns to de-
crease along with the training process (one can refer to the
Appendix for more details), whose behavior matches that of
the True Gap curve, while IWB|W keeps increasing since
each I(Wt;Bt|Wt−1) is always strictly positive. This obser-
vation indicates that although the model always learns some
knowledge from a new batch (i.e. I(Wt;Bt|Wt−1) ≥ 0),
the total information that W contains about the dataset S
(i.e. I(Wt;S)) quickly reaches the upper limit: the net-
work is actually forgetting information that learned previ-
ously. This “forget” behavior is not captured by the current
work of information-theoretic generalization bounds, result-
ing in a gradually increasing gap between IWS and IWB|W
when the number of training epochs grows large.

3) The remaining gap between IWB|W and our improved
bounds indicates that current bounds are still far from optimal
even if the full correlation of the noisy gradient is consid-
ered. This observation is supported by the recent works [Gur-
buzbalaban et al., 2021; Camuto et al., 2021], who claim that
the stochastic gradient vector generated by SGD is heavy-
tailed and their entropy is significantly over-estimated by as-
suming Gaussian distributions. Another conjecture is that
some implicit self-regularization mechanisms exist in DNNs
[Mahoney and Martin, 2019; Martin and Mahoney, 2021], re-
sulting in the information captured by the weights being much
lower than their theoretical capacity.

The right side of Figure 2 provides an intuitive comparison
between the upper bounds θc (gradient covariance matrix) in
Theorem 2 and θv (gradient variance) in Lemma 2. It can be
seen that θv(Vt) is always larger than θc(Vt), especially at the
beginning of the training process. This observation verifies
our claim in Proposition 5.

5.2 Real-world Data
We then visualize our computable generalization bounds on
real-world datasets to demonstrate the scalability of kernel-
ized Rényi’s entropy. Following the experiment settings in
[Wang et al., 2021], we train an MLP with a wider hidden
layer on MNIST and a 4-layer CNN on CIFAR10. In each of
the 100 individual training processes, a portion of data pairs
is uniformly sampled from the entire dataset as the training
dataset to simulate the randomness of S. Detailed experiment
settings can be found in Appendix.

Similarly, the comparisons between different generaliza-
tion bounds are reported in Figure 3. As can be seen, the
curve of IWB|W still consistently falls in the correct interval
between adjacent bounds, and perfectly reflect the increas-
ing trend of the gradient covariance upper bound. The gra-
dient variance bound in eq.(6) is still grossly over-estimated
compared to IWB|W. For comparison, our tightened bound of
eq.(9) (or eq.(11)) covers a large portion of this gap between
the curves of IWB|W and Lemma 2 for SGLD (or Lemma
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Figure 4: Random label experiment on MNIST.

3 for SGD). Moreover, it can be seen that during the train-
ing process of the SGLD algorithm, the curve of θc quickly
stops increasing and starts to decrease in the latter epochs,
while the curve of θv is consistently increasing along with
the whole training process. This observation further verifies
the tightness of our improved generalization bounds.

Next, we conduct random label experiments to demonstrate
the tightness of our improved generalization bounds under
different levels of label noises. We keep the same experi-
ment settings as above, while randomly replacing the training
labels with noisy labels with a certain probability specified by
the hyper-parameter ρ. As shown in Figure 4, higher levels of
label noise lead to higher generalization errors. While both
the bound of [Wang and Mao, 2021] and ours successfully
reflect the trend of the true generalization gap alongside the
training process, our bound is 5 more times tighter than theirs
in Lemma 3. We refer the readers to the Appendix for extra
experimental results on CIFAR10 and varying model sizes.

6 Conclusion
In this work, we address the common issue that Shan-
non’s information quantities are intractable for estimation
in practice. This possesses extra obstacles for information-
theoretic generalization analysis, since it is impossible to
evaluate the tightness of any intermediate information quan-
tities (I(W ;S), I(Wt;Bt|Wt−1)) used by previous general-
ization bounds [Wang et al., 2021; Wang and Mao, 2021],
resulting in the corresponding upper bounds (Lemma 2 and
3) being severely over-estimated. To address this issue, we
propose an alternative measure of entropy named kernelized
Rényi’s entropy, which could be directly estimated regardless
of the dimensionality, and still be compatible with existing
generalization analysis frameworks. We successfully apply
it to derive and visualize information-theoretic generalization
bounds for noisy and iterative learning algorithms, indicat-
ing multiple potential directions for further improvement. We
then prove tightened bounds for SGLD and SGD based on
one of these findings, demonstrating significant improvement
over existing works on multiple deep learning benchmarks.
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