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Abstract
Visual Question Answering (VQA) is a well-known
problem for which deep-learning is key. This poses
a challenge for explaining answers to questions, the
more if advanced notions like contrastive explana-
tions (CEs) should be provided. The latter explain
why an answer has been reached in contrast to a
different one and are attractive as they focus on rea-
sons necessary to flip a query answer. We present
a CE framework for VQA that uses a neurosym-
bolic VQA architecture which disentangles percep-
tion from reasoning. Once the reasoning part is
provided as logical theory, we use answer-set pro-
gramming, in which CE generation can be framed
as an abduction problem. We validate our approach
on the CLEVR dataset, which we extend by more
sophisticated questions to further demonstrate the
robustness of the modular architecture. While we
achieve top performance compared to related ap-
proaches, we can also produce CEs for explanation,
model debugging, and validation tasks, showing the
versatility of the declarative approach to reasoning.

1 Introduction
Visual Question Answering (VQA) [Zou and Xie, 2020] is
a challenging field that combines object detection, natural
language processing, and reasoning to give the answer to a
question related to some visual input. VQA finds interesting
applications in the real world, such as medicine and adver-
tising [Barra et al., 2021]. Although VQA has seen great
advances in recent years, VQA systems typically rely on deep-
learning architectures, and the important aspect of explainabil-
ity [Dosilovic et al., 2018]—a constant focus of the machine
learning community due to the importance of building trans-
parent and interpretable systems—is still challenging.

Contrastive explanations (CEs) [Lipton, 1990] answer why
a decision has been reached in contrast to a different one.
This can serve as a window into the epistemic state of the
explainee, and the explanation can focus on input features
that are necessary to flip an outcome instead of considering a
complete causal chain. It has been argued that CEs are intuitive
to understand and to produce for humans, as explanations are
often (implicitly) contrastive [Miller, 2019].

Our main contribution is a CE framework for VQA that aims
at explaining why the answer to a question is P in contrast to
F . An explanation identifies a minimal set of abstract features
of the scene, like types and positions of objects, that need
to be changed to create the counterfactual outcome F . This
approach is inspired by recent work on CE to improve the
interpretability of natural-language processing models [Jacovi
et al., 2021]. There are however important differences to our
approach for the VQA domain: Jacovi et al. use interventions
on input factors that are mostly amnesic in nature, i.e., an
alternative outcome is explained by omitting factors from the
input. We are instead interested in more general changes to an
input scene that involve not only removing objects but chang-
ing their attributes, moving them, or even adding new objects.
Furthermore, our notion of explanations incorporates a more
fine-grained view on the cost of the required transformations.

Regarding related work, visualising the contributions of
individual pixels to the prediction is often used to improve the
interpretability of VQA systems [Arras et al., 2022], but this
often gives only limited insights into the reasoning process.
Networks like the MAC [Hudson and Manning, 2018] allow
to follow the attention mechanism for both the reasoning steps
that come from the question as well as attention on corre-
sponding areas of the scene. The NS-VQA system presented
a modular neurosymbolic architecture to disentangle percep-
tion from reasoning [Yi et al., 2018]. It is interpretable as the
reasoning part is implemented in Python and can be traced by
a debugger. This type of interpretations resemble complete
causal chains, but they are not geared to contrastiveness as ex-
planations in our proposal. The CLEVR-X dataset [Salewski
et al., 2020] was designed to promote explainability for VQA.
However, the task there is to select natural language expression
as explanations that fit best, which may not help to produce
new explanations, the less contrastive ones.

Our CE framework for VQA, which we call NSVQASP,
is inspired by NS-VQA. The latter had big success in solv-
ing challenging VQA datasets like CLEVR [Johnson et al.,
2017]—consisting of computer generated images with geo-
metric objects and compositional questions revolving around
those—where it reaches 99% accuracy. While the reasoning
part in NS-VQA is implemented in Python, Eiter et al. (2022)
recently introduced an implementation that uses a logical the-
ory and answer-set programming (ASP) [Brewka et al., 2011]
instead. Once the reasoning part is provided as logical theory,
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CE generation can be framed as a task of logical abduction.
ASP proves to be a promising framework to realise this, in par-
ticular as ASP optimisation allows one to express preferences
with complex cost functions, which can be easily changed
if need be. We present a novel variant of CE explanations
designed to aid model validation tasks, which exhibit whether
an answer can be flipped by only changing object attributes
with low confidence scores from the object detection module.

We validate our approach on the CLEVR dataset, which
we extend by several more sophisticated questions to further
demonstrate the robustness of the modular architecture of
NSVQASP. In particular, we add 20 new question templates
for different versions of the new spatial relation “between”,
equality of objects, and counting. While we achieve top per-
formance compared to related neural and neurosymbolic ap-
proaches, we can moreover produce CEs. We show this for
model explanation, debugging, and validation tasks, demon-
strating the versatility of the declarative approach to reasoning
within modular neurosymbolic VQA architectures.

Code and data are available from https://github.com/
pudumagico/nsvqasp.

2 Contrastive Explanations for VQA
Contrastive explanations (CE) aim at answering why a cer-
tain outcome occurred in contrast to an alternative one. In
this section, we present a framework for CE in the VQA do-
main. Our approach is inspired by a related one from natural
language processing due to Jacovi et al. (2021), who used
an intervention-based approach, in which causal factors that
lead to a model decision are identified by omitting them and
thereby creating the desired counterfactual outcome.

2.1 A CE Framework for VQA
In VQA, a problem instance consists of a visual scene S and a
natural language question Q. The goal is to correctly answer
Q for the given scene S. A contrastive explanation clarifies
why the answer produced by a model is P and not F , by
showing what need to be changed in a scene so that the answer
changes from P to F .

We illustrate our CE formalisation for VQA using the
CLEVR dataset [Johnson et al., 2017] that tests various as-
pects of visual reasoning including attribute identification,
counting, comparison, spatial relationships, and logical op-
erations. An example of a CLEVR scene from the original
paper [Johnson et al., 2017] and several questions are given
in Fig. 1. For each question, we also present an alternative
answer, called the foil, to generate a contrastive explanation.

For our formalisation, we adjust the terminology of Jacovi
et al. (2021) to our setting. The candidate factor space F
consists of all features with potential influence on a model’s
decision. For a VQA task, we are only interested in features
that describe the scene in terms of symbolic properties like
position or shape of an object.

In CLEVR, each object has a position, a colour, a shape, a
size, and a material. Each of these attributes has a finite range
of values. We can use a tuple representation for objects and F
can be defined a finite set containing all object tuples.

The event space E is the set of all answers a model can
produce. In CLEVR, questions are either Boolean, ask for

a number when counting is involved, or ask for an object
attribute (other than position). As the maximal number of
objects in any scene is bounded, E is a finite set.

For a model M , we write M [S,Q] to denote the answer
that M produces for question Q and scene S. Furthermore,
a(S) ⊆ F is the abstract scene representation for S. Our
formal CE definition for VQA systems is as follows.

Definition 1. Let M be a model with candidate factor space
F and event space E . Assume that M [Q,S] = P for some
question Q and some visual scene S. A contrastive explanation
(CE) for the foil F ⊆ E is a set E ⊆ F such that M [Q,S′] ∈
F , where S′ is a scene with a(S′) = E.

The foil F describes the contrastive outcome as a set of
answers and an explanation is an abstract representation of a
scene that would result in some answer from F . Typically, F
contains a single answer, but F = E \ {P} can also be useful
for explaining how to flip the outcome in any direction.

Under Occam’s razor, explanations are typically required to
fulfill some notion of minimality, as they should only highlight
aspects of the input that necessarily have to change. We thus
further require CEs to be minimal under some preference
relation E ≺ E′ between explanations E and E′.

For CLEVR, a good candidate for defining preferences is
to measure how many steps are required to change an abstract
representation a(S) of the original scene S to the CE E and
how many objects are involved. For instance, it appears to
be less invasive to change the position of an object than other
object attributes. Also, the number of objects affected should
be small so that explanations are localised.

To make this precise, we consider the following operations
for transforming an abstract representation into another one:
(i) adding a new object, (ii) removing an object, (iii) changing
an object attribute other than the position, and (iv) changing
the position of an object. The operations have associated costs
that can be customised by the user. For example, they could
decrease from (i) to (iv) to reflect that changing attributes
is considered less expensive than deleting or adding objects.
Given two abstract scene representations S and S′, cost(S, S′)
is the minimal total cost for any sequence of operations (i)–(iv)
whose execution starting on S will result in S′. Explanation
preference is then defined as follows.

Definition 2. Let M be a model such that M [Q,S] = P
for some question Q, scene S, and answer P . Furthermore,
let E and E′ be two contrastive explanation for a given foil
F . Explanation E is strictly preferred over E′, in symbols
E ≺ E′, if cost(a(S), E) < cost(a(S), E′).

2.2 CE as Logical Abduction
Searching for input perturbations that change a decision can
be challenging for deep-learning networks. However, if we
use a modular neurosymbolic approach for the VQA task,
separate modules can take care of object detection, language
processing, and symbolic execution to compute an answer.
Once the execution module is provided as a logical theory,
cf. [Eiter et al., 2022], the answers can be computed using
deduction, while contrastive explanations can be obtained
through abduction.
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rubber
large

rubber blue

Q1: Are there an equal number
of large things and metal
spheres?

A1: yes F1: Why not “no”?

Q2: What size is the cylinder
that is left of the brown
metal thing that is left of the
big sphere?

A2: small F2: Why not “large”?

Q3: There is a sphere with the
same size as the metal cube;
is it made of the same mate-
rial as the small red sphere?

A3: yes F3: Why not “no”?

Q4: How many objects are ei-
ther small cylinders or red
things?

A4: 5 F4: Why not “4”?

Figure 1: A CLEVR scene with CEs for several questions. For each question Q with answer A, we present a foil F for generating a CE. The
explanation is then illustrated in the scene by highlighting the objects that need to be changed such that the answer changes from A to F.

Assume T (M) is a logic theory that encodes the reasoning
module of a VQA system M such that T (M)∪a(S)∪a(Q) |=
P , whenever P is the answer to question Q for scene S, and
a(Q) is a symbolic representation of question Q.

Contrastive explanations correspond to minimal abductive
explanations so that the foil is entailed by the theory, as for-
mally stated by the following proposition.

Proposition 1. Let M be a model such that M [Q,S] = P
for some question Q, scene S, and answer P . Then, E is a
minimal CE for F iff

(i) E ∪ T (M) ∪ a(Q) is consistent,
(ii) E ∪ T (M) ∪ a(Q) |= F , and

(iii) no E′ with E′ ≺ E satisfies (i) and (ii).

2.3 Applications of CE for VQA
CEs not only help to make VQA systems more trustworthy by
providing insights why an answer was produced, they also can
aid model debugging and model validation. The difference
between these tasks mainly lies in how the foil is defined.

Model Explanation. Explanations for correct answers are
often required if a user had a different outcome in mind. Con-
trastive explanations make this explicit by specifying the ex-
pected outcome as the foil. This focuses the explanation on
reasons relevant to obtain the alternative outcome and makes
them more succinct than presenting a complete causal chain.
For instance, consider question Q2: What size is the cylin-
der that is left of the brown metal thing that is left of the big
sphere? from Fig. 1. The user expects the answer to be “large”
while it actually is “small”. A full causal explanation would
first identify the big red metal sphere in the scene. Then, it
would point to the small brown metal sphere left to it, and then
finally to the small brown rubber cylinder left of that one. A
contrastive explanation would immediately point to the same
brown rubber cylinder and suggest to change its size to “large”
to flip the answer and thus focuses attention to the part of the
scene that is most relevant.

Model Debugging. Debugging is necessary if a VQA sys-
tem produces a wrong answer P ′. Here, CEs are useful as
the correct answer P can serve as the foil {P} and we get a
compact explanation what changes in a scene would result in
the correct outcome. Having a modular framework helps in

general for debugging, as we have already explicit represen-
tations of the scene and the question in symbolic form which
are essentially self explanatory. The CE further helps to know
where to look first. For example, assume the material of an
object gets misclassified and the answer of a question is wrong
as a consequence. If the CE reveals that changing the wrong
label to the correct one also leads to the correct answer, the
underlying problem in the object detection module is revealed.
Model Validation. How do we know if we should not trust
a particular answer given by a VQA system? We define model
validation as the task to automatically detect whether a given
answer is not trustworthy, and present model validation as a
novel application of CEs. A common source of wrong answers
are mistakes by the object detection module. If the latter is
implemented with neural networks, low confidence scores for
the labels of object attributes hint at possible misclassification.
This does not necessarily lead to a wrong answer, as it might
be irrelevant for the question considered. However, if the
answer can flip in any direction by changing only attribute
values of objects that have a low score, manual inspection is
advised. This can be formulated as a CE generation problem:
We take E \ {P} as the foil, where E is the event space and
P is the current answer. For the preference relation, we only
allow changing attributes with scores below a fixed threshold
by assigning infinite (i.e., huge) cost to all other operations in
the cost function of Defn. 2. If we obtain a CE, low scores for
the objects highlighted by the explanation might be critical for
the outcome and labels should be inspected.

3 The Neurosymbolic VQA Framework
In this section, we introduce a modular neurosymbolic VQA
framework, which we call NSVQASP, for solving VQA tasks
for a new extension of the CLEVR dataset that is also capable
of producing CEs. It is based on the modular approach of
NS-VQA [Yi et al., 2018], but it features a logic module for
symbolic execution where answer-set programming (ASP) is
used for reasoning and explanation finding. To this end, we
exploit recent work [Eiter et al., 2022] and extend it by an
abductive module for obtaining minimal CEs.

3.1 Architecture of NSVQASP
We adopt the modular neurosymbolic architecture of NS-VQA,
which maintains a separation between the tasks needed for
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Is there an object of the same 
color as the small one?

Object 
Recognition 
(YOLOv5)

Question
Parsing 
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil: 
No

Answer: 
Yes

Figure 2: Overview of the inference and abduction workflow in NSVQASP. The image and natural language question are processed by YOLO
and the LSTM, respectively, and output is transformed into ASP facts. The answer for a question and CEs for a given foil are computed using
an ASP solver. An example output is shown on the right, meaning that changing the indicated colour for the green cube is a minimal CE.

language processing, object detection, and symbol process-
ing to answer a question. There, neural networks are used
for language processing and object detection, while the sym-
bolic execution is realised with a Python inference module.
NS-VQA uses the Mask RCNN [He et al., 2020] for object
detection in a way such that a visual scene can be translated
into an abstract structural representation, and a long short-term
memory network (LSTM) [Luong et al., 2015] to translate a
question into a functional program that can be executed on the
abstract scene using the inference module.

The architecture of NSVQASP and the workflow to answer
and explain a question is depicted in Fig. 2. We use YOLOv51,
a popular and up-to-date choice for visual object recognition,
instead of the Mask RCNN. However, we maintain the orig-
inal LSTM implementation, as it works almost perfectly for
CLEVR. The more significant change is however to replace
the Python module for inference with a logical theory that can
be used for both “foward” deduction to compute an answer,
and for “backward” abduction to find a CE for a given foil in
the sense of Prop. 1. Both the theory and the novel abduction
module are realised via ASP [Brewka et al., 2011] as it pro-
vides the expressiveness required to formalise the CLEVR
questions that involve counting and arithmetic as well as the
flexibility to encode the abduction task as an optimisation
problem that can be easily customised.

3.2 The ASP Module for Inference and CEs
Answer-set programming (ASP) [Brewka et al., 2011] is a
declarative problem solving paradigm, where problems are en-
coded as a logic program such that their models (called answer
sets) represent the solutions. It allows for a concise representa-
tion of search and optimisation problems for which solutions
can be computed with some dedicated ASP solver.2 A logic
program is a finite set of rules of the form Head :-Body ,
where Head is a first-order atom and Body is a set of first-
order literals (intuitively, Head is true if Body is true). Facts
are rules with empty body that are use to represent problem
instances. Constraints are rules without heads that eliminate
unwanted answer set candidates. Further language constructs
readily available include choice rules for expressing nondeter-
minism, aggregates, and optimisation statements with prior-

1https://ultralytics.com/yolov5.
2E.g., potassco.org, www.dlvsystem.com.

ities. A thorough introduction to the modelling language is
given by Calimeri et al. (2020).

Forward Inference for Question Answering
We use an ASP encoding for answering CLEVR questions
due to Eiter et al. (2022). They considered a non-deterministic
setting, where multiple answers can be derived that have differ-
ent probabilities depending on the confidence scores from the
object detection network, and a deterministic setting, where
only a unique answer is derived from the object classifications
that obtained maximal scores. Here, we use the deterministic
setting and denote the corresponding encoding by Tasp .

The encoding Tasp assumes an ASP fact representation
aasp(S) of the visual scene S and aasp(Q) for the question Q.
The answer can then be derived with an ASP solver:
Proposition 2. Let P be the unique answer for CLEVR ques-
tion Q on scene S. Then, Tasp ∪ aasp(S) ∪ aasp(Q) yields a
single answer set that contains ans(P).

We illustrate this by example, details are given in related
work [Eiter et al., 2022].
Example 1. Let S be a CLEVR scene with the following fact
representation aasp(S):
obj(0,large,blue,metal,cylinder,417,137).
obj(1,large,purple,metal,cube,150,195).
obj(2,large,gray,metal,sphere,265,234).
obj(3,large,brown,rubber,cylinder,145,117).
obj(4,small,green,metal,sphere,339,116).
obj(5,small,purple,rubber,sphere,226,165).

Each object in S is encoded as an ASP fact that defines its ID,
size, colour, shape, and position (as center point). Further-
more, let Q be the question “Is the number of rubber objects
left to the cube equal to the number of metallic cylinders?”.
Its symbolic representation aasp(Q) by ASP facts is:

scene(0). unique(5,4).
filter_metal(1,0). relate_left(6,5).

filter_cylinder(2,1). filter_rubber(7,6).
count(3,2). count(8,7).

filter_cube(4,0). equal_integer(9,3,8).
end(9).

Each fact p(n1, . . . , nk) denotes a processing step, where p
is the operator, n1 is the step number, and n2, . . . , nk are the
preceding steps that feed into p; end(9) marks the final step.

The unique answer set of Tasp∪aasp(S)∪aasp(Q) contains
ans(true), which encodes the correct answer “yes”.
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Abduction for Computing CEs
We present a novel ASP program Aasp to compute CEs with
abductive reasoning as described in Prop. 1. We illustrate some
details; the full program is in the project’s online repository.

To compute a CE, Aasp uses (1) choice rules to non-
deterministically span the search space of possible operations
on a scene, (2) a constraint to enforce that applying these op-
erations changes the answer to one that is specified as foil,
and (3) weak (i.e., soft) constraints to encode the minimality
condition from Defn. 2 as an optimisation objective.

As for (1), we illustrate the choice rules for changing a
scene with an example that changes some colour attribute:

{ has_col(ID,C): col(C)} = 1 :- object(ID).
col_change(ID,C,C’) :- has_col(ID,C’),

obj(0,ID,_,C,_,_,_,_), C != C’.

The first rule non-deterministically selects a colour for an
object, while the second derives col_change if that colour
represents a change compared to the original scene.

The constraint of (2) ensuring an answer change is

:- ans(A), #count{ 1 : foil(A) } != 1.

Here, foil refers to the foil F , which is represented by
facts aasp(F ) = {foil(p) | p ∈ F}.

In (3), the following weak constraint is added:

:∼ col_change(ID,C,C’). [5,ID,col_change]

It says that any colour change of object ID (from C to C ′)
is penalised by a cost of 5, which is recorded in the cost tuple.

Rules for the other change operations are defined analo-
gously. The maximal number of objects that can be added is
currently limited by a constant that can be adjusted by the user.
Likewise, movement of objects proceeds in increments of a
fixed number of pixels.

Proposition 3. Given a CLEVR question Q and scene S, the
optimal answer sets of Aasp ∪ Tasp ∪ aasp(S) ∪ aasp(Q) ∪
aasp(F ) are in one-to-one correspondence to the minimal CEs
for foil F .
Example 2. Let us revisit question Q on scene S with answer

“yes” from Example 1. Assume the user expects this answer to
be “no” instead. The CEs can be computed as answer sets
following Prop. 3. For illustration, one of them contains

moved(1,150,195,100,195)

which represents the minimal change to flip the answer by
moving the cube 50 pixels to the left.

What changes to a scene are permitted and/or the cost model
can be changed easily if desired.

4 Evaluation
Prior to an evaluation of our CE approach, we test the accuracy
of NSVQASP on CLEVR and compare it against NS-VQA
and other baseline approaches. We extend CLEVR with more
sophisticated questions to further demonstrate the robustness
of the modular neurosymbolic architecture. Also, it is useful
for the explanation task to include questions that require a
little more advanced reasoning and are thus harder to explain.

4.1 Extending CLEVR
The CLEVR dataset consists of 70k images plus 700k ques-
tions for training and 15k images plus 150k questions for
validation. Questions are generated from templates which
define the structure of a question. We extend the CLEVR
dataset by introducing 20 new templates that include a new
spatial relation “between”, questions regarding equality of ob-
jects, and new counting questions, respectively; consequently,
they can be divided into three groups. We generated 200k new
questions from the templates for training for each group and
150k questions for validation.
The “Between” group. This group contains templates for
questions that ask whether an object is between two other ones.
We consider three semantics for “between” illustrated in Fig. 3:
Object b is between object a1 and a2 if (a) the projection on
the horizontal axis of b falls between the one of a1 and a2;
(b) b is within the bounding box created by the centers of a1
and a2; and (c) the distance of b to the segment connecting the
center points from a1 to a2 is below a fixed threshold.
The “Equal” group. This group contains templates for ques-
tions that revolve around tests whether objects are equal (agree
on all their attributes aside from position) or different. More
specifically, we ask: “Are all object in the scene different?”
and “Are there (at least or exactly) n equal objects in the
scene?”, where i ∈ {2, 3, 4} (scenes with more than 4 equal
objects are rare in CLEVR).
The “Count-Between” group. This group contains tem-
plates for variants of the “between” questions that involve
counting. Specifically, we ask for the number of objects that
are between two other ones, where we also consider the three
semantic versions of “between” from above.

4.2 Experimental Comparison
We use the original CLEVR dataset, as well as the new
datasets NEWbtwn, NEWeql, and NEWcnt as described
above. Dataset NEW was generated from the union of the
question templates for NEWbtwn, NEWeql, and NEWcnt.

As baseline approaches, we consider (1) the neurosym-
bolic system NS-VQA [Yi et al., 2018], the relational network
RN [Santoro et al., 2017] that uses an CNN and LSTM com-
bination and introduces a relational cell that combines the
extracted features from the image with the processed question
before using a classifier, and (2) the MAC [Hudson and Man-
ning, 2018], which is an end-to-end trainable network that
separates control from memory by decomposing a problem
into attention-based reasoning steps.

The results of our comparisons are given in Table 1.3 We
could reproduce the results for the related approaches on
CLEVR from the literature. For CLEVR ∪ NEW, the neu-
rosymbolic approaches work better, even more so when only
NEW is used for training.4 A possible reason is that the neu-

3We use an Intel® Core™ i7-12700K, 32GB RAM, and an
NVIDIA GeForce RTX 3080 Ti for training. YOLOv5 was trained
with the CLEVR mini dataset (https://github.com/kexinyi/ns-vqa).

4NS-VQA answers some questions from NEW incorrectly due to
issues that arise when converting coordinates from their object detec-
tion module for the more advanced questions. NSVQASP performs
sometimes worse than NS-VQA due to the different visual modules.
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(a) (b) (c)

Figure 3: Different semantics for “between” that use (a) projection, (b) bounding boxes, and (c) the segment between objects.

Model CLEVR CLEVR ∪NEW Only NEW

RN 95.21% 92.32% 80.76%
MAC 98.73% 92.94% 81.43%
NS-VQA 99.89% 98.79% 94.66%
NSVQASP 99.82% 97.39% 98.22%

Table 1: Accuracies for the original CLEVR dataset, CLEVR ex-
tended by new questions, and only new questions.

Model projection bounding-box segment

RN 94.29% 91.88% 92.65%
MAC 92.75% 90.34% 90.42%
NS-VQA 97.95% 93.56% 87.16%
NSVQASP 99.44% 98.88% 98.22%

Table 2: Accuracies for dataset CLEVR ∪NEWbtwn for different
semantics of “between”.

ral approaches may need more visual scenes to learn the new
questions, while we merely need to adjust the symbolic execu-
tion module (or the ASP encoding for NSVQASP) and retrain
the LSTM; convenient end-to-end learning is currently not
featured by NS-VQA and NSVQASP, though.

We give a more in-depth analysis of the performance of the
different VQA approaches relative to the datasets NEWbtwn,
NEWeql, and NEWcnt in Tables 2–4. Regarding the differ-
ent semantics for between, the neural approaches have more
difficulties learning the version with bounding-boxes than the
one with projection. Also, it appears that the one that uses
the distance to a segment is most difficult. For the MAC
and the RN, the questions in NEWbtwn seem to be easier than
those in NEWcnt, and the ones in NEWeql seem to be hardest.
While more scenes and questions would plausibly improve
the performance of the MAC and the RN, the less data hungry
neurosymbolic approaches perform already very well.

Model all-different n = 2 n = 3 n = 4

RN 72.65% 69.40% 83.49% 99.19%
MAC 76.93% 77.77% 90.09% 98.38%
NS-VQA 100.00% 99.84% 100.00% 100.00%
NSVQASP 98.85% 99.02% 100.00% 100.00%

Table 3: Accuracies for dataset CLEVR ∪NEWeql, with questions
concerning the existence of n equal objects.

Model projection bounding-box segment

RN 43.29% 63.55% 75.30%
MAC 65.28% 61.08% 66.18%
NS-VQA 95.82% 88.07% 76.45%
NSVQASP 98.40% 98.68% 97.13%

Table 4: Accuracies for dataset CLEVR ∪NEWcnt. with counting
questions in combination with “between”.

Figure 4: Number of CEs ordered by their size.

4.3 Contrastive Explanations
We conducted a quantitative analysis regarding the average
length of CEs and times needed to produce them, and we
provide some further illustrations for explanation, debugging,
and validation tasks as described in Sec. 2. We qualitatively
evaluated our approach by checking whether explanations
make intuitively sense on samples.

Explanation. Fig. 4 summarises the outcome of our first
experiment on contrastive explainability. We let NSVQASP
determine the outcome for a sample of 5k questions from
CLEVR ∪ NEW. For each answer P , we computed the
minimal CEs to change the outcome in any direction, hence
the foil F = E \ {P}. The orange bars in Fig. 4 depict the
number of CEs as a function of the length of the CE (measured
as the number of required changes, or, equivalently, the size
of the optimal answer set that encodes the CE). For most
questions, only one or two changes to a scene are needed but
never more than five. The time for finding a minimal CE
ranges from 1.1s to 323.2s with an average of 6.4s± 7.3s.5

Debugging. As NSVQASP does not predict the correct an-
swer for all questions from CLEVR ∪NEW, we can use the

5We use clingo (v. 5.6.2 ) [Gebser et al., 2019] with unsatisfiable
core-guided optimisation [Andres et al., 2012].
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small brown 
rubber cube

Q1: How many objects are
brown cubes?

A1: 0 (correct is 1)

Q2: Has the cylinder right to
the red cylinder the same
size as the large red rubber
cylinder?

A2: no (correct is “yes”)

Figure 5: Two scenes where the answer is not correct. The CEs point
to errors from YOLO when using the correct answer as foil.

blue

Q1: What is the material of
the large object left to the
small rubber cube?

A1: rubber

Q2: How many green cubes are
in the scene?

A2: 1

Figure 6: Two scenes with blurred objects to challenge YOLO. A CE
exists if their correct classification is relevant for the answer.

other ones (about 4k out of 150k questions) to illustrate CEs
for debugging. For this task, we use the correct ground-truth
answer as a singleton foil to find an explanation that changes
the wrong prediction to the correct one. Figure 4 shows the
number of CEs having a given length as blue bars for the de-
bugging setting. Similar to the previous experiment, CEs tend
to be short. The time to generate CEs in this setting ranges
from 0.5s to 18.6s with an average of 7.3s ± 4.2s. Fig. 5
shows examples of two scenes with CEs for debugging, where
NSVQASP predicated the wrong answer. Inspecting the CEs
points to the relevant mistakes made by the object detector;
they could be fixed by further fine-tuning YOLO.

Validation. Last, we illustrate how CEs can help to spot
object classifications in a scene that should be manually in-
spected as (i) the answer depends on that classification, and (ii)
the classification scores from the neural module are low, which
indicates that a misclassification is likely. For the according
model validation task in Sec. 2, the foil are all other outcomes
and the cost model incorporates the confidence scores from
YOLO. Fig. 6 shows example scenes that contain blurred ob-
jects to challenge object detection. For the left one, the blurred
object is irrelevant and hence no CE for validation exists. For
the scene on the right, the answer would flip if the blurred
object changes, which is highlighted by a respective CE.

5 Further Related Work
Stepin et al. (2021) provide an excellent survey on contrastive
explainability in machine learning. The role of logic in this

context was further discussed by Marques-Silva (2023). Ig-
natiev et al. (2020) expanded on the formal relationship be-
tween abduction and CEs. Notably, CEs have been proposed
in various machine-learning contexts, like for decision lists [Ig-
natiev and Silva, 2021], or natural language processing [Ja-
covi et al., 2021]. In the computer-vision domain, there have
been efforts to unify adversarial and counterfactual explana-
tions [Freiesleben, 2022]. To the best of our knowledge, CEs
have not been considered for VQA.

As already discussed in the introduction, techniques to make
VQA systems more interpretable include tracing of the sym-
bolic execution (NS-VQA) and tracing the attention steps
(MAC). Although they do not involve contrastiveness, tracing
techniques can still be very useful. For our ASP approach, we
can take advantage of off-the-shelf tools such as xclingo [Ca-
balar et al., 2020] to compute justifications for answer sets
that are similar to such traces. Inspiration for building an
ASP neurosymbolic system comes from NeurASP [Yang et
al., 2020] that uses neural atoms for the interface between the
logical and the neural module. Similar approaches exist, such
as DeepStochLog [Winters et al., 2022], Slash [Skryagin et
al., 2022], and DeepProbLog [Manhaeve et al., 2018].

Many extensions of CLEVR were conceived to study as-
pects like hypothetical consequences of performing specific
actions [Sampat et al., 2021], mathematical questions [Lind-
strom and Abraham, 2022], or reasoning about object rota-
tions [Beckham et al., 2023]. While they are not relevant
for us immediately as CLEVR suffices to demonstrate our
approach, they could be considered for future work.

6 Discussion and Conclusion

Our approach to CE generation, which we frame as a prob-
lem of logical abduction, is a further step towards building
robust and explainable VQA systems. We complement the
landscape of existing approaches to make VQA systems more
interpretable by providing explanations that are directly linked
to the answer expected by a user. This is not only useful for
gaining a better understanding for the actual answer, but also
for debugging (if the model is wrong) and for validation tasks.

Our proposed CE framework relies on a modular neurosym-
bolic architecture with a clear separation between object de-
tection, language processing, and reasoning that is inspired
by NS-VQA [Yi et al., 2018]. We use ASP to realise the
reasoning module for computing answers, and we provide an
extension of the ASP module so that CEs can be computed via
abductive reasoning. Besides being able to smoothly switch
between deduction and abduction, ASP makes it also easy to
customise the system by changing details of the declaratively
specified reasoning tasks. Having a modular VQA architec-
ture helps in general when requirements change as only the
affected modules need to be updated. We demonstrated this
for an extension of CLEVR with new questions, where the
modular neurosymbolic frameworks achieve top performance.

For future work, we plan to increase convenience of pref-
erence specification (e.g., support of priority levels) and to
further evaluate the utility of CEs by user studies involving
also real-world oriented datasets.
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Brais Muñiz. A system for explainable answer set pro-
gramming. In Technical Communications of the 36th Inter-
national Conference on Logic Programming (ICLP 2020),
volume 325 of EPTCS, pages 124–136, 2020.

[Calimeri et al., 2020] Francesco Calimeri, Wolfgang Faber,
Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. ASP-core-2 input
language format. Theory and Practice of Logic Program-
ming, 20(2):294–309, 2020.

[Dosilovic et al., 2018] Filip Karlo Dosilovic, Mario Brcic,
and Nikica Hlupic. Explainable artificial intelligence: A
survey. In Proc. of the 41st International Convention on
Information and Communication Technology, pages 210–
215. IEEE, 2018.

[Eiter et al., 2022] Thomas Eiter, Nelson Higuera, Johannes
Oetsch, and Michael Pritz. A neuro-symbolic ASP pipeline
for visual question answering. Theory and Practice of
Logic Programming, 22(5):739–754, 2022.

[Freiesleben, 2022] Timo Freiesleben. The intriguing rela-
tion between counterfactual explanations and adversarial
examples. Minds Mach., 32(1):77–109, 2022.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot asp solv-
ing with clingo. Theory and Practice of Logic Program-
ming, 19(1):27–82, 2019.

[He et al., 2020] Kaiming He, Georgia Gkioxari, Piotr Dollár,
and Ross B. Girshick. Mask R-CNN. IEEE Trans. Pattern
Anal. Mach. Intell., 42(2):386–397, 2020.

[Hudson and Manning, 2018] Drew A. Hudson and Christo-
pher D. Manning. Compositional attention networks for
machine reasoning. In Proc. of the 6th International Con-
ference on Learning Representations (ICLR 2018), 2018.

[Ignatiev and Silva, 2021] Alexey Ignatiev and João P. Mar-
ques Silva. Sat-based rigorous explanations for decision
lists. In Proc. of the 24th International Conference Theory
and Applications of Satisfiability Testing (SAT 2021), vol-
ume 12831 of Lecture Notes in Computer Science, pages
251–269. Springer, 2021.

[Ignatiev et al., 2020] Alexey Ignatiev, Nina Narodytska,
Nicholas Asher, and João Marques-Silva. From contrastive
to abductive explanations and back again. In In Proc. of the
19th International Conference of the Italian Association for
Artificial Intelligence (AIxIA 2020), volume 12414 of Lec-
ture Notes in Computer Science, pages 335–355. Springer,
2020.

[Jacovi et al., 2021] Alon Jacovi, Swabha Swayamdipta,
Shauli Ravfogel, Yanai Elazar, Yejin Choi, and Yoav Gold-
berg. Contrastive explanations for model interpretability.
In Proc. of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2021), pages 1597–
1611. Association for Computational Linguistics, 2021.

[Johnson et al., 2017] Justin Johnson, Bharath Hariharan,
Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick,
and Ross B. Girshick. CLEVR: A diagnostic dataset for
compositional language and elementary visual reasoning.
In Proc. of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017), pages 1988–1997.
IEEE Computer Society, 2017.

[Lindstrom and Abraham, 2022] Adam Dahlgren Lindstrom
and Savitha Sam Abraham. Clevr-math: A dataset for com-
positional language, visual and mathematical reasoning.
In Proc. of the 16th International Workshop on Neural-
Symbolic Learning and Reasoning as part of the 2nd In-
ternational Joint Conference on Learning & Reasoning
(IJCLR 2022), volume 3212 of CEUR Workshop Proceed-
ings, pages 155–170, 2022.

[Lipton, 1990] Peter Lipton. Contrastive explanation. Royal
Institute of Philosophy Supplement, 27:247–266, 1990.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and
Christopher D. Manning. Effective approaches to attention-
based neural machine translation. In Proc. of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421. Association for Computa-
tional Linguistics, 2015.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Duman-
cic, Angelika Kimmig, Thomas Demeester, and Luc De

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3675



Raedt. Deepproblog: Neural probabilistic logic program-
ming. In Proc. of Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information
Processing Systems (NeurIPS 2018), pages 3753–3763,
2018.

[Marques-Silva, 2023] Joao Marques-Silva. Logic-Based Ex-
plainability in Machine Learning, pages 24–104. Springer
Nature Switzerland, Cham, 2023.

[Miller, 2019] Tim Miller. Explanation in artificial intelli-
gence: Insights from the social sciences. Artif. Intell.,
267:1–38, 2019.

[Salewski et al., 2020] Leonard Salewski, A. Sophia Koepke,
Hendrik P. A. Lensch, and Zeynep Akata. CLEVR-X:
A visual reasoning dataset for natural language explana-
tions. In xxAI - Beyond Explainable AI - International
Workshop, Held in Conjunction with ICML 2020, Revised
and Extended Papers, volume 13200 of Lecture Notes in
Computer Science, pages 69–88. Springer, 2020.

[Sampat et al., 2021] Shailaja Keyur Sampat, Akshay Kumar,
Yezhou Yang, and Chitta Baral. Clevr hyp: A challenge
dataset and baselines for visual question answering with
hypothetical actions over images. In Proc. of the 2021 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT 2021), pages 3692–3709. Association
for Computational Linguistics, 2021.

[Santoro et al., 2017] Adam Santoro, David Raposo, David
G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Pe-
ter W. Battaglia, and Tim Lillicrap. A simple neural net-
work module for relational reasoning. In Proc. of Ad-
vances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
(NeurIPS 2017), pages 4967–4976, 2017.

[Skryagin et al., 2022] Arseny Skryagin, Wolfgang Stammer,
Daniel Ochs, Devendra Singh Dhami, and Kristian Kerst-
ing. Neural-Probabilistic Answer Set Programming. In
Proc. of the 19th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2022),
pages 463–473, 2022.

[Stepin et al., 2021] Ilia Stepin, José Maria Alonso, Alejan-
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