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Abstract

In recent years, there has been increasing interest
in explanation methods for neural model predic-
tions that offer precise formal guarantees. These
include abductive (respectively, contrastive) meth-
ods, which aim to compute minimal subsets of in-
put features that are sufficient for a given prediction
to hold (respectively, to change a given prediction).
The corresponding decision problems are, however,
known to be intractable. In this paper, we investi-
gate whether tractability can be regained by focus-
ing on neural models implementing a monotonic
function. Although the relevant decision problems
remain intractable, we can show that they become
solvable in polynomial time by means of greedy
algorithms if we additionally assume that the ac-
tivation functions are continuous everywhere and
differentiable almost everywhere. Our experiments
suggest favourable performance of our algorithms.

1 Introduction

Deep Neural Networks have experienced unprecedented suc-
cess in areas such as image analysis, NLP, speech recog-
nition, and data science, with systems outperforming hu-
mans in a wide range of tasks [Krizhevsky et al., 2012;
Hannun et al., 2014; LeCun et al., 2015; Schmidhuber, 2015;
Silver et al., 2016]. As the use of neural models becomes
widespread, however, task performance is no longer the only
driver of system design, and criteria such as safety, fair-
ness, and robustness have gained prominence in recent years
[Kazim and Koshiyama, 2021]. Improving model inter-
pretability is an important step towards fulfilling these crite-
ria: if models can explain their predictions, it becomes easier
to ensure that they are safe, fair and robust. This is, however,
notoriously challenging, as neural models are ‘black boxes’
where predictions rely on complex numeric calculations.

A wealth of explanation methods have been proposed in
recent years: attribution-based methods assign a score to in-
put features quantifying their contribution to the prediction
relative to a baseline [Sundararajan er al., 2017; Sundarara-
jan and Najmi, 2020; Ancona et al., 2018]; example-based
methods explain predictions by retrieving training examples
that are most similar to the input [Koh and Liang, 2017;
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Li et al., 2018]; and perturbation-based methods generate
small corrections to the input causing the output to change
[Zhang er al., 2018; Goyal et al., 2019; Lucic et al., 2022;
Bajaj et al., 2021]. These methods, however, have been crit-
icised for their lack of formal guarantees [Darwiche, 2020;
Blanc et al., 2021; Marques-Silva, 2022], which handicaps
their applicability to high-risk or safety-critical scenarios.

As aresult, there is increasing interest in explanation meth-
ods providing rigorous formal guarantees [Darwiche, 2020;
Marques-Silva, 2022; Cucala et al., 2022a; Ignatiev et al.,
2019; Shih et al., 2018]. Rule-based methods generate ex-
planations in the form of logic rules which are sufficient to
derive a given prediction [Cucala er al., 2022a; Dhurandhar
et al., 2018; Cucala et al., 2022b). Abductive methods [Ig-
natiev et al., 2019; Shih et al., 2018; Barcel6 et al., 2020] aim
to compute ‘Why?’ explanations—minimal subsets of input
features that are sufficient for deriving the prediction; dually,
contrastive methods compute ‘Why Not?’ explanations—
minimal subsets of input features so that some change in their
value yields a change in the model’s prediction. The formal
guarantees provided by these methods are given by both the
soundness requirement (i.e., the explanation is guaranteed to
preserve or change the prediction) and the minimality require-
ment, where minimality can be understood in terms of set in-
clusion (subset-minimal explanations) or number of elements
(cardinality-minimal explanations); the latter leads to smaller
explanations in general since every cardinality-minimal ex-
planation is also subset-minimal but not vice-versa. Further-
more, the size of cardinality-minimal explanations is also
related to measures of robustness of neural predictions pro-
posed in the literature [Shi et al., 2020].

Abductive and contrastive explanations can be formalised
as explainability queries—Boolean questions that can be
posed to a model and an input feature vector [Barcel$ er
al., 2020]—, and the computational complexity of the corre-
sponding decision problem for different types of models can
be rigorously studied [Wildchen et al., 2021; Barcel? et al.,
2020]. In this paper, we focus on two explainability queries in
the context of neural models [Barcel§ et al., 2020]. The Mini-
mum Change Required (MCR) query can be used to compute
minimal contrastive explanations: given a model, an input
vector X, and k € N, the query is true if there exists an input
vector y differing from x in at most £ components and which
yields a different prediction. Dually, the Minimum Sufficient
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Reason (MSR) query can be used to compute minimal abduc-
tive explanations, also called minimal prime-implicants [Shih
et al., 2018]; given a model, an input vector x, and k£ € N,
the query is true if there is a subset y of the components of x
of size at most k that suffices to obtain the current prediction
(i.e., such that the prediction remains the same regardless of
the values assigned to the components not in y).

Unfortunately, MCR and MSR are NP-complete and ¥5-
complete respectively, already for neural models with ReLU
activations implementing a Boolean function [Barcel6 et al.,
2020]. Although different techniques have been proposed to
cope with intractability [Shi et al., 2020; Ignatiev e al., 2022;
Izza and Marques-Silva, 20211, these complexity results may
still constitute a challenge in practical scenarios.

A way to recover tractability is to focus on neural mod-
els implementing functions satisfying additional properties,
such as monotonicity [Marques-Silva et al., 2021; Cano e al.,
2019; Cucala et al., 2022al; although this restricts the model’s
expressive power, the monotonicity assumption remains ap-
propriate for a wide range of learning tasks. Furthermore,
it was shown that subset-minimal abductive explanations can
be computed in polynomial time if the model implements a
monotonic real-valued function [Marques-Silva er al., 2021].

In this paper, we study cardinality-minimal abductive and
contrastive explanations for monotonic neural architectures.
We first show that MCR and MSR remain intractable for
fully-connected neural networks implementing monotonic
Boolean functions. Thus, although subset-minimal abductive
and contrastive explanations can be computed in polynomial
time [Marques-Silva et al., 2021], cardinality-minimal ab-
ductive or contrastive explanations cannot be efficiently com-
puted under standard complexity assumptions.

Our hardness proofs, however, rely on neural models
equipped with the step activation function. We then focus our
attention on monotonic neural networks where the non-linear
activations are continuous everywhere and differentiable al-
most everywhere (as is the case with most practical activa-
tions such as ReLLU and sigmoid). We show that, in this set-
ting, both cardinality-minimal contrastive explanations (and
hence the MCR query) and abductive explanations (thus the
MSR query) can be computed in polynomial time by means
of a greedy algorithm. Our tractability results not only apply
to models implementing Boolean functions, but also to more
general settings involving real-valued functions. To show cor-
rectness of our greedy algorithms, we exploit the theoretical
properties of the integrated gradients method [Sundararajan
et al., 20171, thus establishing a connection between the the-
ory of attribution methods developed by the ML community
and the theory of abductive and contrastive explanations de-
veloped by the KR community. We note, however, that our
algorithms do not rely on the application of attribution meth-
ods, but only on the ability to apply the model as a black box.

We conducted experiments on two partially monotonic
datasets commonly used as benchmarks for designing mono-
tonic and partially-monotonic models [Liu ez al., 2020]: Blog
Feedback Regression [Buza, 2014], a regression dataset with
276 features and Loan Defaulter, a classification dataset with

"https://www.kaggle.com/datasets/wordsforthewise/lending-
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28 features. We trained monotonic FCNs to reach acceptable
performance and we computed both contrastive and abduc-
tive explanations. The experiments showed that contrastive
explanations are typically of small cardinality, whereas ab-
ductive explanations are typically larger, which is expected
for a partially monotonic dataset. In both cases, the explana-
tions could be efficiently computed.

2 Preliminaries and Background

In this section, we fix the notation used in the remainder of the
paper and define the basic neural models that we consider. We
also introduce attribution-based methods as well as the MCR
and MSR explainability queries underpinning the theoretical
analysis of contrastive and abductive explanations.

Notation. We let bold-face lowercase letters denote real-
valued vectors. Given vector X, we use x; to denote its ¢-th
component. Given x,x’ € R™ and a subset S C {1,...,n} of
their components, we denote with x51%" the vector obtained
from x by setting each component x; with ¢ € S to . The
complement X of a a Boolean vector x € {0,1}" is obtained
from x by replacing each 0 with 1 and vice-versa. We denote
with 0,,, the m-dimensional column null vector. We use bold-
face capital letters for matrices and denote the (7, j) compo-
nent of a matrix M as M; ;. Given function f : R” — R, we
denote with (V f); the ith component of its gradient.

Fully-Connected Networks. A fully-connected neural net-
work (FCN) with L > 1 layers and input dimension n is a tu-
ple N = ({W'}icicr, {bhico<r, {0} 1<o<ry, cls). For
each layer ¢ € {1,..., L}, the integer dy € N is the width
of layer ¢ and we require d;, = 1 and define dy = n; ma-
trix W¢ € R%>de—1 is a weight matrix; vector b’ € R%
is a bias vector; o : R + R is a polytime-computable
activation function applied component-wise to vectors; and
cls : R — {0, 1} a polytime-computable and monotonic clas-
sification function. The domain A C R"™ of A/ specifies the
set of input feature vectors to which the network is applica-
ble. The application of N to x € A generates a sequence
x', ..., x% of vectors defined as x* = of(h*), where x° = x
and h* = W’ . x~1 4 b’. The result N'(x) of applying N/
to x is the scalar cls(xL). Thus, the neural network realises
a function N : A — {0,1}. We denote with '(x) := x”
the output of the last layer (before classification). The mono-
tonicity of function cls implies that there exists a prediction
threshold ¢ := inf,cr (cls(z) = 1), such that N'(x) > ¢
implies M/ (x) = 1 and NV (x) < ¢ implies N (x) = 0.

When o is the rectified linear unit (ReLU) for each ¢ €
{1,...,L},ie. o'(x) = max(0,z), we say that \/ is a ReLU
FCN. When o is a step function foreach £ € {1,..., L}, i.e.
o(z) = 1if z > z and 0 otherwise for some z € R, we say
that V' is a step-function FCN. A FCN N with domain A is
monotonic is it satisfies the following property: for all x,x’ €
A, if z; < o foralli € {1,...,n}, then N(x) < N(x)).
Monotonicity is syntactically ensured by requiring that the
weight matrices in all layers of the network are non-negative
and that the activation functions in all layers are monotonic.

club
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Attribution Methods.  Attribution methods [Sundararajan
et al., 2017; Sundararajan and Najmi, 2020; Shapley, 1953]
are a family of explanation techniques which, given as input
function f : R™ — R, a vector x € R” and a baseline vector
x’ € R™, assign a numerical score or contribution C’if (x,x")
to each component i € {1,...,n}. Attribution methods ful-
fil some (or all) of the following axioms for all functions
R™ — R and vectors x,x’ € R™, components 1 < ¢ < n and
coefficients A1, A2 € R: (i) Completeness: f(x) — f(x') =
Z;’:l C'Jf (x,x); (ii) Zero-contribution: Cif (x,x') =0
whenever f(y) = f(y17 s Yi—1,2,Yit+1, yn) for each y €
R™ and each z € R; (iii) Symmetry: C’Z-f(x, x') = Cj’.c(x,x’)
if o; = =z, 2} = o} and f(y1, . Yis s YjsYn) =
fy, - Yjs oo, Yis ---Yn) for each y € R”; and (iv) Linear-
ity: C)H202 (x x) = MO (x, %) + MO (x,X).

Completeness ensures that contributions add up to the
change in value of the function. Zero-contribution ensures
that arguments not influencing the value of the function are
assigned 0 as contribution. Symmetry ensures that arguments
playing a symmetric role are assigned the same contribution.
Finally, linearity ensures that contributions for a function ex-
pressed as a linear combination of other functions can be
computed as a linear combination of their contributions.

A wide range of attribution-based methods has been pro-
posed. The Shapley values method [Shapley, 1953] is one of
the most popular thanks to its nice properties. Calculating
Shapley values is, however, intractable, which has motivated
research on approximations [Ancona et al., 2019]. Other
popular attribution methods have been designed for neural
networks; these include Layer-wise Relevance Propagation
[Bach et al., 20151, DeepLIFT [Shrikumar et al., 20171,
Deep Taylor decompositions [Montavon et al., 2017], and
Saliency Maps [Simonyan er al., 2014; Adebayo et al., 2018;
Dabkowski and Gal, 2017; Chang et al., 2017].

We will exploit the properties of Integrated Gradients
[Sundararajan et al., 2017; Aumann and Shapley, 1974],
which is applicable to continuous functions differentiable al-
most everywhere. The contribution of argument ¢ of function
f for input vector x and baselinex’ is defined as follows:

Cif(x,x’) = (w; — ) / (V) X +7(x—x))dr. (1)
0

Integrated gradients is the only path-based attribution method
satisfying all of the aforementioned axioms [Friedman,
2004]. Furthermore, it is well-suited for functions realised
by neural networks, which typically satisfy its continuity and
differentiability requirements.

Explainability queries and explanations. An explainabil-
ity query is a Boolean question, formalised as a decision prob-
lem, that we ask about a model and an input vector.

Consider a domain A C R™. Given vector x € A and
function f : A — {0, 1}, a contrastive explanation is a subset
S C {1,...,n} such that f(x51¥) # f(x) for some vector
y € A. The Minimum Change Required (MCR) query is to
decide whether there exists a contrastive explanation for the
given f and x of size at most a given number 1 < k < n.

Givene € Aand f : A — {0, 1}, an abductive explana-
tionis a subset S C {1,...,n} such that f(e°%) = f(e) for
allz € A, where S = {1,...,n}\ S. The Minimum Suf-
ficient Reason (MSR) query is to decide whether there exists
an abductive explanation for the given function f and vector
e of size at most a given number 1 < k£ < n.

A contrastive (respectively, abductive) explanation is
cardinality-minimal if there exists no contrastive (respec-
tively, abductive) explanation of smaller cardinality for the
same function and input vector.

3 Intractability for Monotonic Networks

MCR is known to be NP-hard already for FCNs implement-
ing a Boolean function and equipped with ReLLU activations
only and a threshold-based classification function [Barceld et
al., 2020]. In turn, MSR is Ef -hard for the same setting. A
natural way to recover tractability is to focus on models im-
plementing functions with specific properties, where mono-
tonicity is a natural requirement in many applications.

It was shown in [Marques-Silva et al., 2021] that subset-
minimal abductive explanations for any ML classifier imple-
menting a monotonic function can be computed in polyno-
mial time. This tractability result is encouraging as well as
rather general: it makes no assumptions on the type and struc-
ture of the monotonic classifier, or on the domain (e.g., real-
valued or Boolean) of the corresponding monotonic function.

The complexity of MCR and MSR in the monotonic set-
ting, however, remains unclear. On the one hand, the al-
gorithms in [Marques-Silva et al., 2021] cannot be used
to compute cardinality-minimal explanations and thus their
tractability results do not imply tractability of MCR and
MSR. On the other hand, the neural networks used in the
hardness proofs in [Barcel6 et al., 2020] are non-monotonic.

In this section we close this gap and show that, surpris-
ingly, both MCR and MSR remain intractable in general for
monotonic neural networks, already in the Boolean case.

Theorem 1. MCR is NP-complete for monotonic Boolean
functions implemented by FCNs.

Proof. We show hardness by reduction from SET-COVER,
which is the problem of checking, given as input m sub-
sets E, ..., By of {1,...,n} such that U;cqy 0y Bi =
{1,...,n} whether there exists S C {1,...,m} of size at
most K such that | J,. ¢ B = {1,...,n}.

We map an instance F1, ..., E,,, K of SET-COVER to an
instance of MCR for monotonic Boolean functions imple-
mented by FCNs by setting k = K, x = 0,,, and A the
2-layer monotonic step-function FCN defined as given next.

In the first layer, W' is a (n x m) matrix with values
W, = 1if j € E; and 0 otherwise, b! = 0,, and the ac-
tivation function 0! is a step function o' (z) = 1if z > 0 and
0 otherwise. In the second layer, W2 = 1,,, b%2 = 0, 02 is
the step function 02(z) = 1if z > n and 0 otherwise, and
clsgo,1y is the identity. One can verify that N'(x) = 0.

Assume there exists S C {1, ...,m} of cardinality at most
k= K andy € {0,1}™ satisfying N'(x°¥) # N(x). We
claim that, by construction of A/, S is a solution to the corre-
sponding SET-COVER instance. Given that A/ can only take
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values 0 and 1, we must have N'(x%1¥) = 1, thus h? > n.
This enforces that b > 0 forall j € {1,...,n}. By construc-
tion, forall j € {1,...,n}, there exists i € S suchthatj € F;,
and y; > 0. In partlcular this gives us (J,c g £ = {1,...,n}.
For the converse, let .S be a solution to SET COVER. We
claim that S and vector y = 0,,, constitute a certificate for
the constructed MCR instance. Indeed, | J,cg £i = {1, ...,n}
thus forall j € {1,...,n}, thereexists i € S such thatj € E;.
Thus, with input x*1%%, h} > 0 forall j € {1,...,n}. This
yields A2 = n and hence NV (x°1¥) = 1 # N (x).
Membership in NP follows since S C {1,...,m} of car-
dinality at most k£ and y € {0,1}™ provide a certificate:
(S,y) witnesses a solution of MCR for input A/, x and k
if N'(x%¥) # N/(x), which is polytime verifiable. O

Theorem 2. MSR is NP-complete for monotonic Boolean
functions implemented by FCNs.

Proof. We again show NP-hardness by reduction from SET-
COVER. We map an instance Ff, ..., F,, K of SET-COVER
to an instance of MSR by setting k = K, e = 0,,,, and \ the
2-layer monotonic step-function FCN described in the proof
of Theorem 1. One can verify that A'(e) =

Assume there exists S C {1,...,m} of cardinality at most
k = K satisfying N'(e®?) = N (e) forall z € {0,1}™. We
claim that S is a solution to the corresponding SET-COVER
instance. In particular, we have N'(e®I%) = 1, thus h? > n.
This enforces h]l > 0 forall j € {1,...,n}. By construction,
for all j € {1,...,n}, there exists i € S such that j € F;,
which is equivalent to | J,. ¢ Ei = {1, ...,n}.

For the converse, let S be a solution to SET-COVER. We
claim that S is a certificate for the constructed MSR instance.
Indeed, J;cg Bi = {1,...,n} thus for all j € {1,...,n},

there exists ¢ € S such that j € E;. Thus, with input e5/0m
hy > 0forall j € {1,...,n}. This yields h* = n and hence
N(ef'om) = 1 = N(e). By monotonicity, we thus have
N(e%1%) > N(e%1%) = 1 forall z € {0,1}™.

Membership in NP follows since a set S C {1,...,m} of
cardinality at most k provides a certificate. Indeed, MSR is
true if V(e%10m) = N(e) = 1, or N'(e%1%n) = N(e) = 0,

O

which is verifiable in polynomial time.

Note that, although MSR remains intractable, monotonic-
ity does bring its complexity down from the second level of
the polynomial hierarchy to NP for Boolean functions.

4 Achieving Tractability of MCR and MSR

The hardness proofs in Section 3 rely on the use of the step
activation function which, in contrast to the activations used
in practice such as ReLU, is a discontinuous function.

In this section, we show that cardinality-minimal abductive
and contrastive explanations become polytime computable
(and hence MSR and MCR become tractable) if we addition-
ally assume that the activations in the FCNs implementing
the monotonic function of interest are continuous everywhere
and differentiable almost everywhere; these are mild restric-
tions that are satisfied by most practical activation functions.

Definition 1. An activation function is admissible if it is con-
tinuous everywhere, differentiable almost everywhere, and
non-decreasing.

Furthermore, our tractability results can be extended be-
yond the Boolean setting to real-valued functions over a
bounded domain as defined next.

Definition 2. A domain A C R"™ is bounded if there exist
lower and upper bound vectors 1 € A and u € A such that,
forallx € A and eachi € {1,...,n}, we have l; < z; < u;.

Note that Boolean domains are bounded by the null vector
of the relevant dimension and its complement.

4.1 Properties of Monotonic Networks with
Admissible Activation

In the remainder of this section, we focus on FCNs where all
activations are admissible and where monotonicity is ensured
syntactically by requiring that weight matrices in all layers
contain only non-negative weights. Let us therefore fix an
arbitrary FCN A over a domain A C R" of dimension n
satisfying these requirements, which we exploit in the formu-
lation of our results; furthermore, assume that A is bounded
by a lower bound vector 1 and upper bound vector u.

The continuity and differentiability requirements of the ac-
tivation functions ensure that the gradient of A/ can be com-
puted for each input feature vector x. In turn, as we show
next, the monotonicity requirement ensures that each compo-
nent of the gradient of N (the output of the last layer) at x
can be expressed as a sum where (/) the number of elements
in the sum is fixed for NV (i.e., it does not depend on x) and
it is the same for all vector components; and (2) each ele-
ment of the sum consists of a product involving a value that
depends on x but which is always non-negative, and two co-
efficients that do not depend on x. This key property of the
gradient allows us to exploit the theoretical properties of the
integrated gradients attribution method. In particular, we can
show that, by setting a component x; of the input vector x
to the corresponding component of the lower or upper bound
vector, depending on whether the prediction for x is 1 or 0,
we are not altering the relative order of the integrated gradient
attributions for the remaining components.

These properties, which are established by the following
technical lemma, constitute the basis of our greedy algorithms
for answering explainability queries.

Lemma 1. There exists an integer M € Zxo, positive
coefficients {Am }1<m<m, and {B;}1<i<n, and functions
{gm }1<m<m from A to R>q, such that the following identi-
ties are satisfied for each x,x' € A and eachi,j € {1,...,n}

(VN)i(x) = B Z Ay g (x )
and
NGy — M (x ) =
(Bj(x; — z;) — Bj(2) — ;) ZA / p¥ (7))dr,

m=1

3)
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where p' (1) = x4 T(X{i}lxl - X{j}lx/)-

Proof. We show (2) by induction on the number of layers
LinN. IfL =1, then N = (W,b,0) with W € R",
b€ Rand o : R — R. By the chain rule, (VN);(x) =
W, - (Do)(W -x+), with Do the derivative of o in Euler’s
notation. This is of the form (2) with M =1, A; =1 > 0,
B; = W,, and g1 (x) = (Do)(W - x + b). Monotonicity of
o ensures g1(x) > 0 for any x.

For the inductive case, assume (2) holds for each network
with L — 1 layers satisfying the same requirements as N. The
application of N = ({W*}1<p<p, {b“}1<s<cr, {0 }1<i<ry)
with L layers to x is defined as o (h*(x)). By the chain rule
and the definition of 2~ we obtain the following identity:

(VN)i(x) = (VhE)i(x) - (Do*)(hE(x)) =
dr 1
S WE - (VA)i(x) - (Dot (R (x)). @)

j=1

Here, N7 is given by weight matrices {We}lggg —o and
WjL_1 (representing the j-th row of WX ~1), bias vectors
{bz}lggg —o and bf_l (representing the j-th element of
bL~1), and activations {O’Z}lgggL_l}. We apply the induc-
tive hypothesis to compute the gradient for each 1 < j <
L. o i M; ; .

dr, — 1, which is (VA7);(x) = B} 32,71 A}, g}, (%)
But now, we can replace the value of the gradients in the sum
of (4) with these values and show the statement of the lemma
by instantiating (2) with M = Y°727" M, A, = WFAJ, |
B, = Bg and g, (x) = gﬁﬁj (x) - (Da*)(h*(x)). Again, by
induction, A,, > 0 and g,,,(x) > 0 for each m and x.

We now show (3). Let us consider the attribution for A/
defined in (1). Assume i # j (otherwise the equation holds
trivially). By replacing the gradient in (1) with (2), the value

J . M 1
of C?[(X, x')is Bi(z; — ) > _ 1 Am fo Ggm (X + 7(x —
x'))dr. Since integrated gradients satisfy the completeness
and zero contribution axioms, we can compute the differ-

ence N (Y — N (xU }‘j‘/) as the sum of contributions
ON (x1ix x{i}x") and C’j\/(x{i}‘x/, x 13 to obtain

(et~ 22) [ (VA0 (0 () ar-

() - ;) / (VA (9 () dr. (5)

The gradients (VN);(p” (7)) and (VN);(p¥()) are pro-
vided by (2); when replaced in (5), they yield (3). O

4.2 Algorithms for Computing Explanations

We are now ready to present our greedy algorithms for com-
puting cardinality-minimal explanations in polynomial time.

Algorithm 1 takes as input a monotonic FCN N with ad-
missible activation functions over a bounded domain A with
lower bound 1 and upper bound u, and an input feature vec-
tor x € A, and computes a cardinality-minimal contrastive
explanation as detailed next.
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Algorithm 1 Computing contrastive explanations.

Input: vector x € A with A bounded by vectors 1, u, and

monotonic FCN A : A — {0, 1} with admissible activation

functions.

Output: A cardinality-minimal contrastive explanation .S for

N and x

1: if N(x) =1 then

2: x' +1

3: else

4 x'+nu

5: end if

6: for1 <j<ndo

7 i« N(xUHX)

8: end for

9: I < list of indices obtained from sorting {c; }1<;<n in
ascending (respectively, descending) order with ties bro-
ken arbitrarily if N'(x) = 1 (respectively, if V'(x) = 0).

10: S« 0

11: for1 < j <ndo

12: S« SUI[j

13 if V(x51¥) # N(x) then return S
14: end for

The algorithm first applies the model N to the input vec-
tor x and, based on the obtained prediction, chooses to con-
sider the domain’s lower bound vector 1 (if AN'(x) = 1) or
the upper bound vector u (if A/(x) = 0) when searching for
vectors that change the model’s prediction. The monotonic-
ity requirement will ensure that no other vectors need to be
considered. Then, in each iteration of the first loop, the al-
gorithm sets each individual input feature to the value of the
relevant bound vector (while leaving the remaining compo-
nents unchanged) and applies the input model to the resulting
vector. The values obtained by each of these applications of
the model are then sorted in ascending or descending order
depending on the value of A/(x). In the second loop, the al-
gorithm successively assigns the components of x to the cho-
sen bound vector in the order established in the previous step
until the prediction changes. The algorithm then returns S
consisting of all features that were set to the chosen bound.

Our algorithm is quadratic in the number of input features:
both loops require linearly many applications of the FCN,
and each application is feasible in linear time in the num-
ber of features [Goodfellow et al., 2016]. The algorithm’s
correctness relies on (3) in Lemma 1, which ensures that,
when set to the chosen bound, each of the features selected
by the algorithm in the second loop yields the largest change
(amongst all other possible feature choices) in the application
of the model, thus getting as close as possible to the predic-
tion threshold. As a result, the output subset .S is guaranteed
to contain a smallest number of features.

Theorem 3. Algorithm 1 computes a cardinality-minimal
contrastive explanation for the input N and x.

Proof. By symmetry of the algorithm, we can assume, with-
out loss of generality that A/(x) = 1. By monotonicity of cls,
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it suffices to show that, for each j € {1, ...,n}, the choice of
I[4] in the second loop yields the largest change in the evalu-
ation of \ (the output of the last layer). That is, for each 1 <
j <mnandj <k < nwehave N'(x5%") = N (x(5VIDIX") >
N (x5X) — N(x(SUTIRDIX") - By construction of list I, the
inequality N/ (x'UIX") — A7(xT(KIIX") < 0 holds for each
1 <j <k <n. Weapply (3) in Lemma 1 together with
the fact that A,, > 0 and g,,(x) > 0 for each m and x (and
hence fol gm (P (7))dT > 0) to obtain (Bjy () —
:EIU]) — B[[k](x}[k] — xl[k])) < 0. Since {I[]},I[/ﬂ}} c S,
we have (x5|x )I[j] = 71 and (x5|x )I[k-] = zr)- By
applying (3) and the previous inequality, we finally obtain
N (xSVIEDIXY < A (x(SYUTIEDIX")  This ensures that the
output S is a cardinality-minimal contrastive explanation for
N and x, as required. O

Contrastive and abductive explanations are dual to one an-
other. Therefore, as we show next, a minor modification of
Algorithm 1 that exchanges the roles of vectors x and x’ in
the second loop can be used to compute cardinality-minimal
abductive explanations.

Theorem 4. A modified version of Algorithm 1 where x
and X' are interchanged in Lines 7, 9 and 13 computes a
cardinality-minimal abductive explanation for the given in-
put N and x.

Proof. The proof is anlaogous to that of Theorem 3 in show-
ing that the choice of I[j] in the second loop yields the largest
change in the evaluation of A/, thus ensuring that S is a
cardinality-minimal subset such that A'(x"%*) # N/ (x). By
the choice of x’, we have ensured that N (x’) # N(x), which

gives us that N (x51%') = N/(x). Furthermore, by mono-
tonicity, V'(x%1#) = N (x) for all z € A if and only if
NN = N(x) = 1 or N(x%") = N(x) = 0. This

O

ensures that S is a minimal abductive explanation.

Note that, although the correctness of our algorithms re-
lies on the properties of integrated gradients, the algorithms
themselves do not compute attribution values, and only rely
on the ability to apply the input model as a ‘black box’.

5 Discussion and Further Implications

The notion of cardinality-minimal contrastive explanation is
closely related to existing notions of robustness for ML model
predictions proposed in the literature. In particular, the mini-
mality requirement ensures that no smaller subset of the fea-
tures can be used to change the prediction for a given model
N and input feature vector x; thus, the larger the size of
the smallest contrastive explanation, the more robust the pre-
diction of A/ on x is. The notion of D-robustness [Shi et
al., 2020] is an instance-based robustness measure based pre-
cisely on this idea. The D-ROBUST query can be formalised
as the complement of the MCR query: given V, x, and k, de-
cide whether the size of a cardinality-minimal contrastive ex-
planation for A/ and x is at least k. It was shown in [Shi er al.,
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2020] that D-ROBUST is coNP-complete for Boolean func-
tions. Thus, Theorem 1 in Section 3 refines the complexity
lower bound in [Shi et al., 2020] to monotonic Boolean func-
tions realised by FCNs with step activations. Furthermore,
our results in Section 4.2 imply tractability of D-ROBUST
for monotonic functions implemented by FCNs with admis-
sible activations and bounded domains.

Our results also have interesting implications on the prob-
lem of constructing neural networks that exactly replicate a
given function [Blum and Rivest, 1988; Judd, 1988; Jones,
1997; Kumar et al., 2019]. In particular, our results imply
that, unless P = NP, there is no polynomial time algorithm
that, given as input a monotonic FCN with step activations,
constructs an FCN with admissible activations realising the
same function. Indeed, otherwise we could solve in poly-
nomial time the MCR query for monotonic FCNs with step
functions by first rewriting the model using admissible acti-
vations and then applying our greedy algorithm to the trans-
formed model.

6 Experiments

We have implemented our greedy algorithms for computing
cardinality-minimal explanations in Section 4.2 and assessed
their practical suitability on well-known benchmark datasets
commonly used to evaluate monotonic models. To the best of
our knowledge, our implementation is the only one available
for computing cardinality-minimal explanations and hence
we could not find a suitable benchmark for comparison. All
experiments were conducted using Google Colab with GPU.

Datasets. The Blog Feedback Regression dataset [Buza,
2014] is a numeric dataset assembled from 37, 279 blog pages
extracted from 1,200 different sources. The objective is to
predict the number of feedbacks that a blog page will receive
in a given time window. The 276 features include the number
of links and feedbacks in the past, time and day of publica-
tion, discriminative bag of words, etc.

Loan Defaulter is a numeric dataset assembled from Lend-
ingClub (a large online loan marketplace). The objective is
to predict if the applicant will repay the loan or default. The
28 features include loans executed in the past, amount of the
loan and instalments, applicant’s address and zip code, etc.

The features in both datasets are preprocessed and bounded
between 0 and 1.

Methodology. We trained monotonic FCN models on both
datasets with PyTorch [Paszke er al., 2019] using the mean-
squared error loss for the Blog Feedback dataset and the bi-
nary cross entropy loss for the Loan Defaulter dataset. We
trained the models with Adam [Kingma and Ba, 2014] for
10 epochs, setting all negative weights to O after each it-
eration of Adam to ensure monotonicity. We were able to
reach a root mean-squared error (RMSE) of 0.175 on the test
set for the Blog Feedback regression (an acceptable perfor-
mance given that the state-of-the-art is at 0.158 [Liu er al.,
2020]) and reached an accuracy of 60% on Loan Defaulter
(state-of-the-art performance is 65.2%). Since the datasets
are only partially-monotonic, we should not expect state-of-
the-art performance with a fully-monotonic model; please
note, however, that the objective of our experiments is not to
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Figure 1: Explanation sizes (top left: contrastive; and bottom left: abductive) and computing times (top right: contrastive and bottom right:
abductive) on Loan Defaulter. X-axis are indexed respectively by the cardinality of explanations and the computing time in seconds. Y-axis
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Figure 2: Explanation sizes (left) and computing times (right) on Blog Feedback. X-axis are indexed by the threshold. Y-axis are indexed
respectively by the average cardinality of abductive explanations and the average computing time in seconds.

improve on the state-of-the-art regression and classification
metrics, but rather to show that cardinality-minimal explana-
tions for the trained models can be efficiently computed.
Using the trained monotonic FCNs, we then computed
cardinality-minimal abductive and contrastive explanations
using the greedy algorithms in Section 4.2. Note that, al-
though the models for Blog Feedback are trained for re-
gression, our algorithms can still seamlessly be applied pro-
vided that we introduce a threshold. Indeed, given a FCN
N : A — R, an input vector x € A and a numeric threshold
t such that A'(x) > t (respectively, < t), Algorithm 1 can

be used to compute a cardinality-minimal subset S such that
N(x° ‘x/) < t (respectively, > ¢) and a cardinality-minimal
S such that N/(x%17) > t (respectively, < t) forall z € A.

Results. For Loan Defaulter, contrastive explanations took
1.5s on average to compute and contained 1.8 out of 28 fea-
tures on average; in turn, abductive explanations took 5s on
average to compute and contained 27.6 features on average.
Note that contrastive explanations were much smaller than
abductive explanations; this is not unexpected in a partially
monotonic dataset since the condition required from abduc-
tive explanations requires the prediction to hold for all pos-
sible values of the features outside the explanation (a very
strong condition). Figure 1 depicts the cardinalities and com-
putation times for both types of explanations.

For the Blog Feedback Regression dataset, we varied the
threshold between the lower bound and the upper bound of
the targets and computed the average cardinality and com-

putation time with respect to the threshold for both types of
explanations. For contrastive explanations, the cardinality re-
mained constant equal to 1: it was always possible to modify
one feature and change the prediction. In the plots of Figure
2, we focused on abductive explanations and instances x such
that A/(x) < ¢ and, as expected, we can see that the sizes of
explanations decrease as the threshold increases.

7 Conclusion and Future Work

In this paper, we have studied the problem of computing
cardinality-minimal contrastive and abductive explanations
for the predictions of monotonic neural models. We have
strengthened existing intractability results [Barcel6 er al.,
2020] to the context of monotonic fully-connected networks
and proposed additional requirements to regain tractability.
Our results are of practical interest for the computation of
explanations with formal guarantees in the context of mono-
tonic or partially-monotonic tasks. Furthermore, from a the-
oretical perspective, our results not only strengthen exist-
ing intractability results, but to the best of our knowledge
they also provide the first polytime algorithms for comput-
ing cardinality-minimal explanations in the context of neural
models. Finally, our results also establish a novel connection
between the theory of attribution methods and the theory of
abductive and contrastive explanation methods, and have in-
teresting implications for other related problems. We hope
that our work will motivate further studies on the mathemati-
cal properties of explanation methods in Machine Learning.
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