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Abstract
Recent work on deep clustering has found new
promising methods also for constrained clustering
problems. Their typically pairwise constraints of-
ten can be used to guide the partitioning of the data.
Many problems however, feature cluster-level con-
straints, e.g. the Capacitated Clustering Problem
(CCP), where each point has a weight and the total
weight sum of all points in each cluster is bounded
by a prescribed capacity. In this paper we propose
a new method for the CCP, Neural Capacited Clus-
tering, that learns a neural network to predict the
assignment probabilities of points to cluster centers
from a data set of optimal or near optimal past solu-
tions of other problem instances. During inference,
the resulting scores are then used in an iterative k-
means like procedure to refine the assignment un-
der capacity constraints. In our experiments on arti-
ficial data and two real world datasets our approach
outperforms several state-of-the-art mathematical
and heuristic solvers from the literature. Moreover,
we apply our method in the context of a cluster-
first-route-second approach to the Capacitated Ve-
hicle Routing Problem (CVRP) and show competi-
tive results on the well-known Uchoa benchmark.

1 Introduction
In recent years much progress has been achieved in applying
deep learning methods to solve classical clustering problems.
Due to its ability to leverage prior knowledge and informa-
tion to guide the partitioning of the data, constrained cluster-
ing in particular has recently gained increasing traction. It is
often used to incorporate existing domain knowledge in the
form of pairwise constraints expressed in terms of must-link
and cannot-link relations [Wagstaff et al., 2001]. However,
another type of constraints has been largely ignored so far:
cluster level constraints. This type of constraint can for exam-
ple restrict each assignment group in terms of the total sum of
weights which are associated with its members. The simplest
case of such a constraint is the maximum size of the cluster,
where each point exhibits a weight of one. In the more gen-
eral case, weights and cluster capacities are real valued and
can model a plenitude of practical applications.

Machine learning approaches are particularly well suited for
cases in which many similar problems, i.e. problems from the
same distribution, have to be solved. In general, most capaci-
tated mobile facility location problems (CMFLP) [Raghavan
et al., 2019] represent this setting when treating every reloca-
tion as a new problem. This is e.g. the case when considering
to plan the location of disaster relief services or mobile vac-
cination centers for several days, where the relocation cost
can be considered to be zero since the team has to return to
restock at the end of the day. Other applications are for exam-
ple the planning of the layout of factory floors which change
for different projects or logistics problems like staff collec-
tion and dispatching [Negreiros et al., 2022]. Thus, we can
utilize supervised learning to learn from existing data how to
solve new unseen instances.

The corresponding formulation gives rise to well-known
problems from combinatorial optimization, the capacitated
p-median problem (CPMP) [Ross and Soland, 1977] where
each center has to be an existing point of the data and the
capacitated centered clustering problem (CCCP) [Negreiros
and Palhano, 2006] where cluster centers correspond to the
geometric center of their members. The general objective is
to select a numberK of cluster centers and find an assignment
of points such that the total distance between the points and
their corresponding centers is minimized while respecting the
cluster capacity. Both problems are known to be NP-hard and
have been extensively studied [Negreiros and Palhano, 2006].

1.1 Contributions
• We propose the first approach to solve general Capaci-

tated Clustering Problems based on deep learning.
• Our problem formulation includes well-known problem

variants like the CPMP and CCCP as well as more sim-
ple constraints on the cluster size.

• The presented approach achieves competitive perfor-
mance on several artificial and real world datasets, com-
pared to methods based on mathematical solvers while
reducing run time by up to one order of magnitude.1

• We present a cluster-first-route-second extension of our
method as effective construction heuristic for the CVRP.

1Additional ablation and generalization studies can be found in
the supplementary material provided with the extended paper at
https://arxiv.org/abs/2302.05134
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2 Background
A typical clustering task is concerned with the grouping of
elements in the given data and is normally done in an unsu-
pervised fashion. This grouping can be achieved in different
ways where we usually distinguish between partitioning and
hierarchical approaches [Jain et al., 1999]. In this work we
are mainly concerned with partitioning methods, i.e. methods
that partition the data into different disjoint sub-sets without
any hierarchical structure. Although clustering methods can
be applied to many varying data modalities like user profiles
or documents, in this work we consider the specific case of
spatial clustering [Grubesic et al., 2014], that normally as-
sumes points to be located in a metric space of dimension D,
a setting often encountered in practical applications like the
facility location problem [Ross and Soland, 1977].

2.1 Capacitated Clustering Problems (CCPs)
Let there be a set of n points N = {1, 2, . . . , n} with corre-
sponding feature vectors xi ∈ RD of coordinates and a re-
spective weight qi ∈ R associated with each point i ∈ N .
Further, we assume that we can compute a distance measure
d(xi, xj) for all pairs of points i, j ∈ N . Then we are con-
cerned with finding a set of K capacitated disjoint clusters
ck ∈ C, ck ⊂ N, ck ∩ cl = ∅ ∀k, l ∈ {1, . . . ,K} with ca-
pacities Qk > 0. The assignment of points to these clusters
is given by the set of binary decision variables yik, which are
1 if point i is a member of cluster k and 0 otherwise.

Capacitated p-Median Problem
For the CPMP the set of possible cluster medoids is given by
the set of all data points N and the objective is to minimize
the distance (or dissimilarity) d(xi, xmk

) between all i and
their cluster medoid mk:

min
∑
i∈N

∑
k∈K

d(xi, xmk
)yik (1)

s.t. ∑
k∈K

yik = 1, ∀i ∈ N, ∀k ∈ K, (2)∑
i∈N

qiyik ≤ Qk, ∀k ∈ K, (3)

mk = argmin
m∈ck

∑
i∈ck

d(xi, xm), (4)

yik ∈ {0, 1}, ∀i ∈ N, ∀k ∈ K, (5)

where each point is assigned to only one cluster (2), all clus-
ters respect the capacity constraint (3), medoids are selected
minimizing the dissimilarity of cluster ck (4) and y being a
binary decision variable (5).

Capacitated Centered Clustering Problem
In the CCCP formulation, instead of medoids selected among
the data points, centroids µk are considered, which corre-
spond to the geometric center of the points assigned to each
cluster ck, replacing (4) with

µk = argmin
µ∈RD

∑
i∈ck

d(xi, µ), (6)

which in the case of the Euclidean space for spatial clustering
considered in this paper has a closed form formulation:

µk =
1

|ck|
∑
i∈N

xiyik, (7)

with |ck| as cardinality of cluster ck. This leads to the new
minimization objective of

min
∑
i∈N

∑
k∈K

d(xi, µk)yik. (8)

3 Related Work
Clustering Algorithms Traditional partitioning methods to
solve clustering problems, like the well-known k-means algo-
rithm [MacQueen, 1967] have been researched for more than
half a century. Meanwhile, there exists a plethora of differ-
ent methods including Gaussian Mixture Models [McLachlan
and Basford, 1988], density based models like DBSCAN [Es-
ter et al., 1996] and graph theoretic approaches [Ozawa,
1985]. Many of these algorithms have been extended to solve
other problem variants like the CCP. In particular [Mulvey
and Beck, 1984] introduce a k-medoids algorithm utilizing a
regret heuristic for the assignment step combined with addi-
tional re-locations during an integrated local search procedure
while [Geetha et al., 2009] propose an adapted version of k-
means which instead uses a priority heuristic to assign points
to capacitated clusters.
Meta-Heuristics Apart from direct clustering approaches
there are also methods from the operations research commu-
nity which tackle CCPs or similar formulations like the fa-
cility location problem. Different algorithms were proposed
modeling and solving the CCP as General Assignment Prob-
lem (GAP) [Ross and Soland, 1977], via simulated anneal-
ing and tabu search [Osman and Christofides, 1994], with ge-
netic algorithms [Lorena and Furtado, 2001] or using a scatter
search heuristic [Scheuerer and Wendolsky, 2006].
Math-Heuristics In contrast to meta-heuristics, math-
heuristics combine heuristic methods with powerful mathe-
matical programming solvers like Gurobi [Gurobi Optimiza-
tion, LLC, 2023], which are able to solve small scale instance
to optimality and have shown superior performance to tra-
ditional meta-heuristics in recent studies. [Stefanello et al.,
2015] combine the mathematical solution of the CPMP with
a heuristic post-optimization routine in case no optimality
was achieved. The math-heuristic proposed in [Gnägi and
Baumann, 2021] comprises two phases: First, a global op-
timization phase is executed. This phase alternates between
an assignment step, which solves a special case of the GAP
as a binary linear program (BLP) for fixed medoids, and a
median update step, selecting new medoids mk minimizing
the total distance to all cluster members under the current
assignment. This is followed by a local optimization phase
relocating points by solving a second BLP for the sub-set of
clusters which comprises the largest unused capacity. Finally,
the PACK algorithm introduced in [Lähderanta et al., 2021]
employs a block coordinate descent similar to the method
of [Gnägi and Baumann, 2021] where the assignment step is
solved with Gurobi and the step updating the centers is com-
puted following eq. 7 according to the current assignment.
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Deep Clustering Since the dawn of deep learning, an in-
creasing number of approaches in related fields is employing
deep neural networks. Most approaches in the clustering area
are mainly concerned with learning better representations
for downstream clustering algorithms, e.g. by employing
auto-encoders to different data modalities [Tian et al., 2014;
Xie et al., 2016; Guo et al., 2017; Yang et al., 2017], often
trained with enhanced objective functions, which, apart from
the representation loss, also include a component approximat-
ing the clustering objective and additional regularization to
prevent the embedding space from collapsing. A comprehen-
sive survey on the latest methods is given in [Ren et al., 2022].
More recently, deep approaches for constrained clustering
have been proposed: [Genevay et al., 2019] reformulate the
clustering problem in terms of optimal transport to enforce
constraints on the size of the clusters. [Zhang et al., 2021]
present a framework describing different loss components to
include pairwise, triplet, cardinality and instance level con-
straints into auto-encoder based deep embedded clustering
approaches. Finally, [Manduchi et al., 2021] propose a new
deep conditional Gaussian Mixture Model (GMM), which
can include pairwise and instance level constraints. Usually,
the described deep approaches are evaluated on very large,
high dimensional datasets like MNIST [LeCun and Cortes,
2010] or Reuters [Xie et al., 2016], on which classical algo-
rithms are not competitive. This is in strong contrast to spatial
clustering with additional capacity constraints, for which we
propose the first deep learning based method.

4 Proposed Method
4.1 Capacitated K-Means
The capacitated k-means method proposed by [Geetha et
al., 2009] changes the assignment step in Lloyd’s algo-
rithm [Lloyd, 1982], which is usually used to compute k-
means clustering. To adapt the procedure to the CCP, the
authors first select the K points with the highest weights q
as initial centers, instead of selecting them randomly. More-
over, they introduce priorities ωik for each point i by dividing
its weight qi by its distance to the center of cluster k:

ωik =
qi

d(xi, µk)
. (9)

Then the list of priorities is sorted and nodes are sequentially
assigned to the centers according to their priority. The idea is
to first assign points with large weights to close centers and
only then points with smaller weight, which can be more eas-
ily assigned to other clusters. Next, the centroids are recom-
puted via the arithmetic mean of the group members (eq. 7).
The corresponding pseudo code is given in Alg. 1.

While this heuristic works, it can easily lead to sub-optimal
allocations and situations in which no feasible solution can
be found, e.g. in cases where many nodes with high weight
are located very far from the cluster centers. To solve these
problems we propose several modifications to the algorithm.

4.2 Neural Scoring Functions
The first proposed adaption is to learn a neural scoring func-
tion fθ with parameters θ, which predicts the probability of

Algorithm 1: Capacitated k-means
input : K, n, coordinates x, weights q, cluster capacity

Q, convergence condition δ
output : binary assignment matrix Y

1 M ← inittopk weights (x, q,K)
2 while not δ(x,M, Y ) do
3 Y← allzero (n,K) // reset assignment
4 Q← repeat (Q,K) // reset capacities
5 foreach i ∈ N do
6 compute priorities for all clusters (eq. 9)
7 sort priorities, insert into queue S
8 while S not empty do
9 get next i, k from S

10 if i unassigned and Qk ≥ qi then
11 Yik ← 1 // cluster assignment
12 Qk ← Qk − qi // update capacity
13 foreach k ∈ {1, . . . ,K} do
14 update centroids via eq. 7
15 return Y

each node i to belong to cluster k:

ω̂ik = fθ(G, µk) (10)

For that purpose we first create a graph representation G =
(V , E) of the points by connecting each point with its K near-
est neighbors, producing edges eij ∈ E with edge weights
d(xi, xj). Nodes vi ∈ V are created by concatenating the re-
spective coordinates and weights [xi; qi]. This graph allows
us to define a structure on which the relative spatial informa-
tion of the different points can be efficiently propagated. We
encode G with the Graph Neural Network (GNN) introduced
in [Morris et al., 2019], which is able to directly work with
edge weights by employing the graph operator defined as

h
(l)
i = σ

(
MLP

(l)
1 (h

(l−1)
i ) + MLP

(l)
2 (
∑
j∈H(i) eji · h

(l−1)
j )

)
(11)

where h(l−1)i ∈ R1×demb represents the embedding of node i
at the previous layer l− 1,H(i) is the 1-hop graph neighbor-
hood of node i, eji is the directed edge connecting nodes j
and i, MLP1 and MLP2 are Multi-Layer Perceptrons MLP :
Rdemb → Rdemb and σ() is a suitable activation function. Fur-
thermore, we add residual connections and regularization to
each layer. In our case we choose GELU [Hendrycks and
Gimpel, 2016] and layer normalization [Ba et al., 2016]
which outperformed ReLU and BatchNorm in preliminary ex-
periments. The input layer projects the node features vi =
[xi; qi] ∈ RD+1 to the embedding dimension demb using a
feed forward layer, which then is followed by L GNN layers
of the form given in eq. 11. In order to create embeddings
hµk

for the centers µk ∈ M we find the node j closest to µk
(corresponding to the cluster medoid mk) and select its em-
bedding h(L)j as hk. This embedding is concatenated with a
globally pooled graph embedding hG ∈ Rdemb :

hG = MLPG

([
MAX(h(L)); MEAN(h(L))

])
(12)

with MLPG : R2demb → Rdemb . Next, in order to model the
interdependence of different centers, their resulting vectors
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Figure 1: Visualization of the neural scoring function architecture.

are fed into a self attention layer (SA) [Vaswani et al., 2017]
followed by another MLPµ : R2demb → Rdemb :

hµk
= MLPµ

(
SA ([hG ;hk])

)
. (13)

Since we feed a batch of all points N and all currently avail-
able centers µ to our model, they are encoded as a batch of
context vectors hµk

, one for each cluster k ∈ {1, . . . ,K}.
The SA module then models the importance of all cluster
center configurations hµ for each cluster k which allows
the model to effectively decide about the cluster assignment
probability of every node i to each cluster ck conditionally on
the full information encoded in the latent context embeddings
hµ. Finally, we do conditional decoding by concatenating ev-
ery center embedding with each node and applying a final
stack of (element-wise) MLPs. The architecture of our neural
scoring function is shown in Figure 1.
Training the model We create the required training data
and labels by running the math-heuristic solver of [Gnägi and
Baumann, 2021] on some generated datasets to create a good
(although not necessarily optimal) partitioning. Then we do
supervised training using binary cross entropy2 (BCE) with
pairwise prediction of the assignment of nodes i to clusters k.

4.3 Neural Capacitated Clustering
To fully leverage our score estimator we propose several
adaptions and improvements to the original capacitated k-
means algorithm (Alg. 1). The new method, which we dub
Neural Capacitated Clustering (NCC) is described in Alg. 2.

Order of Assignment
Instead of sorting all center-node pairs by their priority and
then sequentially assigning them according to that list, we
fix an order given by permutation π for the centers and cycle
through each of them, assigning one node at a time. Since
the output of fθ is the log probability of point i belonging to
cluster k and its magnitude does not directly inform the or-
der of assignments of different nodes i and j in the iterative
cluster procedure, we found it helpful to scale the output of
fθ by the heuristic weights introduced in eq. 9. Thus, we
assign that node i to cluster k, which has the highest scaled
conditional priority and still can be accommodated consid-
ering the remaining capacity Qk. In case there remain any

2BCE: L(ŷ, y) = y · log ŷ + (1− y) · log(1− ŷ)

unassigned points j at the end of an iteration, which cannot
be assigned to any cluster since qj > Qk ∀k ∈ K, we assign
them to a dummy cluster K + 1 located at the origin of the
coordinate system. We observe in our experiments that al-
ready after a small number of iterations usually no nodes are
assigned to the dummy cluster anymore, meaning a feasible
allocation has been established. Moreover, since the neigh-
borhood graph G does not change between iterations, we can
speed up the calculation of priorities by pre-computing and
buffering the node embeddings hi and graph embedding hG
in the first iteration.

Re-Prioritization of Last Assignments
This is motivated by the observation that the last few assign-
ments are the most difficult, since they have to cope with
highly constrained center capacities. Thus, relying on the pre-
defined cyclic order of the centers (which until this point has
ensured that approx. the same number of nodes was assigned
to each cluster) can lead to sub-optimal assignments in case
some clusters have many nodes with very large or very small
weights. To circumvent this problem we propose two differ-
ent assignment strategies:

1. Greedy: We treat the maximum (unscaled) priority over
all clusters as an absolute priority ω̄i for all remaining
unassigned points i:

ω̄i = max
k

ω̂ik (14)

Then the points are ordered by that priority and sequen-
tially assigned to the closest cluster which can still ac-
commodate them.

2. Sampling: We normalize the absolute priorities ω̄i of
all remaining unassigned points i via the softmax3 func-
tion and treat them as probabilities according to which
they are sequentially sampled and assigned to the clos-
est cluster which can still accommodate them. This pro-
cedure can be further improved by sampling several as-
signment rollouts and selecting the configuration, which
leads to the smallest resulting inertia.

The fraction α of final nodes for which the re-prioritization is
applied we treat as a hyperparameter.

3softmax: σ(x)i = exi∑n
j=1 e

xj
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Algorithm 2: Neural Capacitated Clustering (NCC)
input : K, n, coordinates x, weights q, cluster capacity

Q, convergence condition δ, scoring function fθ ,
fraction α

output : binary assignment matrix Y
1 M ← initckm++ (x, q,K) // get seed centers
2 G ← KNN graph (x) // create graph
3 while not δ(x,M, Y ) do
4 Y← allzero (n,K+1)
5 Q← repeat (Q,K)
6 π ← random perm ({1, . . . ,K})
7 ω̂ ← fθ(G,M) // compute priorities
8 sort columns of ω̂
9 while any i can be assigned do

10 k ← π.get next ()
11 foreach i ∈ N sorted by ω̂k do
12 if i unassigned and Qk ≥ qi then
13 Yik ← 1
14 Qk ← Qk − qi
15 break foreach
16 if fraction of unassigned points ≤ α then
17 compute absolute priorities ω̄ (eq. 14)
18 assign greedily or with sampling (see 4.3)
19 break while
20 assign any remaining nodes to dummy cluster
21 foreach k ∈ {1, . . . ,K+1} do
22 update centroids via eq. 7
23 return Y

Weight-Adapted Kmeans++ Initialization
As found in the study of [Celebi et al., 2013] standard meth-
ods for the selection of seed points for centers during the ini-
tialization of k-means algorithms perform quite poorly. This
is why the k-means++ [Arthur and Vassilvitskii, 2006] ini-
tialization routine was developed, which aims to maximally
spread out the cluster centers over the data domain, by sam-
pling a first center uniformly from the data and then sequen-
tially sampling the next center from the remaining data points
with a probability equal to the normalized squared distance to
the closest already existing center. We propose a small modi-
fication to the k-means++ procedure (called ckm++), that in-
cludes the weight information into the sampling procedure by
simply multiplying the squared distance to the closest exist-
ing cluster center by the weight of the data point to sample.

5 Experiments
We implement our model and the simple baselines in Py-
Torch [Paszke et al., 2019] version 1.11 and use Gurobi ver-
sion 9.1.2 for all methods that require it. All experiments are
run on a i7-7700K CPU (4.20GHz). We use L = 4 GNN lay-
ers, an embedding dimension of demb = 256 and a dimension
of dh = 256 for all hidden layers. More details on training
our neural scoring function we report in the supplementary.4

5.1 Capacitated Clustering
For the experiments we use the CCCP formulation of the CCP
(eq. 8) which considers centroids instead of medians. While

4We open source our code at https://github.com/jokofa/NCC

0 25 50 75 100 125 150 175 200
epoch

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

Dataset
CCP200
Italia_tel
Shanghai_tel

Figure 2: Validation accuracy for fθ .

there are several possible ways to select a useful number K
of clusters, like the Elbow method [Yuan and Yang, 2019],
here we adopt a practical approach consisting of solving the
problem with the random assignment baseline method for a
number of seeds and choosing the minimal resulting number
of clusters asK. For the n = 200 datasets we run all methods
for 3 different seeds and report the mean cost with standard
deviation and average run times. Since Gurobi requires a run
time to be specified because it otherwise can take arbitrar-
ily long for the computation to complete, we set reasonable
total run times of 3min for n = 200 and 15min for the orig-
inal sizes. If Gurobi times out, we return the last feasible
assignment if available. Otherwise, we report the result for
that instance as infeasible and set its cost to the average cost
of the rnd-NN baseline. The validation accuracy of our neu-
ral scoring function on the different training sets is shown in
Figure 2. We evaluate our method in a greedy and a sampling
configuration, which we tune on a separate validation set: (g-
20-1) stands for 1 greedy rollout for a fraction of α = 0.2 and
(s-25-32) for 32 samples for α = 0.25.

Datasets We perform experiments on artificial data and two
real world datasets. The artificial data with instances of size
n = 200 we generate based on a GMM. As real world
datasets for capacitated spatial clustering we select the well-
known Shanghai Telecom (ST) dataset [Wang et al., 2019]
which contains the locations and user sessions for base sta-
tions in the Shanghai region. In order to use it for our CCP
task we aggregate the user session lengths per base station as
its corresponding weight and remove base stations with only
one user or less than 5min of usage in an interval of 15 days
as well as outliers far from the city center, leading to a re-
maining number of n = 2372 stations. We set the required
number of centers to K = 40. The second dataset we as-
semble by matching the internet access sessions in the call
record data of the Telecom Italia Milan (TIM) dataset [Bar-
lacchi et al., 2015] with the Milan cell-tower grid retrieved
from OpenCelliD [OCID, 2021]. After pre-processing it con-
tains n = 2020 points to be assigned to K = 25 centers. We
normalize all weights according toK with a maximum capac-
ity normalization factor of 1.1. The experiments on the real
world data are performed in two different settings: The first
setting simply executes all methods on the full dataset, while
the second setting sub-samples the data in a random local grid
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Method Inertia (±) Time (s) inf. %

random 14.35 (3.77) 0.01 0.0
rnd-NN 7.67 (2.35) 0.01 0.0
topk-NN 7.38 (0.00) 0.01 0.0
GB21 0.98 (0.18) 4.54 1.0
PACK 0.94 (0.14) 14.77 1.0
CapKMeans 1.30 (0.86) 2.19 5.0

NCC (g-20-1) 0.93 (0.01) 1.59 0.0
NCC (s-20-64) 0.92 (0.01) 1.83 0.0

Table 1: Results on generated CCP dataset (100 instances, n=200).
Best result in bold, second best underlined.

to produce 100 test instances of size n = 200, with weights
multiplied by a factor drawn uniformly from the interval [1.5,
4.0) for ST and [2.0, 5.0) for TIM to produce more variation
in the required K. The exact pre-processing steps and sub-
sampling procedure are described in the supplementary.
Baseline Methods

• random: sequentially assigns random labels to points
while respecting cluster capacities.

• rnd-NN: selects K random points as cluster centers and
sequentially assigns nearest neighbors to these clusters,
i.e. points ordered by increasing distance from the cen-
ter, until no capacity is left.

• topk-NN: similar to random-NN, but instead selects the
K points with the largest weight as cluster centers.

• CapKMeans: the capacitated k-means algorithm of
[Geetha et al., 2009] with ckm++ initialization which
outperformed the original topk weights initialization.

• PACK: the block coordinate descent math-heuristic in-
troduced in [Lähderanta et al., 2021] (using Gurobi).

• GB21: the two phase math-heuristic proposed by [Gnägi
and Baumann, 2021] also using the Gurobi solver.

Results We evaluate all baselines in terms of inertia, which
is defined as the total squared distance of all points to their
assigned center. On the generated data (Table 1) our method
outperforms all other baselines in terms of inertia while being
much faster than all other methods with comparable perfor-
mance. Furthermore, for three runs with different random
seeds our method achieves results with significantly smaller
standard deviations and is able to solve all instances within
the given time. Results for the sub-sampled datasets are re-
ported in Table 2. On ST our method beats close to all meth-
ods in terms of inertia and is only slightly outperformed by
GB21 while being 5× faster. On TIM we achieve similar
performance compared to GB21 while being much faster and
outperform all other approaches. In particular, we are more
than one order of magnitude faster than the next best perform-
ing baseline PACK. Furthermore, our method again achieves
very small standard deviation for greedy as well as sampling
based assignments, showing that it reliably converges to good
(local) optima. As expected the random baseline leads to very
bad results. The naive baselines rnd-NN and topk-NN are bet-
ter but still significantly worse than the more advanced meth-
ods, achieving inertia which are 3-7 times higher than that

Method Inertia (±) Time (s) inf. %

Shanghai Telecom (ST)
random 2.61 (0.88) 0.02 0.0
rnd-NN 1.53 (0.30) 0.01 2.3
topk-NN 1.71 (0.00) 0.01 4.0
GB21 0.46 (0.11) 17.49 3.3
PACK 0.57 (0.16) 44.47 8.7
CapKMeans 0.70 (0.22) 4.44 7.0

NCC (g-25-1) 0.52 (0.02) 2.87 0.0
NCC (s-25-32) 0.51 (0.02) 3.53 0.0

Telecom Italia Milan (TIM)
random 3.85 (0.54) 0.02 0.0
rnd-NN 2.00 (0.44) 0.01 1.3
topk-NN 2.12 (0.00) 0.01 0.0
GB21 0.58 (0.10) 14.25 2.3
PACK 0.61 (0.16) 70.09 4.0
CapKMeans 0.68 (0.14) 4.05 2.3

NCC (g-20-1) 0.60 (0.02) 2.44 0.0
NCC (s-25-128) 0.58 (0.01) 4.09 0.0

Table 2: Results on sub-sampled ST and TIM datasets (100 in-
stances, n=200). Best result in bold, second best underlined.

of the best method. Compared to CapKMeans NCC leads
to improvements of 41%, 37% and 17% respectively for the
generated, ST and TIM data while achieving even faster run
times, showing the impact of our proposed model adapta-
tions. The inertia and run times for the full datasets are di-
rectly reported in the headings of Figures 3 and 4, which dis-
play the cluster assignments for Milan and Shanghai, explic-
itly drawing the convex hull of each cluster for better visu-
alization. While both math-heuristics are able to outperform
NCC on these large-scale instances in terms of inertia, our
method is close to one order of magnitude faster. Further-
more, the results show that our method is able to find useful
cluster structures which especially for TIM are more homoge-
neous than those of GB21 and show vast improvements com-
pared to CapKMeans.

5.2 Capacitated Vehicle Routing
To show the efficacy of our approach we extend it to a cluster-
first-route-second (C1R2) construction method for Capaci-
tated Vehicle Routing Problems (CVRP). The CVRP is an
extension of the traveling salesman problem (TSP) in which
K capacitated vehicles have to serve the demand of n cus-
tomers from a fixed depot node [Toth and Vigo, 2014].

Algorithm Modifications To adapt our method for the dif-
ferent problem we include an additional MLP in our scoring
function, which encodes the depot node, and concatenate the
depot embedding with hG and hk in eq. 13. In our algorithm
we add the depot node to each cluster k during the center up-
date (Algorithm 2, line 22) and add the distance from each
node to the depot to the priority weights. After the clustering
we use the fast TSP solver provided by VeRyPy [Rasku et al.,
2019] to route the nodes in each assigned group.

Dataset To evaluate our algorithm we choose the bench-
mark dataset of [Uchoa et al., 2017] which consists of 100
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GB21
inertia: 8.0354  time: 913.05s

PACK
inertia: 8.4252  time: 944.72s

CapKMeans
inertia: 9.6087  time: 98.94s

NCC_(s-25-128)
inertia: 8.9511  time: 89.87s

Figure 3: Clusters drawn with their convex hulls for the TIM dataset. Black ”x” markers represent the cluster centers.

GB21
inertia: 4.0449  time: 911.42s

PACK
inertia: 4.7131  time: 926.66s

CapKMeans
inertia: 5.7877  time: 135.32s

NCC_(s-25-128)
inertia: 5.3139  time: 173.49s

Figure 4: Clusters drawn with their convex hulls for the ST dataset. Black ”x” markers represent the cluster centers.

instances of sizes between 100 and 1000 points sampled ac-
cording to varying distributions (uniform, clustered, etc.) and
with different depot positions and weight distributions. We
split the benchmark into three sets of problems with size N1
(100 ≤ n < 250), N2 (250 ≤ n < 500) and N3 (500 ≤ n).

Baselines In our experiments we compare against sev-
eral classical C1R2 approaches: First, the sweep algorithm
of [Gillett and Miller, 1974], which starts a beam at a random
point and adds nodes in turn by moving the beam around the
depot. We restart the beam at each possible point and run it
clock and counter-clock wise. Next, sweep+, which instead
of routing nodes in the order in which they were passed by
the beam, routes them by solving a TSP with Gurobi. The
petal algorithm introduced in [Foster and Ryan, 1976] cre-
ates ”petal” sets by running the sweep algorithm from dif-
ferent starting nodes and then solves a set covering problem
with Gurobi to join them. Finally, for comparison (although
not C1R2) the powerful auto-regressive neural construction
method POMO of [Kwon et al., 2020] which is trained with
deep reinforcement learning and uses additional instance aug-
mentation techniques. It is evaluated either greedily (g) or
with sampling (s) and a beam width of n (size of the instance).

Results As shown in Table 3, our extended approach per-
forms very competitive on the benchmark, beating all C1R2
approaches from the classical literature and being close to
POMO on the small and medium sized instances (N1 and N2)
while significantly outperforming it on the large instances
(N3). Moreover, our method achieves the smallest fleet size
of all methods, very close to the optimal fleet size Koptimal.

N1 N2 N3
Method dist t (s) dist t (s) dist t (s)

sweep 57.2 0.65 109.7 2.21 220.7 9.80
(28.1) (47.9) (96.5)

sweep+ 40.8 23.9 73.1 105.4 136.4 656.5
(28.1) (47.9) (96.5)

petal 40.4 6.9 72.5 18.2 133.8 86.4
(28.1) (47.9) (96.5)

POMO (g) 33.7 0.1 64.8 0.2 143.7 0.5
(24.7) (44.8) (87.2)

POMO (s) 33.3 1.4 63.8 10.2 136.0 92.3
(24.7) (44.7) (87.1)

NCC (g) 35.9 5.1 67.2 10.2 122.5 29.2
(24.0) (43.6) (84.9)

NCC (s) 35.7 7.1 66.2 18.5 121.5 39.2
(24.0) (43.6) (84.9)

Koptimal (23.8) (43.5) (84.5)

Table 3: Results on the Uchoa benchmark. We report the average
total distance, time (sec.) and number of vehicles K (in brackets).
Koptimal is the target number of vehicles in the benchmark.

6 Conclusion
This paper presents the first deep learning based approach for
the CCP. In experiments on artificial and real world data our
method NCC shows competitive performance and fast and
robust inference. Moreover, we demonstrate its usefulness
as constructive method for the CVRP, achieving promising
results on the well-known Uchoa benchmark.
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