
Self-Recover: Forecasting Block Maxima in Time Series from Predictors with
Disparate Temporal Coverage Using Self-Supervised Learning

Asadullah Hill Galib1 , Andrew McDonald2,3 , Pang-Ning Tan1 and Lifeng Luo4

11Department of Computer Science & Engineering, Michigan State University
2University of Cambridge
3British Antarctic Survey

4Department of Geography, Environment, and Spatial Sciences, Michigan State University
galibasa@msu.edu, arm99@cam.ac.uk, ptan@msu.edu, lluo@msu.edu

Abstract
Forecasting the block maxima of a future time win-
dow is a challenging task due to the difficulty in in-
ferring the tail distribution of a target variable. As
the historical observations alone may not be suf-
ficient to train robust models to predict the block
maxima, domain-driven process models are often
available in many scientific domains to supple-
ment the observation data and improve the fore-
cast accuracy. Unfortunately, coupling the histor-
ical observations with process model outputs is a
challenge due to their disparate temporal cover-
age. This paper presents Self-Recover, a deep
learning framework to predict the block maxima
of a time window by employing self-supervised
learning to address the varying temporal data cov-
erage problem. Specifically Self-Recover uses
a combination of contrastive and generative self-
supervised learning schemes along with a denois-
ing autoencoder to impute the missing values. The
framework also combines representations of the
historical observations with process model out-
puts via a residual learning approach and learns
the generalized extreme value (GEV) distribution
characterizing the block maxima values. This
enables the framework to reliably estimate the
block maxima of each time window along with
its confidence interval. Extensive experiments on
real-world datasets demonstrate the superiority of
Self-Recover compared to other state-of-the-
art forecasting methods.

1 Introduction
Forecasting the block maxima of a future time window is im-
portant as it enables us to anticipate the worst-case scenario
expected to occur within the forecast period. In recent years,
deep learning [Sagheer and Kotb, 2019; Laptev et al., 2017;
Peng et al., 2018; Vaswani et al., 2017; Aliabadi et al., 2020]
has become increasingly popular for time series forecasting
due to their capacity to learn complex nonlinear relationships
in data. However, since these methods are mostly designed to
predict the conditional mean of the target variable rather than

its tail distribution, they may not be effective at predicting
the block maxima values. This has led to considerable inter-
est in incorporating sound statistical principles from extreme
value theory (EVT) into the deep learning formulation [Galib
et al., 2022; McDonald et al., 2022; Wilson et al., 2022;
Ding et al., 2019; Polson and Sokolov, 2020].

Forecasting block maxima is an inherently hard problem
due to the limited availability of extreme values in histori-
cal data. Towards this end, process-based models have been
developed in many scientific domains to simulate the fu-
ture based on current understanding of the physical processes
driving the changes observed in the system. For example,
general circulation models (GCMs) are widely-used process-
based models for generating forecasts of the future climate
condition under varying greenhouse gas emission scenarios.
Such model-based forecasts can be used as domain-informed
predictors to complement the historical data and enhance the
accuracy of time series forecasting models. However, inte-
grating such model-based forecasts with historical observa-
tions is a challenge due to their disparate temporal cover-
ageFor example, long-term historical records of the climate
are dating back before the 20th century, whereas most of the
archived scenarios of GCM runs are only available starting
from mid-20th century since scenario development is time-
consuming and costly [Winkler et al., 2011]. The miss-
ing values in model-based forecasts can significantly impede
training of accurate models [Che et al., 2018].

Self-supervised learning [Ericsson et al., 2022; Jaiswal et
al., 2020] offers a possible solution to remedy this prob-
lem by extracting useful features from the available time
series and using the information for missing value imputa-
tion. While self-supervised learning has demonstrated re-
markable success in applications such as image and natu-
ral language processing, its utility in imputing missing val-
ues in time series has remained relatively unexplored. In
this paper, we present a self-supervised learning framework
called Self-Recover to enable accurate forecasts of the
block maxima using both historical observations and model-
based forecasts. Specifically, a combination of contrastive
and generative self-supervised learning methods along with a
denoising autoencoder are used to impute missing values in
the model-based forecasts. Self-Recover also employs a
residual learning approach to combine representations of the
historical and process model predictors so they can be used

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3723

Figure 1: An illustration of the structured and random missing val-
ues in model-based forecasts. Time period (a) represents the case
of structured missing values in which the model-based forecasts are
completely unavailable. Time period (b) represents the case where
the model-based forecasts are available but are missing at random.

by downstream models for block maxima prediction. In this
work, we employ DeepExtrema [Galib et al., 2022] as our
downstream model due to its ability to simultaneously infer
parameters of the generalized extreme value (GEV) distribu-
tion that characterizes the distribution of block maxima val-
ues and to accurately predict the block maxima of each time
window along with its confidence interval.

In summary, the main contributions of the paper are:
1. We present a novel framework, Self-Recover, to si-

multaneously recover the missing values present in the
outputs of process-based models and to accurately fore-
cast the block maxima of a future time window.

2. We propose a self-supervised learning approach to im-
pute both random and structured missing values present
in a time series by integrating contrastive and generative
learning schemes with a denoising autoencoder.

3. We present a residual technique to combine the repre-
sentations from historical and model-based forecasts and
show that it is better than simple concatenation.

4. We perform extensive experiments on real-world data to
demonstrate the effectiveness of Self-Recover com-
pared to state-of-the-art time series forecasting methods.

2 Preliminaries
2.1 Problem Statement
Consider a time series dataset that is partitioned into a set
of potentially overlapping time windows, {w1, w2, · · · , wn}.
Each window wi is defined by a time interval [ti −α, ti + β],
where [ti − α, ti] denotes the historical period of the time
window and [ti + 1, ti + β] denotes the forecast period. Let
{zHt }Tt=1 be the time series associated with the target variable
to be predicted and {zMt }Tt=ts be the time series associated
with the output forecasts generated by a set of m process-
based models. For each time window [t − α, t + β], we de-
note xH

t = (zHt−α, z
H
t−α+1, · · · , zHt) ∈ Rα+1 as the historical

predictors, xM0
t = (zMt+1, z

M
t+2, · · · , zMt+β) ∈ Rm×β as the

model-based predictors, and yt = maxτ∈{1,··· ,β} z
(H)
t+τ ∈ R

as the true block maxima of the forecast period. Note that the
model-based predictors xM◦

t can be partially or completely
missing for the given time window, as illustrated in Figure 1.

Our first objective is to impute the missing values in the
model-based predictors (xM0

t) using the historical predictors

(xH
t) available in [t − α, t]. To do so, we will train a data

imputation model fimpute : Rα+1 → Rm×β to obtain the
complete set of model-based forecasts, xMf

t = fimpute(x
H
t).

Our second objective is to predict the block maxima value
(yt) of the future period [t+1, t+β] using both the historical
predictors (xH

t) in [t−α, t] and the (possibly imputed) model-
based predictors (xMf

t) in [t + 1, t + β]. This is achieved by
training a model fforecast : Rα+1×Rm×β → R to predict the
block maxima value, ŷt = fforecast(x

H
t , x

Mf

t), along with
its upper and lower quantiles, ŷU and ŷL, respectively.

2.2 DeepExtrema Framework
The DeepExtrema framework [Galib et al., 2022] is de-
signed to predict the block maxima of a time window by
incorporating the following GEV distribution [Coles et al.,
2001] into the training of deep neural networks (DNNs):

G(y) = exp

{
−

[
1 + ξ(

y − µ

σ
)

]−1/ξ}
, (1)

where the GEV parameters define the location (µ), scale (σ)
and shape (ξ) of the distribution. The GEV parameters are
constrained to satisfy the following conditions:

σ > 0 and ∀ i : 1 + ξ

σ
(yi − µ) > 0. (2)

DeepExtrema uses a DNN to predict the block maxima
value of a forecast period while simultaneously learning the
parameters of its GEV distribution. The learned parameters
can be used to estimate the forecast uncertainties by comput-
ing the pth quantile of the GEV distribution, yp, as follows:

yp = µ+
σ

ξ

[
(− log p)−ξ − 1

]
. (3)

Given a training set consisting of n block maxima values,
{y1, y2, · · · , yn}, DeepExtrema is trained to minimize the
mean-square error of the block maxima prediction as well as
the following negative log-likelihood function to ensure its
predictions are consistent with the GEV distribution:
ℓGEV (µ, σ, ξ) = n log σ + (1ξ + 1)

∑n
i=1 log(1 + ξ yi−µ

σ)

+
∑n

i=1 (1 + ξ yi−µ
σ)−1/ξ

DeepExtrema reformulates the GEV constraints given in
(2) and reparameterizes the DNN output accordingly to en-
sure that the constraints are enforced during training. It fur-
ther uses a model bias offset mechanism to ensure that the
DNN output preserves the GEV constraints even when it
is randomly initialized. The model bias offset mechanism
would first compute the bias introduced by the randomly ini-
tialized network and then performs bias correction to mitigate
its effect in subsequent training epochs. This strategy of de-
biasing the DNN outputs guarantees that the GEV parameters
estimated by the DNN would satisfy the regularity conditions
at all times even if the DNN was not properly initialized.

3 Proposed Self-Recover Framework
Self-Recover extends the DeepExtrema framework
[Galib et al., 2022] to enable the incorporation of both his-
torical observations and model-based forecasts as predic-
tors for its block maxima prediction. Figure 2 presents a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3724

Figure 2: Self-Recover: Proposed framework for forecasting the block maxima using both historical observations and model-based
forecasts as predictors. It is also trained to predict the parameters of the generalized extreme value (GEV) distribution.

schematic diagram of the framework. Given the historical
observations, Self-Recover initially imputes the struc-
tured missing values present in the model-based forecasts
by employing a combination of contrastive and generative
self-supervised learning schemes. A denoising autoencoder
(DAE) is then used to impute values that are missing at ran-
dom. Self-Recover implements two DNNs, consisting
of stacked bidirectional LSTMs with a fully connected net-
work, to learn the feature representations of the historical and
model-based predictors separately. The learned model-based
representation, hM , can be viewed as a residual term to be
added to the representation of the historical observations, hH .
The combined representation of hT and hM is then presented
to a downstream model for block maxima prediction. Mo-
tivated by the DeepExtrema framework, the downstream
forecasting module of Self-Recover works as follows:

(µt, σt, ξt) = f(hH
t + αhM

t) (4)
ŷt, ŷL, ŷU ∼ GEV (µt, σt, ξt) (5)

Equation (4) specifies a DNN model for estimating the GEV
parameters governing the distribution of block maxima values
based on the input predictors. The estimated GEV parameters
are then used to forecast the block maxima along with its up-
per and lower quantiles according to Equation (5).

3.1 Self-Supervised Imputation for Handling the
Disparate Temporal Coverage Problem

To deal with the difference in temporal coverage of
the model-based forecasts and historical observations,
Self-Recover employs a combination of self-supervised
imputation approaches shown in Figure 3.

First, a contrastive learning approach is used to derive the
feature representation of the historical observations. Con-
trastive learning [Jaiswal et al., 2020] is a method for learning
representations from unlabeled data by comparing different
augmented versions of the same data sample. In the context
of time series, this would involve training a DNN with pairs

of time series, where each pair is either a positive example
(two similar time series) or a negative example (two dissimi-
lar time series). The DNN is trained to identify features that
will distinguish between the positive and negative examples.

Given the historical time series xH
t of a window wt, a

data augmentation step is initially performed to produce two
perturbed time series, (xH

1,t, x
H
2,t). All other samples from

the same mini-batch are treated as negative examples when
paired with xH

t . We evaluated different strategies for data
augmentation, including jittering, scaling, and flipping but
found jittering to perform the best. The augmented time series
are then presented to an encoder-decoder network to generate
the initial model-based forecasts xM ′

t as follows:

xM ′

t = Decoder(zHt) where zHt = Encoder(xH
t) (6)

The intermediate embedding (zHt) of the encoder is pro-
jected to a lower-dimensional space using a projection head
g(·), i.e., cHt = g(zHt). To ensure that the projected vectors
cHt are similar for closely related samples, a contrastive loss
is calculated to measure the similarity between two projected
vectors. The contrastive loss for positive examples containing
pairs of augmented time series generated from the same xH

t
should be smaller than that for negative examples.

The encoder-decoder network given in (6) is trained to gen-
erate an initial model-based forecasts (xM ′

t) from the histori-
cal observations (xH

t). Although the initially generated fore-
casts are complete, i.e., have no missing values, they may
not be consistent with the true model-based forecasts xM0

t .
Thus, they need to be calibrated to ensure their consistency
with the available ground truth model-based forecast values.
Since the ground truth forecasts may also contain missing val-
ues, a denoising autoencoder (DAE) [Vincent et al., 2010] is
used. DAE is a type of autoencoder designed to reconstruct
the original values from a corrupted input by learning a rep-
resentation that is robust to noise. A DAE imputes values that
are missing at random by treating them as noise and training
an autoencoder to recover their original values.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3725

Figure 3: Proposed self-supervised learning approach for missing value imputation in the model-based forecasts.

To apply the DAE, missing values are introduced as noise
to perturb the complete model-based forecasts xM ′

t . There are
two cases to consider here. First, if its corresponding ground
truth model-based forecasts xM0

t have missing values, then
the same missing values are injected into xM ′

t . Second, if no
ground truth model-based forecasts are available or if there
are no missing values in xM0

t , then the missing values are
introduced randomly into xM ′

t . In both cases, a corrupted
model-based forecasts, xM ′

o
t , is obtained from xM ′

t , as shown
in Figure 3. The DAE is trained to reconstruct the complete
model-based forecasts xM ′

t from the corrupted version x
M ′

o
t .

The embedding zMt generated by the DAE’s encoder is
also projected to a lower-dimensional space using a projec-
tion head g′(·) to obtain a projected vector cMt = g′(zMt).
Once again, to ensure that the projected vectors are similar
for similar input samples, a contrastive loss is introduced for
cMt . Finally, if the ground truth model-based forecasts xM0

t
are available, a root-mean-square error (RMSE) loss is com-
puted to ensure that the corrupted model-based forecasts xM ′

0
t

remains close to xM0
t . The output of the DAE (xMf

t) is a
complete set of model-based forecasts to be used for repre-
sentation learning, as shown in Figure 2.

3.2 Optimization of Self-Supervised Imputation
The self-supervised imputation framework shown in Figure 3
is trained to minimize the following objective function:

LSSL = ℓMRMSE + γ1ℓ
H
contr + γ2ℓ

M
contr + γ3ℓ

M
reconst (7)

where γ1, γ2, and γ3 are user-specified hyperparameters. The
objective function LSSL comprises of a weighted sum of the
contrastive loss for historical observations and model-based
forecasts as well as the reconstruction and RMSE losses.

For contrastive learning, Self-Recover adopts the NT-
Xent (Normalized Temperature-scaled Cross Entropy) loss
function used in [Chen et al., 2020]. The contrastive loss as-
sociated with the latent historical (ℓHcontrast) and model-based

(ℓMcontrast) feature representations are defined as follows:

ℓHcontr = −
∑

(i,j)∈P

log
exp

[
sim(cHt,i, c

H
t,j)

]
∑2N

k=1 1k ̸=i exp
[
sim(cHt,i, c

H
t,k)

]
ℓMcontr = −

∑
(i,j)∈P

log
exp

[
sim(cMt,i, c

M
t,j)

]
∑2N

k=1 1k ̸=i exp
[
sim(cMt,i, c

M
t,k)

] (8)

where P corresponding to the set of positive examples and
sim(c1, c2) is the cosine similarity between two vectors.

The following reconstruction loss is used to train the DAE:

ℓMreconst =
1

n

n∑
i=1

||xM ′

t,i − x
Mf

t,i ||2 (9)

where xM ′

t,i is the initially generated model-based forecasts

by the encoder-decoder network and x
Mf

t,i is the output of the
DAE for the i-th sample.

Finally, the RMSE loss between ground truth model-based
forecasts, xM0

t,i , and projected model-based forecasts xM ′
0

t,i is:

ℓMRMSE =

√√√√ n∑
i=1

(xM0
t,i − x

M ′
0

t,i)
2

n
(10)

Self-Recover optimizes the objective function given in
Equation (7) in two phases. During the first phase, it starts by
training using only samples from the time period (b) shown in
Figure 1, where both historical and model-based forecasts are
available. After several hundred training epochs, it will pro-
ceed to the second phase in which the network is trained using
samples from both time periods (a) and (b). The optimization
is carried out this way to take advantage of the samples from
time period (b) which have ground truth values available. The
ground truth enables us to compute the RMSE loss and allows
the network to converge faster towards the right local minima
solution. Samples from the time period (a) will not contribute
to the RMSE loss given in Equation (10) since they have no
corresponding ground truth model-based forecasts.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3726

3.3 Temporal Representation Learning
The self-supervised imputation step described in the previ-
ous subsection enables all the structured and random missing
values in the model-based forecasts to be imputed. This al-
lows Self-Recover to learn the temporal representations
of both historical predictors (hH

t) as well as the model-based
forecasts (hH

t) using a combination of stacked bi-directional
LSTM and fully connected networks. The next step is to com-
bine the two learned representations (hH

t and hM
t) so they can

be used to infer the GEV distribution parameters. One way to
do this is to concatenate them together into a single represen-
tation, but this would increase its dimensionality and num-
ber of DNN parameters to be estimated in subsequent layers.
Such a DNN is harder to train and is more susceptible to the
vanishing gradient problem [Hochreiter, 1998].

Alternatively, the learned representation of the historical
predictors (hH

t) can be regarded as a first-order approxima-
tion of the features. The learned representation from model-
based forecasts (hM

t) can be viewed as a residual (correction)
factor to refine the representation error in hH

t :

h
(H+M)
t = hH

t + α× hM
t , (11)

where α is a scalar hyperparameter for the residual weight.
We investigate the effectiveness of both approaches—

simple concatenation versus residual learning—and compare
their relative performance in terms of effectiveness (fore-
cast accuracy) and efficiency (convergence rate). As will
be shown in our experiments, although the accuracy of both
approaches is quite comparable, Self-Recover achieves
faster convergence when using the residual learning approach
compared to simple concatenation.

3.4 Incorporating GEV Distribution for Block
Maxima Prediction

The combined representation h
(H+M)
t in (11) is used as input

to a fully connected network to estimate the GEV parameters,
µ, σ, and ξ. Similar to DeepExtrema, Self-Recover
must learn the GEV parameters in a way that preserves their
inter-dependent constraints in (2). To do this, the hard GEV
constraints are reformulated as soft constraints as follows:

∀ i : 1 + ξ

σ
(yi − µ) + τ ≥ 0. (12)

The slack variable τ accommodates for minor violations of
the second constraint in (2) as long as 1 + ξ

σ (yi − µ) > −τ .
Since the constraint must be satisfied by all samples, the re-
formulation above can be re-parameterized as finding an up-
per (ξu) and lower bound (ξl) on ξ:

σ

µ− ymin
(1 + τ) ≥ ξ ≥ − σ

ymax − µ
(1 + τ) (13)

The fully connected network is therefore trained to generate
ξu and ξl as its output instead of just a single value for ξ
(besides other GEV parameters, µ and σ). A regularization
penalty involving (ξu − ξl)

2 is introduced into the loss func-
tion to ensure that the estimated parameters ξu ≈ ξl ≈ ξ. The
estimated GEV parameters are subsequently provided to the
model bias offset module to ensure that the estimated GEV

parameters still satisfy the GEV constraints despite the ran-
dom initialization of the DNN. More details on the model
bias offset mechanism can be found in [Galib et al., 2022].

Finally, the learned GEV parameters are provided to a fully
connected layer to predict the block maxima value (ŷt) asso-
ciated with the time window. The estimated GEV parameters
are also used to compute the upper and lower quantiles of the
block maxima forecasts, ŷU and ŷL, using Equation (3).

3.5 Block Maxima Prediction
To train the downstream model, Self-Recover combines
a goodness-of-fit loss function with the standard sum of
squared forecast error. This combination of loss functions
allows the framework to find a GEV distribution that best fits
the data while making accurate point estimation of the block
maxima. The combined loss function is given by:

LBlock-maxima = (1− λ1)
n∑

i=1

(yi − ŷi)
2+

λ1

{
λ2 ℓGEV (µ, σ, ξ) + (1− λ2)

n∑
i=1

(ξu,i − ξl,i)
2)

}
(14)

where λ1 and λ2 are hyperparameters that control the trade-
off between different components of the loss function. Note
that the goodness-of-fit loss term combines the negative log-
likelihood function of the GEV distribution and the difference
between the upper and lower-bound estimates of ξ.

The DNN for block maxima prediction is trained using the
minibatch stochastic gradient descent algorithm with Adam
[Kingma and Ba, 2014] optimizer. The trained network can
be used to generate the block maxima prediction, ŷ, for any
future input, along with its upper and lower bounds, (ŷL, ŷU),
as well as the GEV parameters (µ̂, σ̂, ξ̂).

4 Experimental Results
We have performed extensive experiments to evaluate the per-
formance of our Self-Recover framework. We consider
the following two real-world datasets for our experiments.

Hurricane. We downloaded the ground-truth tropical cy-
clone intensity data (between 1851 and 2020) from the HUR-
DAT2 database [Landsea and Franklin, 2013]. The dataset
contains intensity of each hurricane reported at 6-hour inter-
vals. We created non-overlapping time windows of length
16-time steps (i.e., 4 days) from the 3,111 hurricanes. We
use the first 8 time steps for the predictor variables and the
remaining 8-time steps as the forecast window. We also ex-
tracted the corresponding model output forecasts for 396 hur-
ricanes (between 2011 and 2020) from 21 statistical and dy-
namical models, such as CMC (Canadian Global Model Fore-
cast) and SHIP (SHIPS Model Intensity Forecast), from the
Hurricane Forecast Model Output website at the University
of Wisconsin-Milwaukee.1 After preprocessing, we have al-
together 5912-time windows, out of which 768 of them con-
tain both historical observations and model-based forecasts.

1http://derecho.math.uwm.edu/models

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3727

Climate. We consider the daily maximum temperature data
from the North American Regional Climate Change Assess-
ment Program (NARCCAP) data archive2. The historical ob-
servations contains daily maximum temperature data of 3 cli-
mate stations (Maple City, Hart, and Eau Claire) along the
eastern shore of Lake Michigan from 1978 to 1998. We then
generate non-overlapping time windows of 14 days in length,
with the first 7 days serving as the historical time window
and the last 7 days serving as the target window for predict-
ing its block maxima. The model-based forecasts are ob-
tained from four regional climate models (RCMs), namely,
CRCM, WRFG, HRM3, and RCM3. The RCM simulations
are driven by four possible GCMs—CCSM, CGCM3, GFDL,
and HadCM3. In total, the climate data contains 8 RCM-
GCM model-based predictor variables. To evaluate the ap-
proaches, we completely remove the model-based forecasts
from 1978 to 1985 and randomly remove 5% of the model
forecasts of each time window from 1986 to 1998. The re-
sulting data has 3285 time windows after preprocessing.

We compared the performance of Self-Recover
against the following baseline methods: (1) Persistence: It
uses the block maxima from the historical time window as the
block maxima for the forecast time window. (2) MF (Model-
based Forecasts): It simply computes the block maxima of
the model-based forecasts as its prediction. (3) FCN: It uses
a fully connected network to predict the block maxima given
a set of predictors. (4) LSTM: It employs a bi-directional
stacked LSTM network followed by a fully connected net-
work to predict the block maxima. (5) Transformer: It uses
an attention-based transformer network to predict the block
maxima. (6) InceptionTime [Fawaz et al., 2020]: This is a
state-of-the-art CNN-based time series classification method.
We replace the final softmax layer with a fully connected net-
work for block maxima prediction. (7) DeepPIPE [Wang et
al., 2020]: It is an uncertainty quantification-based approach
to predict block maxima. (8) EVL [Ding et al., 2019]: It uses
an ad-hoc EVT-based loss function to predict the block max-
ima. (9) DeepExtrema [Galib et al., 2022]: It considers the
GEV distribution for block maxima prediction. However, it
uses only historical observations as its predictors.

4.1 Evaluation Setup
For evaluation of the block maxima prediction, each dataset
was split into disjoint training, validation, and test sets at a
ratio of 8:1:1. To evaluate the self-supervised missing value
imputation, we further split the training data for block max-
ima prediction into training, validation, and test sets with a
ratio of 8:1:1. We repeated our experiment 10 times, each
time using a different random split. The time series data were
standardized to have zero mean and unit variance. All the
methods were trained by varying their DNN hyperparameters
as follows: number of layers (2-6), number of nodes (8-128),
learning rate (10−5, 10−4, 10−3, 10−2), and batch size (32,
64, 128, 256), while assessing their performance on the val-
idation set. We also conducted hyperparameters tuning for
the model hyperparameters, namely γ1, γ2, γ3, λ1, and λ2.
We explored various combinations of these values, including

2https://www.narccap.ucar.edu/data/index.html

Methods Hurricane (Intensity) Climate (Temperature)
RMSE Correlation RMSE Correlation

Persistence 28.05 0.57 7.48 0.46
MF 17.12 0.80 3.94 0.58
FCN 16.62 ± 0.27 0.84 ± 0.04 3.81 ± 0.38 0.59 ± 0.06
LSTM 16.11 ± 0.24 0.85 ± 0.04 3.57 ± 0.34 0.62 ± 0.04
Transformer 15.31 ± 0.23 0.87 ± 0.04 3.10 ± 0.24 0.67 ± 0.03
Inception 15.51 ± 0.28 0.86 ± 0.03 3.07 ± 0.28 0.66 ± 0.04
DeepPIPE 17.02 ± 0.33 0.81 ± 0.04 3.76 ± 0.21 0.61 ± 0.05
EVL 15.61 ± 0.26 0.85 ± 0.04 3.28 ± 0.31 0.63 ± 0.05
DeepExtrema 15.86 ± 0.29 0.85 ± 0.03 3.49 ± 0.24 0.64 ± 0.05
Self-Recover 14.88 ± 0.22 0.90 ± 0.03 2.79 ± 0.26 0.71 ± 0.04

Table 1: Overall performance comparison in terms of RMSE and
correlation of block maxima prediction.

Methods
Accuracy (F-1 Score)

Hurricane (Intensity) Climate (Temperature)
Category 4
and above

Category 5
and above

About 90
Percentile

About 80
Percentile

MF 0.81 (0.80) 0.83 (0.84) 0.77 (0.75) 0.79 (0.80)
FCN 0.75 (0.78) 0.80 (0.82) 0.78 (0.79) 0.79 (0.77)
LSTM 0.81 (0.82) 0.82 (0.83) 0.79 (0.78) 0.80 (0.81)
Transformer 0.84 (0.85) 0.87 (0.88) 0.82 (0.83) 0.84 (0.82)
Inception 0.83 (0.82) 0.85 (0.86) 0.80 (0.81) 0.82 (0.84)
DeepPIPE 0.77 (0.80) 0.81 (0.82) 0.78 (0.80) 0.79 (0.78)
EVL 0.85 (0.79) 0.86 (0.81) 0.80 (0.77) 0.83 (0.81)
DeepExtrema 0.84 (0.85) 0.86 (0.87) 0.82 (0.82) 0.83 (0.85)
Self-Recover 0.89 (0.90) 0.93 (0.92) 0.86 (0.88) 0.89 (0.91)

Table 2: Performance comparison in terms of accuracy and F1 score
for predicting extreme events only.

0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The best hy-
perparameters were chosen using Ray Tune, a tuning frame-
work with ASHA scheduler. The training and evaluation were
carried out on an NVIDIA Tesla K80 GPU.

We evaluated the performance of the proposed self-
supervised missing values imputation on the corresponding
test set using the following metrics: (1) Root mean squared
error (RMSE) and (2) correlation between the imputed and
ground truth values. For comparison, we also considered
a random imputation technique in which the missing val-
ues were imputed by randomly drawing values from N(µ, σ),
where the mean (µ) and standard deviation (σ) are computed
from the available data. For block maxima prediction, we
evaluated the performance of the methods on the test set us-
ing: (1) RMSE and (2) correlation between the predicted and
ground truth block maxima as well as (3) Accuracy and (4)
F1 score for classifying extreme events. For the Hurricane
dataset, we define extreme hurricane intensity as values that
exceed either (1) 111 mph (i.e., category 3 and above hurri-
canes) or (2) 130 mph (i.e., category 4 and above hurricanes).
For the climate dataset, we define extreme temperature events
as values that exceed either the 80th or 90th percentiles

4.2 Experimental Results
Table 1 compares the forecasting performance of the vari-
ous methods in terms of their RMSE and correlation. The
results show that the proposed Self-Recover framework
outperformed all the baselines on both Hurricane and Climate
datasets. To further validate the significance of the results,
we conducted a t-test and computed the p-values of the dif-
ference in RMSE and correlation between Self-Recover

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3728

(a) Self-Recover (b) EVL

(c) Transformer (d) Inception

Figure 4: Comparison of actual versus predicted block maxima for
various methods on the Hurricane dataset.

Imputation Methods Hurricane Climate
RMSE Correlation RMSE Correlation

Randomized 5.21 ± 0.31 0.70 ± 0.05 2.81 ± 0.28 0.73 ± 0.05
Self-supervised 4.51 ± 0.36 0.78 ± 0.04 2.26 ± 0.24 0.81 ± 0.03

Table 3: Comparing randomized missing values imputation via
Gaussian Distribution against the proposed self-supervised missing
values imputation in Self-Recover.

against the best baseline method for the 10 runs of each
dataset. For Hurricane data, we obtain p = 0.00025 for
RMSE and p = 0.00067 for correlation, while for Climate
data, p = 0.02704 for RMSE and p = 0.00379 for corre-
lation. These suggest that the improvements are statistically
significant. To verify its effectiveness in terms of modeling
extreme values, Figure 4 shows the scatter plots of the actual
versus predicted block maxima values for Self-Recover,
EVL, Transformer, and Inception on the Hurricane intensity
data. The plots indicate that Self-Recover can accurately
estimate the block maxima values of hurricane intensity. In
contrast, the block maxima predictions generated by other
competing baselines have larger biases.

Finally, Table 2 compares the accuracy of each method in
terms of classifying extremely high hurricane intensity and
temperature events. Observe that Self-Recover outper-
forms all other baselines in terms of accuracy and F1 score.

Effect of Self-supervised Missing Value Imputation. Ta-
ble 3 compares the missing value imputation performance of
Self-Recover against random imputation with Gaussian
distribution. The results show that our self-supervised impu-
tation approach significantly outperformed random imputa-
tion in terms of RMSE and correlation on all datasets.

Effect of Residual Learning. Table 4 compares the perfor-
mance of Self-Recoverwhen using simple concatenation
to combine its learned representations against the residual
learning approach. While their accuracies are quite similar,

Methods Hurricane Climate
RMSE Runtime (s) RMSE Runtime (s)

Concatenation 14.95 ± 0.23 1503.4 2.86 ± 0.24 1012.7
Residual 14.88 ± 0.22 1215.9 2.79 ± 0.26 891.6

Table 4: Comparing concatenation against residual learning ap-
proaches for merging representations in Self-Recover.

Figure 5: Examining the effect of α (left) and λ1 (right) on
RMSE of the block maxima prediction for Hurricane dataset with
Self-Recover.

the training runtime for the simple concatenation approach is
significantly higher due to its slower convergence.

4.3 Ablation Studies
We examine the effects of varying two hyperparameters of
our algorithm, α, and λ1. The hyperparameter α determines
the residual weight of the model-based representation when
combined with the historical representation. As shown in
Figure 5 (left), the RMSE generally increases with increas-
ing value of α. For both data sets, a smaller value of α results
in higher performance, which validates our strategy for incor-
porating the model-based representation as a “residual” term
to enhance the representation of historical observations.

The trade-off between minimizing point prediction (RMSE
loss) and preserving the GEV distribution (GEV loss) of
Self-Recover is determined by the hyperparameter λ1 in
Equation 14. A larger λ1 places greater emphasis on GEV
loss, which focuses more on extreme values. This can be seen
from the results shown in Figure 5 (right), where the RMSE
of the block maxima prediction decreases when λ1 increases.
This suggests that the combined loss is useful rather than us-
ing only the RMSE loss, thus validating the need to incorpo-
rate GEV distribution into the Self-Recover framework.

5 Conclusion
This paper introduces Self-Recover, a novel deep learn-
ing framework for predicting the block maxima of time se-
ries by handling disparate temporal coverage of predictors.
A combination of contrastive and generative self-supervised
learning schemes followed by a DAE is proposed to impute
the structured and random missing values present in model-
based forecasts. To learn and merge the representations from
historical and model-based forecasts, we provide a residual
technique and show that it is more efficient than the straight-
forward concatenation method. Experimental results on real-
world data demonstrate the superiority of Self-Recover
compared to other state-of-the-art methods.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3729

Acknowledgments
This research is supported by the U.S. National Science Foun-
dation under grant IIS-2006633. Any use of trade, firm, or
product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.

References
[Aliabadi et al., 2020] Majid Moradi Aliabadi, Hajar

Emami, Ming Dong, and Yinlun Huang. Attention-based
recurrent neural network for multistep-ahead predic-
tion of process performance. Computers & Chemical
Engineering, 140:106931, 2020.

[Che et al., 2018] Zhengping Che, Sanjay Purushotham,
Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing
values. Scientific reports, 8(1):1–12, 2018.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Inter-
national Conference on Machine Learning, pages 1597–
1607, 2020.

[Coles et al., 2001] Stuart Coles, Joanna Bawa, Lesley Tren-
ner, and Pat Dorazio. An introduction to statistical model-
ing of extreme values, volume 208. Springer, 2001.

[Ding et al., 2019] Daizong Ding, Mi Zhang, Xudong Pan,
Min Yang, and Xiangnan He. Modeling extreme events
in time series prediction. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 1114–1122, 2019.

[Ericsson et al., 2022] Linus Ericsson, Henry Gouk,
Chen Change Loy, and Timothy M Hospedales. Self-
supervised representation learning: Introduction, ad-
vances, and challenges. IEEE Signal Processing
Magazine, 39(3):42–62, 2022.

[Fawaz et al., 2020] Hassan Ismail Fawaz, Benjamin Lu-
cas, Germain Forestier, Charlotte Pelletier, Daniel F
Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane
Idoumghar, Pierre-Alain Muller, and François Petitjean.
Inceptiontime: Finding alexnet for time series classifica-
tion. Data Mining and Knowledge Discovery, 34(6):1936–
1962, 2020.

[Galib et al., 2022] Asadullah Hill Galib, Andrew McDon-
ald, Tyler Wilson, Lifeng Luo, and Pang-Ning Tan. Deep-
extrema: A deep learning approach for forecasting block
maxima in time series data. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 2980–2986. International Joint
Conferences on Artificial Intelligence, 7 2022.

[Hochreiter, 1998] Sepp Hochreiter. The vanishing gradient
problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[Jaiswal et al., 2020] Ashish Jaiswal, Ashwin Ramesh Babu,
Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learn-
ing. Technologies, 9(1):2, 2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Landsea and Franklin, 2013] Christopher W Landsea and
James L Franklin. Atlantic hurricane database uncer-
tainty and presentation of a new database format. Monthly
Weather Review, 141(10):3576–3592, 2013.

[Laptev et al., 2017] Nikolay Laptev, Jason Yosinski, Li Er-
ran Li, and Slawek Smyl. Time-series extreme event fore-
casting with neural networks at uber. In International con-
ference on machine learning, volume 34, pages 1–5, 2017.

[McDonald et al., 2022] Andrew McDonald, Pang-Ning
Tan, and Lifeng Luo. Comet flows: Towards generative
modeling of multivariate extremes and tail dependence.
In Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence, IJCAI-22, pages 3328–3334. International Joint
Conferences on Artificial Intelligence, 7 2022.

[Peng et al., 2018] Chenglei Peng, Yang Li, Yao Yu,
Yu Zhou, and Sidan Du. Multi-step-ahead host load pre-
diction with gru based encoder-decoder in cloud comput-
ing. In 2018 10th International Conference on Knowledge
and Smart Technology (KST), pages 186–191, 2018.

[Polson and Sokolov, 2020] Michael Polson and Vadim
Sokolov. Deep learning for energy markets. Applied
Stochastic Models in Business and Industry, 36(1):195–
209, 2020.

[Sagheer and Kotb, 2019] Alaa Sagheer and Mostafa Kotb.
Time series forecasting of petroleum production using
deep lstm recurrent networks. Neurocomputing, 323:203–
213, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Sys-
tems, 30, 2017.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Is-
abelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a lo-
cal denoising criterion. Journal of Machine Learning Re-
search, 11(12), 2010.

[Wang et al., 2020] Bin Wang, Tianrui Li, Zheng Yan,
Guangquan Zhang, and Jie Lu. Deeppipe: A distribution-
free uncertainty quantification approach for time series
forecasting. Neurocomputing, 397:11–19, 2020.

[Wilson et al., 2022] Tyler Wilson, Pang-Ning Tan, and
Lifeng Luo. DeepGPD: A Deep Learning Approach for
Modeling Geospatio-Temporal Extreme Events. In Pro-
ceedings of the 36th AAAI Conference on Artificial Intelli-
gence, 2022.

[Winkler et al., 2011] Julie A Winkler, Galina S Guentchev,
Malgorzata Liszewska, and Pang-Ning Tan. Climate sce-
nario development and applications for local/regional cli-
mate change impact assessments: An overview for the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3730

non-climate scientist: Part ii: Considerations when using
climate change scenarios. Geography Compass, 5(6):301–
328, 2011.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3731

	Introduction
	Preliminaries
	Problem Statement
	DeepExtrema Framework

	Proposed Self-Recover Framework
	Self-Supervised Imputation for Handling the Disparate Temporal Coverage Problem
	Optimization of Self-Supervised Imputation
	Temporal Representation Learning
	Incorporating GEV Distribution for Block Maxima Prediction
	Block Maxima Prediction

	Experimental Results
	Evaluation Setup
	Experimental Results
	Ablation Studies

	Conclusion

