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Abstract

Multi-label learning (MLL) usually requires as-
signing multiple relevant labels to each instance.
While a fully supervised MLL dataset needs a large
amount of labeling effort, using complementary la-
bels can help alleviate this burden. However, cur-
rent approaches to learning from complementary
labels are mainly designed for multi-class learning
and assume that each instance has a single relevant
label. This means that these approaches cannot be
easily applied to MLL when only complementary
labels are provided, where the number of relevant
labels is unknown and can vary across instances.
In this paper, we first propose the unbiased risk es-
timator for the multi-labeled complementary label
learning (MLCLL) problem. We also provide an
estimation error bound to ensure the convergence
of the empirical risk estimator. In some cases, the
unbiased estimator may give unbounded gradients
for certain loss functions and result in overfitting.
To mitigate this problem, we improve the risk esti-
mator by minimizing a proper loss function, which
has been shown to improve gradient updates. Our
experimental results demonstrate the effectiveness
of the proposed approach on various datasets.

1 Introduction
Multi-label learning (MLL) is a method of training a clas-
sifier that can predict multiple labels for an unseen instance
simultaneously [Zhang and Zhou, 2014a]. It has been widely
used in open-environment [Zhou, 2022] and various real-
world applications such as text categorization [Maltoudoglou
et al., 2022; Zhang et al., 2022] and image retrieval [Xu et al.,
2022a; Ma et al., 2022]. However, collecting accurate multi-
labeled data can be challenging due to the difficulty of iden-
tifying small objects or complex semantic labels in complex
images, as well as the unknown number of relevant labels.
This requires a significant amount of labeling effort as anno-
tators need to exercise caution and possess specialized knowl-
edge. Precisely annotating images, such as the one shown in
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Figure 1: An example. The image is labeled with a variety of rel-
evant labels including “cloud”, “plant”, “house”, “balloon”, “peo-
ple”, “Europe”, and others. The complementary label of this im-
age is “river”. Labeling the image with the label “Europe” requires
specialized knowledge as it is a complex semantic label that is chal-
lenging to annotate. On the other hand, the label “people” refers to
a small object that is difficult to spot, as it is highlighted by a blue
box in the image.

Fig. 1, requires a high level of attention and expertise, partic-
ularly when it comes to identifying the easily overlooked la-
bel “people” or specific geographic location label “Europe”.
Additionally, accurate identification of other relevant labels
involves a thorough examination of each label within the en-
tire label space.

To release the laborious of collecting multi-labeled data,
we study the setting of multi-labeled complementary label
learning (MLCLL) that could significantly reduce labeling
effort, whose goal is to learn a multi-labeled classifier that
can assign relevant labels for unseen instances. In MLCLL,
each instance is associated with a single complementary label
that specifies an irrelevant label of the instance. Obviously,
providing weakly supervised information – complementary
labels – releases annotation costs since selecting a comple-
mentary label does not need one-by-one checking of the en-
tire label space and prior knowledge. For example, selecting
the label “river” as the complementary label for the image in
Fig. 1 is much easier than selecting all relevant labels.

Complementary label learning (CLL) is a method pre-
viously proposed for multi-class scenarios by Ishida et
al. [2017]. Ishida et al. [2019] proposed an unbiased risk
estimator by deriving a transition matrix using the fact that
the complementary label is uniformly sampled besides the
only one relevant label, such that any loss function can be
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used. With such an unbiased risk estimator, the classifica-
tion risk of fully-supervised learning can be evaluated on CLL
training data, enabling empirical risk minimization [Vapnik,
1991]. CLL problems are further studied for biased com-
plementary labels [Yu et al., 2018b], generative adversar-
ial network [Xu et al., 2020], multiple complementary la-
bels [Feng et al., 2020], improved gradient estimation [Chou
et al., 2020], or easing the dependence on estimating the tran-
sition matrix [Gao and Zhang, 2021]. These existing works
are based on the fact that only one relevant label exists for
multi-class cases, and most solutions are strongly dependent
on the known number of irrelevant labels. They cannot be
used to solve the MLCLL problem, due to the unknown num-
ber of relevant labels in MLL given only a complementary
label.

To address the MLCLL problem, we first propose an un-
biased risk estimator that utilizes the distribution of com-
plementary data to approximate the distribution of fully-
supervised data under certain assumptions. We also estab-
lish an estimation error bound for this estimator, guaranteeing
that the classifier learned from complementary labeled data
will converge to the optimal one from fully-supervised MLL.
Furthermore, we analyze the impact of cross-entropy loss on
learning when a crucial assumption is not met and propose
a gradient-friendly loss function to prevent overfitting. Our
experimental results demonstrate the effectiveness of the pro-
posed risk minimization methods.

Our contributions are summarized as follows:

• The proposal of an unbiased risk estimator for MLCLL
and the derivation of an estimation error bound to ensure
that the classifier learned from complementary labeled
data is similar to the optimal one learned from fully-
supervised MLL

• The improvement of the risk estimator by using a
gradient-friendly loss function to prevent overfitting,
which can occur when a crucial assumption does not
hold.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. We introduce our proposed ap-
proach and the gradient-friendly loss function Section 3 and 4
respectively. Section 5 describes experimental results, and
Section 6 gives the conclusion.

2 Related Work
In MLL, the main challenge is that the number of the output
space grows exponentially as the number of labels increases
[Zhang and Zhou, 2014b]. There are three routes to cope with
MLL problems: first-order approach [Zhang et al., 2018;
Zhang and Zhou, 2007], second-order approach [Elisseeff
and Weston, 2001; Fürnkranz et al., 2008] and high-order ap-
proach [Read et al., 2011; Tsoumakas et al., 2011]. The first-
order approaches decompose MLL problems into a series of
binary classification problems to solve [Zhang et al., 2018;
Boutell et al., 2004]. Subsequently, Zhang et al. [Zhang and
Zhou, 2014b; Zhang and Wu, 2015] revealed that label cor-
relations exist in multi-labeled data, more and more studies
consider label correlations to address MLL problems [Gerych

et al., 2021; Li et al., 2017]. Among them, the second-
order approaches consider label correlations between label
pairs [Fürnkranz et al., 2008; Zhang and Zhou, 2006; Li et
al., 2017]. Beyond the second-order relationship, the high-
order approaches pay attention to exploring label correlations
among label sets [Read et al., 2011; Gerych et al., 2021;
Zhao et al., 2021].

In practice, collecting precisely multi-labeled data is diffi-
cult because labeling information is often incomplete [Xu et
al., 2022b]. A weakly supervised framework – partial multi-
label learning (PML) – is designed to alleviate the pain of
collecting precisely labeled data [Zhou, 2018]. PML was
firstly proposed by Xie and Huang [2018], where each in-
stance is associated with a set of candidate labels that con-
sists of relevant labels and irrelevant (noisy) labels. Exist-
ing PML approaches handle PML problems according to the
assumption that noisy labels only compose a small portion
of candidate labels [Sun et al., 2022; Xie and Huang, 2020;
Sun et al., 2019; Yu et al., 2018a]. Then, these approaches
use the matrix factorization technique to decompose the can-
didate label matrix into the low-rank multi-label matrix and
the sparse noisy label matrix to solve PML problems.

CLL was first applied in multi-class learning [Ishida et
al., 2017], whose emergence significantly reduces annotation
costs in multi-class learning. CLL aims to recover relevant
labels from complementary labels. Ishida et al. [2019] used
uniformly sampled complementary labels to derive an unbi-
ased risk estimator that is available for arbitrary loss functions
to solve the CLL problem. In addition, studies of CLL prob-
lems further involve biased complementary labels, whose im-
plementation depends on estimating a transition matrix [Yu et
al., 2018b]. To ease the dependence on estimating transition
matrix, Gao and Zhang [2021] designed a discriminative way
to directly model the probabilities of complementary labels.
Moreover, multiple complementary labels were proposed to
make the learning process have more labeling information
compared with one complementary label [Feng et al., 2020].

Compared with PML, MLCLL considers the hardest ver-
sion of this problem – a high-noise PML problem, where the
candidate label set of an instance is all labels other than its
complementary label. In this case, existing PML approaches
may be inapplicable for MLCLL since their implementations
are based on the assumption of few noisy included in candi-
date labels. For CLL, existing approaches are accomplished
by the fact that each instance has one relevant label in multi-
class learning and irrelevant labels are known. However, the
number of relevant labels is unknown and can vary across in-
stances in MLL, which leads to CLL approaches that could
not handle MLCLL problems.

3 The Proposed Approach
In this section, we first introduce notations and problem set-
ting (Sec. 3.1) and the recovery of data distribution given
complementary labels (Sec. 3.2). Then, we propose an unbi-
ased risk estimator with its estimation error bound (Sec. 3.3).

3.1 Preliminaries
Let X ⊂ Rd be the feature space with d dimensions and
Y = {1, 2, 3, . . . ,K} be the label space with K (K > 2)
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possible labels. In MLL, an instance x ∈ X with its relevant
label set Y ⊆ Y is drawn from the unknown joint probabil-
ity distribution p(x, Y ). Given fully supervised data, MLL
aims to learn a classifier f : X 7→ [0, 1]K by minimizing the
following classification risk:

R(f) = Ep(x,Y )[L(f(x), Y )], (1)

where

L(f(x), Y ) =
K∑

j=1,j∈Y
`j(x) +

K∑
j=1,j /∈Y

¯̀
j(x). (2)

Denoting the j-th prediction of f as fj which estimates p(j =
1|x), `j(x) and ¯̀

j(x) calculate the loss of fj(x) respectively
on relevant and irrelevant labels. Specially, when `j(x) =
− log(fj(x)) and ¯̀

j(x) = − log(1 − fj(x)), L(f(x), Y ) is
the popular BCE loss. L(f(x), Y ) is not limited to BCE loss
only. The mean absolute error (MAE) loss can also be used,
resulting in `j(x) = 1− fj(x) and ¯̀

j(x) = fj(x).
For the MLCLL problem studied in this paper, fully super-

vised data is unavailable. Instead, D̄ = {(xi, ȳi)}ni=1 con-
taining n training instances is given, where ȳi ∈ {Y − Yi}
is the complementary label of xi ∈ X . Even given the com-
plementary training set, the goal of MLCLL is still to learn
a multi-labeled classifier f : X 7→ [0, 1]K , i.e., the same
goal as fully supervised MLL. As (x, Y ) follows a distri-
bution p(x, Y ), (x, ȳ) also follows a distribution, which is
denoted as p̄(x, ȳ) on which D̄ is drawn. In the next subsec-
tion, we will construct the relationship between p(x, Y ) and
p̄(x, ȳ) under some assumptions, and propose one scenario
which guarantees assumptions to hold.

3.2 Recovering the Distribution
Without any additional knowledge, it is naturally difficult to
construct the relationship between p(x, Y ) and p̄(x, ȳ), es-
pecially when the number of unlabeled data is unknown. To
enable the construction, below we provide some assumptions.

Assumption 1. Instance-Independent Assumption: Given the
complementary label ȳ, the relevant label set Y is indepen-
dent of x, i.e. p(Y |ȳ) = p(Y |x, ȳ).

Assumption 1 is motivated by existing works on complemen-
tary labels [Yu et al., 2018b; Feng et al., 2020; Ishida et al.,
2019], which assumes that the complementary label is condi-
tionally independent of x given relevant labels. This assump-
tion does not necessarily lead to the prediction of p(Y |x),
because the information on complementary labels in MLL is
not complete with only one complementary label provided.
Information on other complementary labels and learning on
x are still essential. The following result provided a conclu-
sion based on Assumption 1.

Lemma 1. Under Assumption 1,
∑K

ȳ=1,ȳ /∈Y
p̄(x,ȳ)

2K−1−1
is a

valid probability mass function with respect to x and Y , i.e.,
it is non-negative and∫

X

∫
Y

K∑
ȳ=1,ȳ /∈Y

p̄(x, ȳ)

2K−1 − 1
dxdY = 1. (3)

The proof is stated in Appendix A. We then give another as-
sumption, which describes the relationship between Y and ȳ.
Assumption 2. Uniform Generation Assumption:

p(Y |ȳ) =

{
1

2K−1−1
, ȳ /∈ Y

0, ȳ ∈ Y
. (4)

Assumption 2 provides the information on how complemen-
tary labels can contribute to the prediction of Y , i.e., Y can
be any subset of Y − ȳ−∅ with uniform probability. This is a
strong assumption for the difficult MLCLL problem, which
implies that the complementary label ȳ will contribute to
learning no more than an irrelevant label. Such an assumption
will be a necessary ground to give the unbiased risk estima-
tion for MLCLL in Section 3.3, and will discuss an alternative
solution in Section 4 if such an assumption does not hold.

With these assumptions, the following result gives the re-
lationship between p(x, Y ) and p̄(x, ȳ).
Theorem 1. Under Assumption 1 and Assumption 2,

p(x, Y ) =
K∑

ȳ=1,ȳ /∈Y

p̄(x, ȳ)

2K−1 − 1
. (5)

It has been verified in Lemma 1 that the right side of Eq. (5)
forms a valid probability mass function under Assumption 1.

3.3 Unbiased Risk Estimator
An unbiased risk estimator enables the classification risk of
fully-supervised MLL to be evaluated on the given MLCLL
training data. The following result shows an unbiased risk es-
timator of the fully supervised MLL classification risk R(f)
defined in Eq. (1).
Theorem 2. With p(x, Y ) defined in Eq. (5) and R(f)
defined in Eq. (1), R(f) = R̄(f), where R̄(f) =
Ep̄(x,ȳ)[L̄(f(x), ȳ)] is the expected risk on complementary
data, and

L̄(f(x), ȳ) =
2K−2

2K−1 − 1

K∑
j=1,j 6=ȳ

`j(x)+ (6)

2K−2 − 1

2K−1 − 1

K∑
j=1,j 6=ȳ

¯̀
j(x) + ¯̀̄

y(x).

The proof is proved in Appendix B. Theorem 2 shows that
the fully-supervised classification risk can be estimated using
the complementary labels by the unbiased estimator R̄(f),
with the corresponding complementary loss function defined
in Eq. (6). Eq. (6) shows that the complementary loss gives
low confidence in treating other labels as either relevant or
irrelevant with smaller-than-one weights for them.
Estimation Error Bound. With Theorem 2, the expected
risk R̄(f) can be approximated by its empirical estimation
R̄n(f), which is

R̄n(f) =
1

n

n∑
i=1

L̄(f(xi), ȳi). (7)

Denote F as the hypothesis class and Gj = {g : x 7→
fj(x)|f ∈ F} as the functional space for the label j ∈
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Algorithm 1 MLCLL with the GDF loss
Input:
D̄ = {(xi, ȳi)}ni=1 : the training data;
E : the number of epochs;
A : an external stochastic optimization algorithm
Output:
θ : model parameter for f(x;θ)

1: for t = 1 to E do
2: Let L be the risk, L = 1

n

∑n
i=1 L̄GDF(f(xi), ȳi);

3: Set gradient −5θ L;
4: Update θ by A;
5: end for

Y . Rn(Gj) gives the Rademacher Complexity [Bartlett
and Mendelson, 2002] of Gj , defined as Rn(Gj) =

Ex,σ
[
supg∈Gj

1
n

∑n
i=1 g(xi)

]
. We further denote fn ∈ F

and f∗ ∈ F as the minimizers of R̄n(f) and R(f) respec-
tively. Based on these notations, we give the estimation error
bound.

Theorem 3. Suppose M = supx∈X ,f∈F L̄(f(x), ȳ). For
any j ∈ Y , assuming `j(x) and ¯̀

j(x) are β+-Lipschitz and
β−-Lipschitz with respect to f(x) respectively. For any δ,
with the probability at least 1− δ,

R(fn)−R(f∗) ≤M
√

log 2/δ

2n
+ 4
√

2

[
(K − 1)2K−2

2K−1 − 1
β+

+
(K − 1)2K−2 −K

2K−1 − 1
β−
] K∑

j=1

Rn(Gj). (8)

The proof is shown in Appendix C. Theorem 3 demonstrates
that the empirical risk minimizer converges to the true risk
minimizer as n → ∞. It also demonstrates the impact of K
on learning complementary labeled problems.

4 Gradient Descent Friendly Loss
In the above section, necessary assumptions are made for giv-
ing an unbiased risk estimator for the MLCLL problem, espe-
cially Assumption 2, which assumes that there exists no addi-
tional bias in learning besides that ȳ is an irrelevant label. In
this section, we will investigate the situation that Assumption
2 does not hold from the perspective of the loss function and
give a moderated solution.

Our proposed complementary loss function Eq. (6) is eligi-
ble to accommodate any loss functions. If we use the popular
BCE loss, we have

L̄BCE(f(x), ȳ) = − 2K−2

2K−1 − 1

K∑
j=1,j 6=ȳ

log(fj(xi)) (9)

− 2K−2 − 1

2K−1 − 1

K∑
j=1,j 6=ȳ

log(1− fj(x))− log(1− fȳ(x)).

Motivated by [Chou et al., 2020] which concluded that gra-
dient estimation is important for weakly supervised learning,

we further give the gradient of L̄BCE with respect to θ, which
is learnable parameters for fj(x):

∂L̄BCE

∂θ
=

{
−(w+ + w−)5θ fj(x; θ), if j 6= ȳ,

1
1−fj(x;θ) 5θ fj(x; θ), if j = ȳ,

(10)

where w+ = 2K−2

2K−1−1
1

fj(x;θ) and w− = 2K−2−1
2K−1−1

1
1−fj(x;θ) .

The calculation in Eq. (10) is divided into two parts: on the
complementary label ȳ and non-complementary labels Y− ȳ.
On the complementary label, the gradient descent favors a
prediction of zero for fȳ(x; θ). However, serious overfitting
can happen regarding the punishment on non-complementary
labels Y − ȳ if Assumption 2 does not hold, i.e., ȳ provides
some bias in learning other labels.

To give a simple example, imagine there is another label
ys which is similar to ȳ, such that its prediction fys

(x; θ)
will be close to the prediction on fȳ(x;θ), i.e., zero. When
fys

(x; θ) = 0 or close to zero, w+ in Eq. (10) will become
∞, resulting in∞ gradient although the prediction fys

is al-
ready close to the groundtruth. In another example, when a
label yd is absolutely exclusive of ȳ, its close-to-groundtruth
prediction should be close to one, resulting in an infinity
w−, still an ∞ gradient despite that the prediction is close
to groundtruth. These two naive examples could demonstrate
that if Assumption 2 is violated, serious overfitting could hap-
pen when using the proposed unbiased risk estimator.

To mitigate the overfitting caused due to violating Assump-
tion 2, we design a new gradient by using the ȳ part in
Eq. (10), but a modification on the gradient of the Y − ȳ part.
Such a gradient is potentially calculated from a Gradient-
Descent-Friendly (GDF) loss function and shown as

∂L̄GDF

∂θ
=

{
− 1

fj(x;θ) 5θ fj(x; θ), if j 6= ȳ,
1

1−fj(x;θ) 5θ fj(x; θ), if j = ȳ.
(11)

Eq. (11) achieves a kind of gradient that will enable any la-
bel belonging to Y − ȳ to have a prediction higher than the
prediction on the complementary label, i.e., achieving a good
ranking effect. When the label absolutely exclusive from ȳ
exists, such a gradient will favor the prediction to be close to
one. It seems that the problem still remains if there is any
label similar to ȳ exists, however, the learning on ȳ will pro-
vide a way of balancing the learning of these two labels, and a
good ranking performance can still be achieved in MLL met-
rics such as ranking loss or average precision. In Eq. (11), we
remove all weights related to K to make the gradients caused
by individual labels have uniform weights in case one label
dominates the learning.

The corresponding loss function of Eq. (11) is

L̄GDF(f(x), ȳ) = −
K∑

j=1,j 6=ȳ

log(fj(x))− log(1− fȳ(x)).

(12)

The procedure for optimizing the GDF loss is shown in Al-
gorithm 1. We will show in the next section how optimizing
Eq. (12) can mitigate overfitting and improve performance.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3735



MLL PML CLL Unbounded BoundedMethods ML-KNN LIFT fpml PML-LRS L-UW BCE MAE GDF

One Error↓
bookmark .801±.006• .649±.015• .885±.019• .584±.004• .504±.008• .568±.006• .613±.011• .483±.007
Corel16k .736±.054• .789±.044• .816±.023• .730±.000• .703±.058 .798±.019• .702±.053 .706±.053
delicious .592±.017• .533±.014• .617±.017• .452±.007• .482±.018• .490±.011• .467±.019• .426±.012
mediamill .198±.020• .187±.019 .188±.019 .200±.002• .188±.019 .190±.014• .188±.019 .184±.018
eurlex dc .790±.033• .759±.024• .920±.024• .517±.013• .609±.024• .575±.019• .906±.010• .459±.015
eurlex sm .667±.017• .674±.013• .868±.032• .457±.005• .552±.011• .534±.012• .834±.008• .400±.010
scene .692±.029• .605±.022• .815±.026• .540±.022• .764±.023• .449±.031• .805±.021• .383±.020
yeast .297±.028• .284±.027• .251±.023 .738±.097• .253±.022 .277±.016• .251±.023 .249±.024

Ranking Loss↓
bookmark .348±.006• .310±.007• .468±.019• .260±.004• .196±.007 .260±.005• .301±.008• .196±.005
Corel16k .328±.045• .392±.026• .420±.031• .303±.005 .301±.039 .400±.016• .316±.032 .307±.040
delicious .398±.004• .383±.003• .438±.008• .305±.002• .319±.005• .336±.003• .305±.004• .292±.005
mediamill .200±.014• .202±.015• .206±.019• .160±.001◦ .193±.020• .157±.009◦ .192±.019• .174±.013
eurlex dc .283±.008• .294±.012• .470±.037• .179±.006• .267±.015• .216±.017• .437±.008• .161±.005
eurlex sm .322±.007• .333±.013• .472±.034• .238±.004• .329±.005• .273±.014• .461±.006• .209±.006
scene .340±.030• .289±.019• .504±.024• .258±.006• .457±.018• .184±.019• .492±.023• .153±.009
yeast .247±.011• .298±.012• .233±.012• .464±.018• .252±.012• .250±.015• .238±.014• .219±.013

Average Precision↑
bookmark .383±.006• .480±.010• .267±.018• .534±.004• .604±.005• .544±.005• .494±.008• .619±.006
Corel16k .405±.047 .350±.033• .325±.021• .423±.006 .434±.047 .343±.017• .426±.040 .429±.044
delicious .487±.006• .511±.004• .457±.006• .580±.002• .554±.006• .544±.005• .567±.006• .586±.004
mediamill .711±.010• .710±.009• .709±.012• .748±.001◦ .717±.012• .765±.005◦ .715±.012• .732±.007
eurlex dc .417±.018• .429±.016• .240±.028• .616±.009• .525±.017• .563±.014• .267±.009• .658±.010
eurlex sm .426±.009• .425±.012• .285±.026• .584±.004• .475±.008• .524±.012• .288±.003• .623±.009
scene .543±.023• .600±.016• .417±.020• .637±.010• .463±.018• .717±.022• .429±.018• .759±.012
yeast .677±.018• .636±.016• .688±.016• .459±.031• .679±.016• .679±.015• .693±.017• .712±.018

Table 1: Experimental results (mean±std) on training data with first pre-processing way (each instance is given one complementary label and
labels are kept under 15). The best performance of each dataset is shown in boldface, where •/◦ denotes whether GDF is superior/inferior to
baselines with pairwise t-test (at 0.05 significance level).

MAE loss is another widely used loss function, which
is shown to be less likely to overfit but slower at conver-
gence [Ghosh et al., 2017]. Formally, the MLCLL corre-
sponding MAE loss and its gradients are

L̄MAE(f(x), ȳ) =
2K−2

2K−1 − 1

K∑
j=1,j 6=ȳ

(1− fj(x))

+
2K−2 − 1

2K−1 − 1

K∑
j=1,j 6=ȳ

fj(x) + fȳ(x), (13)

and

∂L̄MAE

∂θ
=

{
− 1

2K−1−1
5θ fj(x; θ), if j 6= ȳ,

5θfj(x; θ), if j = ȳ.
(14)

Eq. (14) shows the reason why the L̄MAE is less likely to
overfit but slower in convergence compared to the L̄BCE. By
comparing Eqs. (10), (14) and (11), we can see that the GDF
loss is a trade-off between the MAE one and the BCE one
from the perspective of the gradient. The relationship be-
tween L̄GDF and L̄MAE can be further shown by the fact that
L̄MAE ≤ L̄GDF. The empirical comparison of optimizing
these three loss functions is shown in Section 5.

5 Experiments
In this section, we conduct experiments to evaluate the perfor-
mance of the unbiased risk estimator with various loss func-
tions and our proposed GDF loss. Here, we adopt five MLL
criteria, including ranking loss, hamming loss, one error, cov-
erage and average precision, to measure the performance of
approaches. For average precision, the greater the value, the
better the performance, while for the remaining four criteria,
the smaller the values the better the performance. We use
PyTorch [Paszke et al., 2019] and NVIDIA TITAN RTX to
implement our experiments, where the code is available at
https://github.com/GaoYi439/GDF.

5.1 Experimental Settings
Datasets & pre-processing. We use eight widely-used
MLL datasets to experiments1, where we adopt two pre-
processing ways to process datasets to verify the performance
of the proposed approach. The first way follows Xie et
al. [2018; 2020], rare labels and instances being relevant to
these rare labels are removed for datasets with more than 15
labels, whose labels are kept under 15. Datasets use the first

1Publicly available at https://mulan.sourceforge.net/datasets-
mlc.html.
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Figure 2: Average precision on various datasets adopted the first pre-processing way, where each instance is associated with one complemen-
tary label and labels are kept under 15. Dark colors show the mean of testing average precision and light colors are corresponding to the std.

way to process, where each instance is associated with one
complementary label. The second way keeps the original
number of labels for datasets, while the number of comple-
mentary labels per instance is half the original number of la-
bels in datasets. The descriptions of these datasets are shown
in Appendix D.

Baselines. We adopt two PML approaches (fpml [Yu et al.,
2018a] and PML-LRS [Sun et al., 2019]) as baselines, which
use candidate labels (Y \ ȳ) to learn. Similarly, a CLL ap-
proach, L-UW [Gao and Zhang, 2021], is used in our exper-
iments. Due to that L-UW is applied in multi-class learn-
ing, we use the Sigmoid layer and BCE loss to replace the
Softmax layer and cross-entropy loss respectively, and help
it suit the MLCLL problem. In addition, ML-KNN [Zhang
and Zhou, 2007] and LIFT [Zhang and Wu, 2015] are two
MLL approaches, which are absorbed to compare with our
approach. They deal with MLCLL by taking all candidate la-
bels (Y \ ȳ) of instances as possible labels. To verify the fea-
sibility of theoretical analysis in Section 4, we use the BCE
loss L̄BCE and MAE loss L̄MAE to our empirical risk estima-
tor Eq. (7) as baselines. The proposed GDF loss is inserted
into Eq. (7).

Setup. We adopt the linear model as the predictive model
for fair comparisons and apply SGD with momentum 0.9 for
optimization. We set batch-size and training epoch as 256 and
200 respectively. Weight decay is set as 10−3 and learning
rate is selected from {10−1, 10−2, 10−3}, where the learning

rate is multiplied by 0.1 at 100 and 150 epochs [Wu et al.,
2018]. We apply the same model and hyper-parameters of
ours for L-UW, L̄BCE and L̄MAE. Ten-fold cross-validation
is used to evaluate the performance of all approaches. Here,
training data is only equipped with complementary labels and
test data associated with the sets of relevant labels is used to
verify the performance of approaches. We adopt the mean
and standard deviation (std) of five criteria. ↓ / ↑ indicates
that criteria are smaller/larger, the performance is better.

5.2 Main Empirical Results
Results. Table 1 reports one error, ranking loss, and aver-
age precision of various approaches over eight datasets (the
results of hamming loss and coverage are shown in Appendix
D). Here, all datasets are processed by the first pre-processing
way, where each instance is associated with one complemen-
tary label. As shown in Table 1, GDF outperforms the most
approaches on eight datasets. Specifically, we improve upon
the best baseline on one error, ranking loss, and average pre-
cision by 0.066, 0.031, and 0.099 respectively on scene and
eurlex sm datasets. This indicates the effectiveness of our
proposed approach GDF to solve the MLCLL problem.

Moreover, GDF achieves comparable results on three cri-
teria against two MLL approaches over all datasets. For ex-
ample, GDF on average precision are significantly superior
to ML-KNN and LIFT by 0.241 and 0.229 respectively on
eurlex dc dataset. This is because our approach is more suit-
able for dealing with complementary labeled data than MLL
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MLL PML CLL BoundedMethods ML-KNN fpml PML-LRS L-UW MAE GDF

Ranking Loss↓
Corel16k .276±.043 .286±.054 .281±.013 .293±.052• .307±.051• .286±.036
delicious .235±.002• .204±.002• .261±.009• .195±.002• .201±.002• .186±.002
eurlex dc .267±.004• .263±.005• .243±.003• .252±.006• .248±.008• .239±.005
eurlex sm .173±.004• .208±.007• .170±.002• .167±.004• .167±.003• .159±.004

Average Precision↑
Corel16k .224±.042• .238±.045 .223±.009• .244±.046 .245±.046 .240±.042
delicious .205±.003• .201±.002• .232±.001• .235±.003• .234±.003• .299±.004
eurlex dc .300±.011 .179±.007• .299±.003• .278±.006• .233±.008• .300±.008
eurlex sm .407±.009• .204±.004• .413±.002 .370±.006• .321±.009• .413±.008

Table 2: Experimental results (mean±std) on the training data adopted the second pre-processing way. The label space is original and the
number of complementary labels per instance is half the original number of labels. The best performance of each dataset is shown in boldface,
where •/◦ indicates whether GDF is superior/inferior to baselines with pairwise t-test (at 0.05 significance level).

approaches. GDF achieves similar or better performance to
PML approaches. Especially, the average precision of GDF
is 0.418 higher than fpml on eurlex dc dataset, which shows
that our approach can work well on MLCLL with the high-
noisy problem compared with PML approaches.

Results of GDF shown in Table 1 outperform L-UW on
all datasets, which indicates that the CLL approach can not
enough handle the MLCLL problem. This is because their
implementations depend on the assumption of one relevant
label per instance, while the number of relevant labels for
each instance is unknown in MLL. That leads to CLL ap-
proaches could not hold the relationship of multiple relevant
labels and complementary labels in MLCLL. In addition, we
observe that the unbounded loss BCE used to the empirical
risk estimator Eq. (7) is inferior to our proposed GDF loss
in most cases, which proves that GDF is indeed better than
the unbounded one in MLCLL. Accordingly, experimental re-
sults of the empirical risk estimator Eq. (7) with MAE loss on
three criteria are lower than ours in all datasets, which further
proves the effectiveness of our proposed strategy – minimiz-
ing the empirical risk estimator by the GDF loss.

Effect of the gradient descent friendly loss GDF. Fig. 2
shows average precision of BCE loss, MAE loss and GDF
loss on various datasets over 200 epochs, where six datasets
both adopt the first pre-processing way to process and each
instance is associated with one complementary label. As can
be seen from Fig. 2, the curve of MAE loss is lower than that
of BCE loss, but MAE loss is more stable than BCE loss in
Fig. 2. It clearly illustrates the advantages and disadvantages
of MAE loss: the bounded loss MAE is more robust for noisy
data than unbounded loss BCE, while its convergence rate is
inferior to the unbounded loss [Ghosh et al., 2017]. In addi-
tion, we observe that the curve of our proposed GDF loss is
higher than these of the unbounded loss BCE and the bounded
loss MAE, which demonstrates the effectiveness of our ap-
proach. Specifically, the curve of GDF loss shows that our
approach has both the robustness of the bounded loss MAE
and the superior convergence of the unbounded loss BCE.
This demonstrates that removing the easily caused overfitting
part of BCE loss to design GDF loss is a reasonable strategy

in MLCLL to improve performance of our approach, which
also confirms that GDF loss to optimize in MLCLL brings
benefits to gradient update.

5.3 Additional Experiments
Table 2 shows ranking loss and average precision of different
approaches on four datasets that are adopted the second pre-
processing way to process, the remaining experimentations
of three criteria are shown in Appendix D. Here, each dataset
keeps the original number of labels and complementary labels
given per instance is half of L(S) (the number of labels). In
Table 2, the proposed approach achieves comparable perfor-
mance to excellent baselines on four datasets, which indicates
that GDF loss can also work on datasets with the original la-
bel space. Specifically, results of fpml and PML-LRS are in-
ferior to GDF loss, which indicates that PML approaches de-
pending on the assumption of sparse noisy labels can not deal
with the high-noisy label problem of MLCLL. Table 2 illus-
trates that GDF loss outperforms L-UW, which proves that the
proposal is better than the CLL approach in tackling the rela-
tionship between multiple relevant labels and complementary
labels. GDF loss obtains better performance compared with
MAE loss, which indicates that the proposed loss function de-
signed by improving gradient updates can also deal with the
multiple complementary-label problem.

6 Conclusion
In this paper, we study the setting of MLCLL, which aims to
learn a multi-labeled classifier from complementary labeled
data. To solve this problem, we propose an unbiased risk es-
timator with an estimation error bound, which supports that
the learned risk minimizer from complementary labeled data
converges to the optimal one of fully supervised MLL. Al-
though our unbiased risk estimator has no restrictions on loss
functions, it will produce unbounded gradients if certain un-
bounded loss functions are used and result in overfitting. To
alleviate this issue, we design GDF loss to prevent the over-
fitting problem and find that it brings benefits to gradient
updates. We verify the effectiveness of the proposed upper
bound loss on various datasets.
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