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Abstract
One of the key problems in model-free deep rein-
forcement learning is how to obtain more accurate
value estimations. Current most widely-used off-
policy algorithms suffer from over- or underestima-
tion bias which may lead to unstable policy. In this
paper, we propose a novel method, Adaptive Esti-
mation Q-learning (AEQ), which uses uncertainty
and familiarity to control the value estimation nat-
urally and can adaptively change for specific state-
action pair. We theoretically prove the property of
our familiarity term which can even keep the ex-
pected estimation bias approximate to 0, and ex-
perimentally demonstrate our dynamic estimation
can improve the performance and prevent the bias
continuously increasing. We evaluate AEQ on sev-
eral continuous control tasks, outperforming state-
of-the-art performance. Moreover, AEQ is simple
to implement and can be applied in any off-policy
actor-critic algorithm.

1 Introduction
Off-policy deep reinforcement learning algorithm is widely-
used in continuous control tasks. Recent off-policy meth-
ods typically utilize actor-critic framework to pursue sam-
pling efficiency, including Deep Deterministic Policy Gradi-
ent (DDPG) [Lillicrap et al., 2015], Twin Delayed Deep De-
terministic Policy Gradient (TD3) [Fujimoto et al., 2018] and
Soft Actor Critic (SAC) [Haarnoja et al., 2018], etc. How-
ever, these successful methods usually fail in Q-value estima-
tion. Q-value is essential for reinforcement learning, and it
estimates how good a state-action pair is. Moreover, the pol-
icy network is trained by directly maximizing the expected
Q-value commonly. Therefore, accurate Q-value estimation
is critical to training stability and the final performance.

The overestimate bias problem has been widely studied.
van Hasselt et al. [van Hasselt et al., 2016] reveal that sin-
gle Q function estimator may lead to overestimation prob-
lem and propose Double DQN algorithm to alleviate it. It
introduces another Q network to decouple action selection
and value estimation. DDPG follows the similar target of Q
∗Corresponding Author

function as Double DQN and uses noised deterministic pol-
icy gradient with the actor-critic framework to solve contin-
uous control tasks, but unfortunately, DDPG still has over-
estimation problem. TD3 [Fujimoto et al., 2018] further re-
duces the overestimation by taking the minimum value over
two separate Q-value estimators, but this leads to underesti-
mation issue [Ciosek et al., 2019]. Inspired by TD3, many
methods can further address this issue by using other opera-
tors including max [van Hasselt et al., 2016], average [An-
schel et al., 2017], and softmax [Pan et al., 2020], etc., or
ensemble estimator [Agarwal et al., 2020; Chen et al., 2021;
Lan et al., 2020].

Recent methods can even maintain the estimation bias
within a small range for most of the training time [Chen et
al., 2021]. It seems the over- or underestimation bias has
been well-studied, and current methods all struggle to get
an accurate estimation which is in fact impossible theoreti-
cally [Thrun and Schwartz, 1993]. However, none of these
methods focuses on how to estimate specific state-action pair
properly to improve performance. Both over- and underes-
timation bias may improve learning performance, depending
on the different state or situation [Lan et al., 2020]. In some
cases, overestimation can help policy to be more optimistic to
explore the high-value regions, and underestimation can pre-
vent the policy from going into risky regions [Ciosek et al.,
2019].

In this paper, we propose a novel method called Adap-
tive Estimation Q-learning (AEQ). Based on a relatively ac-
curate Q-value estimation, we dynamically control Q-values
through uncertainty and familiarity to over- or underestimate
a specific state-action pair relatively. Uncertainty gives the
epistemic uncertainty of state-action pairs, which can nat-
urally serve as an upper or lower bound for ensemble Q-
learning. Therefore, it keeps that the estimations of Q-values
are close to the real Q-value in AEQ. Familiarity measures
the potential novelty of state-action pairs and identifies expe-
riences that may have higher returns. If the familiarity of an
experience is low, the novelty of this experience is likely to be
high. When low familiarity encounters with worse action, the
uncertainty will give a penalty firstly. We can also consider
it an optimistic estimate if uncertainty does not work either.
Besides, familiarity can dynamically change with the sam-
pling of experiences and the training process of learning, so it
can control the estimation of Q-value to be overestimated or
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underestimated relatively when combined with uncertainty.
We integrate AEQ to TD3, and evaluate it on a series

of continuous control tasks from OpenAI Gym [Brockman
et al., 2016]. The results show that AEQ-TD3 outper-
forms the current state-of-the-art algorithms without tuning
environment-specific hyperparameters. Further, we apply
AEQ to SAC and set the Update-To-Data (UTD) ratio to 20
as REDQ [Chen et al., 2021], the experiments suggest that
AEQ-SAC can exceed REDQ. We also conduct ablations to
show our adaptive estimation is effective and robust. To en-
sure that our results are convincing and reproducible, we will
open-source the code.

To sum up, our main contributions are as follow:
• We propose Adaptive Estimation Q-learning, which is

the first method that can dynamically control Q-values
through uncertainty and familiarity to over- or underes-
timate a specific state-action pair.
• We prove the property of our familiarity term and the

role it plays in controlling the bias.
• We show AEQ is sample efficient and outperforms the

state-of-the-art algorithms.
• We demonstrate that AEQ is simple to implement, and

is general which can be applied to any off-policy Q-
learning algorithm.

2 Related Work
Estimation bias in Q-learning. Thrun & Schwartz [1993]
first investigate and propose the problem of estimation bias in
Q-learning. Double Q-learning [Hasselt, 2010] uses two es-
timators to solve the overestimation issue, and Double DQN
[van Hasselt et al., 2016] applies this approach to DQN. TD3
[Fujimoto et al., 2018] and SAC [Haarnoja et al., 2018] im-
prove the performance of DDPG [Lillicrap et al., 2015] sig-
nificantly by using clipped double Q-learning in continuous
action space. Subsequently, some methods [Zhang et al.,
2017; Li and Hou, 2019] weight the minimum and maxi-
mum estimations of Q-value. SD3 [Pan et al., 2020] applies
softmax operator in updating Q-value to help reducing es-
timation bias. Recently, many works use ensemble to fur-
ther reduce estimation bias in order to improve the perfor-
mance. Averaged-DQN [Anschel et al., 2017] uses the aver-
age of multiple Q-value estimations to reduce variance. REM
[Agarwal et al., 2020] also uses ensemble Q-value estima-
tions but combines with random convex to enhance gener-
alization in the offline setting. Maxmin Q-learning [Lan et
al., 2020] controls over- and underestimation by adjusting the
number of Q-value estimators. REDQ [Chen et al., 2021] re-
duces the variance of estimation bias through minimizing a
random subset of multiple Q-value estimations, and uses a
high UTD ratio to improve performance. Similar to the en-
semble, distributional representation [Kuznetsov et al., 2020;
Duan et al., 2021] is another way to address this issue.
Uncertainty with ensemble. Uncertainty estimation has
been widely used in reinforcement learning when combined
with the ensemble. Bootstrapped DQN [Osband et al., 2016]
utilizes ensemble of Q-value estimator to estimate the un-
certainty of Q-value to improve exploration. Multiple Q-

value estimations can also enhance exploration by applying
the principle of optimism in the face of uncertainty [Ciosek
et al., 2019; Chen et al., 2017]. SUNRISE [Lee et al., 2021]
uses uncertainty to get the upper confidence bound (UCB) of
Q-values to choose action. EDAC [An et al., 2021] leverages
uncertainty with diversified Q-ensemble to penalize out-of-
distribution data points.

Novelty exploration. Most exploration strategies try to ap-
proximate the novelty of the visited state in different ways.
Count-based methods [Bellemare et al., 2016; Tang et al.,
2017] count how many times a state has been encountered
probably to generate intrinsic rewards. In this paper, we use
a simpler count-based technique to get the familiarity of a
state-action pair to adjust the estimation of Q-value. Dynam-
ics model [Pathak et al., 2019] and random network [Burda
et al., 2019] can also be used to predict whether similar states
have been visited. Recently, some works [Conti et al., 2018;
Cideron et al., 2020] of evolutionary reinforcement learn-
ing also use the Quality-Diversity algorithms to deal with the
exploration-exploitation trade-off.

3 Preliminaries
The standard reinforcement problem can be considered as a
Markov decision process (MDP), defined as 〈S,A,P, r, γ〉,
with the state and action space S and A, the reward func-
tion r, the transition probability P , and the discount factor
γ ∈ (0, 1]. The goal of reinforcement learning is to find the
optimal policy π∗ to maximize the expected discounted return
Eπ[
∑∞
t=0 γ

trt].
DDPG [Lillicrap et al., 2015] is a widely-used off-policy

algorithm based on actor-critic framework. It learns a deter-
ministic policy πφ(s) which is as effective as stochastic pol-
icy in continuous action space. The actor parameter φ can be
learned using Eq.(1).

∇πJ(φ) = EB,π
[
∇aQθ(s, a)|a=πφ(s)∇φπφ(s)

]
(1)

where B is the replay buffer. The critic parameter θ can be
learned by minimizing the

J(θ) = EB,π
[
(y −Qθ(s, a))2

]
(2)

where y = r + γQ′θ′ (s′, πφ′ (s′)) is the target value.
TD3 [Fujimoto et al., 2018] is an improved algorithm
of DDPG, it uses clipped double Q-learning with two
independent critics to obtain target value y = r +
γmini=1,2Q

′
θ′i

(s′, πφ′ (s′) + ε) , but still directly applies the
mean squared error to optimize like DDPG.

4 Adaptive Estimation Q-learning
In this section, we will first introduce the problem of esti-
mation bias in Q-learning, followed by a method using un-
certainty to address the estimation bias with ensemble Q-
learning. Finally, we present our Adaptive Estimation Q-
learning (AEQ) which uses familiarity and uncertainty to ob-
tain an adaptive estimation, and show how to apply AEQ to
modern off-policy RL algorithms in practice.
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4.1 Estimation Bias Problem
Using neural networks as function approximators to estimate
the Q function will lead to unavoidable bias due to inaccuracy
of the network [Thrun and Schwartz, 1993]. The study shows
the max operator will exaggerate this bias, and this bias will
also be accumulated and propagated through temporal differ-
ence learning, eventually leads to overestimation [Thrun and
Schwartz, 1993; Hasselt, 2010].

Here, we use Qπ(s, a) to denote ground truth of Q-
functions and assume each Qie(s, a) has a random approxi-
mation error eisa, where each eisa is identically distributed for
each fixed (s, a) pair [Thrun and Schwartz, 1993].

Qie(s, a) = Qπ(s, a) + eisa (3)

Then, we can define the general updated estimation bias
ZN with N estimators for each fixed (s′, a′) pair as follows:

ZN , r (s, a) + γfop
{
Qie (s′, a′)

}N
i=1

− (r (s, a) + γQπ (s′, a′))

= γ
(
fop
{
Qie (s′, a′)

}N
i=1
−Qπ (s′, a′)

) (4)

where fop is the operator that decides how to combine these
N Q-values. Under the zero-mean assumption, the expected
estimation bias of Q is E

[
Qie(s, a)−Qπ(s, a)

]
= 0 [Lan et

al., 2020; Thrun and Schwartz, 1993]. Therefore, if E [ZN ] >
0, the Q-value will have a tendency of overestimation; and if
E [ZN ] < 0, the Q-value will have a tendency of underesti-
mation.

If N = 2 and fop is specific to mini=1,2 maxa′∈A, Eq.(4)
can denote the updated estimation bias of clipped double Q-
learning. Because

E
[

min
i=1,2

max
a′∈A

Qie (s′, a′)

]
= E

[
min
i=1,2

max
a′∈A

(
Qπ (s′, a′) + eis′a′

)]
< E

[
max
a′∈A

Qπ (s′, a′)

] (5)

E [Z2] < 0, which explains why TD3 and SAC will have an
underestimation tendency.

4.2 Ensemble Q-learning with Uncertainty
In the following, we present our AEQ method. AEQ uses
multiple estimators of Q functions like Maxmin Q-learning
[Lan et al., 2020] and REDQ [Chen et al., 2021], but we use
uncertainty and familiarity to get a more accurate and reason-
able target.

First, we present how to use uncertainty to penalize the
target of ensemble Q-learning which is similar to RAC [Li
et al., 2021], and we analyze its motivation and weakness.
As mentioned before, the estimation of Q-value is usually bi-
ased when using an approximator and the max operator. It
is well known that the overestimation is more harmful, so we
need to add a penalty term to Q-value estimation, like min.
We assume the estimations of multiple Q-value estimators are
obeying the Gaussian distribution for a fixed state-action pair.

If we use min to penalize multiple Q-value estimations, it is
equal to taking the lower bound of the Gaussian distribution
as the estimation, which will lead to potential underestima-
tion (E [ZN ] < 0). In contrast, if we use the mean of multiple
Q-values Eq.(6) as the estimation, we will have a potential
risk of overestimation, so we can use the standard deviation
of the Gaussian distribution Eq.(7) to measure the uncertainty,
and this uncertainty can naturally become the penalty term.

Q̄θ′ (s′, a′) =
1

N

N∑
i=1

Qiθ′ (s′, a′) (6)

σ̂ (Qθ′ (s′, a′)) =

√√√√ 1

N − 1

N∑
i=1

[
Qiθ′ (s′, a′)− Q̄iθ′ (s′, a′)

]2
(7)

where Q̄θ′ (s′, a′) is the mean of target Q-value estimations.
Therefore, the update target of critics is:

y = r(s, a) + γEB,π
[
Q̄θ′ (s′, a′)− βσ̂ (Qθ′ (s′, a′))

]
(8)

We find that using the target above is better than the usual
min function, because we can control the Q-value estima-
tion between overestimation and underestimation by adjust-
ing the β, which is similar to the weighted DDPG [He and
Hou, 2020], but the adjustment range is more flexible than
the weighted DDPG, which is more helpful to obtain an ac-
curate Q-value. Further, we can get the updated estimation
bias following [Li et al., 2021]:

ZN ≈ γ
[
max
a′∈A

(Qπ (s′, a′) + ēs′a′ − βσ̂ (es′a′))

−max
a′∈A

Qπ (s′, a′)

] (9)

where β is the hyperparameter to control the penalty term.
We find that the updated estimation bias is related to β

which is constant, which leads to a critical problem. In gen-
eral, the uncertainty of estimations of multiple critics is get-
ting smaller after training the same state-action pair several
times, which leads to this penalty term being smaller with the
training process gradually. Due to the Eq.(9), this will lead
the overestimation. Therefore, we need to add an additional
term to neutralize the effect of the standard deviation term,
which is the familiarity term we will introduce in the next
subsection.

4.3 Adaptive Estimation with Familiarity
In this subsection, we will show how familiarity can further
adjust the penalty term and over- or underestimate specific
state-action pair. In this paper, we use a simple way to calcu-
late familiarity which is similar to count-based methods. We
add a count record c in the tuple (s, a, r, s′), which is initial-
ized to 0 for each experience when it enters the replay buffer.
Every time the experience is sampled, this record value will
increase to track the number of times the experience is sam-
pled. In addition, at each sampling, we also record the max-
imum count value cmax through the training and calculate
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the familiarity of each experience based on this value. When
v ≤ i ≤ t < i+N , F i(t) is defined in Eq.(10).

F i(t) ,


ci − 1

max {c1, ..., ct}
, t ≤ N

ci − 1

max {ct−N+1, ..., ct, cmax}
, t > N

(10)

where i is the number of time steps when the experience is
generated, t is the number of time steps, v is the number of
time steps to start sampling from the replay buffer, and N is
the capacity of the replay buffer. The calculation of Eq.(10)
can be divided into two cases according to whether the replay
buffer is full or not. It calculates the ratio of sampling times
between experience i and the experience with maximum sam-
pling times, and these two denominators indicate the histor-
ical maximum of c in replay buffer for t ≤ N and t > N
respectively. In addition, we use ci − 1 to make the F i = 0
when the experience is sampled in the first time.

Then, we combine familiarity with uncertainty, so that they
can control the estimation of Q-value jointly:

y = r(s, a)+γEB,π
[
Q̄θ′ (s′, a′)− βbσ̂Q′ − βsF σ̂Q′

]
(11)

where the first penalty term only contains uncertainty, and βb
is used to control its weight; the second penalty term con-
sists of the product of uncertainty and familiarity, and βs can
control its weight.
Theorem 1. For any s, a, i, 0 ≤ F < 1, and the expected
F i will increase with the number of training steps t grows
through its life time.

Proof. see Appendix.

Based on the property of familiarity above, the familiar-
ity is small when the experience first enters the replay buffer,
which means the penalty term will be small, making the ex-
perience be overestimated. As the number of sampling times
of experience gradually increases, the familiarity will also in-
crease, making the experience receive an appropriate under-
estimation.

According to Section 4.1, we can conclude the updated es-
timation bias when combining familiarity and uncertainty:

ZN , r (s, a) + γ max
a′∈A

(
Q̄e (s′, a′)− βbσ̂Qe − βsF σ̂Qe

)
−
(
r (s, a) + γ max

a′∈A
Qπ (s′, a′)

)
= γ

(
max
a′∈A

(
Q̄e (s′, a′)− βbσ̂Qe − βsF σ̂Qe

)
−max
a′∈A

Qπ (s′, a′)

)
(12)

Based on Eq.(12), we prove that our method can reduce the
bias of Q-learning to 0 under specific conditions.
Theorem 2. For any s′, a′, there exists a F0 satisfying
Eq.(13), E [ZN ] ≈ 0.

Algorithm 1 AEQ-TD3

1: Initialize actor network πφ and with parameter φ,N critic
network Qiθ with parameter θi, where i ∈ 1, ..., N

2: Initialize target actor network πφ′ with parameter φ′ ←
φ, N target critic network Qiθ′ with parameter θ′i ← θi,
where i ∈ 1, ..., N

3: Initialize experience replay buffer B
4: for t = 1 to T do
5: Select action with exploration noise at ∼ πφ(st) +

ε, ε ∼ N (0, σ), and observe reward rt and new state
st+1

6: Store transition tuple (st, at, rt, st+1, 0) in B
7: Sample mini-batch ofN transitions (s, a, r, s′, c) from

B
8: Update the corresponding c← c+ 1 for each sampled

experience
9: Compute familiarity F for each sampled experience

using Eq.(10)
10: Compute the Q target y using Eq.(11)
11: for i = 1 to N do
12: Update critics by minimizing Eq.(2)
13: end for
14: if t mod d then
15: Update actor using Eq.(14)
16: Update target networks: θ′i ← τθi+(1−τ)θ′i, φ

′ ←
τφ+ (1− τ)φ′

17: end if
18: end for

F0 ≈
ēs′a′ − βbσ̂ (es′a′)

βsσ̂ (es′a′)
(13)

Proof. see Appendix.

The approximation sign of Eq.(13) is due to the sample
based mean and variance. Although the conditions above
can not always meet usually, our method can still give an ap-
propriate estimation of Q-value for specific state-action pair.
When the critics have a large uncertainty about a new expe-
rience, the overestimation can improve the exploration; when
an old experience has a large uncertainty, we believe that the
state-action pair of this experience contains high risk, the un-
derestimation can prevent the agent from entering an unstable
state and improve the robustness.

4.4 Applying AEQ to TD3 and SAC
We apply AEQ to TD3 [Fujimoto et al., 2018] called AEQ-
TD3 and it uses actor-critic framework but with N critics.
These N critics are initialized differently but are trained with
the same target value Eq.(11). The actor is trained by the
deterministic policy gradient with the average Q-value of N
critics:

∇πJ(φ) = EB,π

∇a 1

N

N∑
i=1

Qiθ(s, a)

∣∣∣∣∣
a=πφ(s)

∇φπφ(s)


(14)
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Figure 1: Average performances comparison on MuJoCo environments.

Besides, we do not modify any other part of TD3, the pro-
cedure of AEQ-TD3 is summarized in Algorithm 1.

We also apply AEQ to SAC [Haarnoja et al., 2018] called
AEQ-SAC. Like REDQ [Chen et al., 2021], AEQ-SAC em-
ploys a UTD = 20 to improve sample efficiency during train-
ing. Instead of using two randomly selected critics to calcu-
late the target, AEQ-SAC uses Eq.(11) to be the target of N
critics. The pseudo-code of AEQ-SAC is shown in Appendix.

5 Experiment
We evaluate our method on a range of MuJoCo [Todorov
et al., 2012] continuous control tasks from OpenAI Gym
[Brockman et al., 2016]. We implement our methods on TD3
[Fujimoto et al., 2018] and SAC [Haarnoja et al., 2018] as
AEQ-TD3 and AEQ-SAC respectively1. For AEQ-TD3, we
use N = 2 and N = 10 critics with three hidden layers,
βb = 0.5, βs = 0.5 for every tasks, and UTD = 1 for fair
comparison. For AEQ-SAC, we use N = 10 and UTD = 20
to compare with REDQ [Chen et al., 2021]. For simplicity,
we will use G instead of UTD ratio in subsequent. The plots
of experimental results are generated by rl-plotter 2.

The details of the experimental setup and additional results
can be found in Appendix.

5.1 Comparative Evaluation
We compare our methods with the state-of-the-art algorithms.

1Implementations and appendix are available at: https://github.
com/gxywy/AEQ

2https://github.com/gxywy/rl-plotter
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Figure 2: Average performances comparison on MuJoCo environ-
ments when G = 20.

For AEQ-TD3, we compare it with PPO [Schulman et
al., 2017], TD3, and SAC on five continuous control tasks:
HalfCheetah, Ant, Walker2d, Hopper, and Swimmer. The
time steps of each algorithm on each task is 2× 106.

For AEQ-SAC, we compare it with SAC, SAC20 [Chen
et al., 2021], REDQ, and TQC20 [Kuznetsov et al., 2020;
Li et al., 2021] on two challenging continuous control tasks:
Ant and Walker2d. The time steps of each algorithm on each
task is 3× 105 following REDQ’s setting.

The learning curves are shown in Figure 1 and Figure 2.
Each curve is the average result of 5 random seeds with the
shaded area of the standard deviation. We evaluate the per-
formance of each algorithm every 5000 steps, and each eval-
uation is the average of 10 episodes. In Table 1 and Table
2, we also report the average and the standard deviation of
last 10 evaluations with 5 random seeds each algorithm. As
the results shown, it is obvious that our AEQ-TD3 achieve
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Environment PPO SAC TD3 AEQ-TD3,N=2 AEQ-TD3

HalfCheetah-v2 1655.91±255.82 12002.23±1256.65 11521.06±1284.37 12845.54±361.09 13212.75±672.51
Ant-v2 1679.47±652.63 5717.51±708.97 6011.47±592.43 6315.22±269.17 6592.58±272.50
Walker2d-v2 1816.40±1238.28 4563.80±294.28 4266.04±695.25 4685.51±488.45 5236.13±518.57
Hopper-v2 2097.39±1250.00 3509.85±80.89 3506.63±180.53 3512.14±243.53 3439.55±328.17
Swimmer-v2 90.65±46.36 42.85±0.69 110.51±26.89 137.82±8.74 128.46±14.11

Table 1: Numerical performance comparison of 2M time steps on final score over 5 seeds. The best results are in bold.

Environment SAC SAC20 REDQ TQC20 AEQ-SAC

Walker2d-v2 3220±566 5090±365 4741±310 4833±296 5101±316
Ant-v2 2785±947 2603±1348 5561±767 4722±567 6005±103

Table 2: Numerical performance comparison of 0.3M time steps on final score over 5 seeds when G = 20. The best results are in bold.

Variant Target

TD3-Min-10 mini=1,...,N Q
′
θ′i

(s′, πφ′ (s′))

TD3-Mean-10 average
i=1,...,N

Q′θ′i
(s′, πφ′ (s′))

TD3-REDQ-10 mini∈MQ′θ′i
(s′, πφ′ (s′))

AEQ-TD3-RF Q̄θ′ (s′, a′)− βbσ̂Q′ − βsFrσ̂Q′ ,
random Fr ∈ (0, 1]

AEQ-TD3-NF Q̄θ′ (s′, a′)− βbσ̂Q′

Table 3: The target of 5 different variants.
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Figure 3: Normalized average final performance of 5 variants over 5
seeds.

the best performance. Even if we set N = 2, our results
can still outperform TD3 on every task. When G = 20, our
AEQ-SAC also can achieve better sample efficiency than the
state-of-the-art algorithm REDQ.

5.2 Ablation Study
We perform ablation experiments on Ant and Walker2d tasks
to further analyze the effectiveness of our AEQ target. We
build five variants based on TD3 but trained with different
target of critic which is shown in Table 3. For all variants, we
use the same network structure and N = 10 critics, and for
TD3-REDQ-10 variant, we use G = 1 for fair comparison.

The final performance of different variances is shown in
Figure 3 which is normalized using the average final perfor-
mance of TD3. It suggests that the minimum variants and
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Figure 4: Familiarity and the number of sampling time of experi-
ences in 1M time steps on Ant-v2. The solid line is the familiarity
of experiences. The dash dotted line is the number of sampling time
of experiences.

the mean variants perform poorly when increasing the num-
ber of critics N . Although REDQ can reduces the Std. of
bias, it does not bring significant increase in sampling effi-
ciency when applied REDQ’s target to TD3. However, the
result of AEQ-TD3-NF shows that the target with uncertainty
penalty performs better. Moreover, when comparing AEQ-
TD3 with AEQ-TD3-RF and AEQ-TD3-NF, it shows our fa-
miliarity term can improve the performance on both Ant and
Walker2d tasks.

5.3 Effect of Familiarity
In order to study the effect of our familiarity term further, we
first select some experiences with the indexes: 0, 105, 2×105,
3× 105, 4× 105 to track the familiarity F and the number of
sampling times c.

In Figure 4, we find allF is increasing with c, and this con-
clusion is consistent with Theorem 1. The result also suggests
the experience that enters the replay buffer first will increase
faster in familiarity than the experience that enters the replay
buffer later, and the former will also have a larger familiarity
in the end. This phenomenon implies that our familiarity will
pay less attention to newer experiences and tend to give them
less punishment in Q-value estimation.

Then, we study the tendency of our penalty term βbσ̂Q′ +
βsF σ̂Q′ during the training, the results are shown in Figure
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Figure 5: Penalty term and normalized mean Q-value of batches
during the training.
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Figure 6: Comparison of the bias of Q-value estimations of TD3 and
AEQ-TD3. The solid line is the normalized average bias. The dotted
line is the normalized average real Q-values.

5. Overall, our penalty term will increase because the uncer-
tainty in the initial training process of the network, and then
decreases due to the neutralization effect of familiarity, and
eventually remain almost constant after the training is stable.
However, it is just the tendency of the average sampled expe-
riences, which does not mean all experiences follow the same
rules, and each experience will have its own tendency in our
algorithm. In addition, although our penalty term is changing,
the average Q-value keeps increasing, which suggests that our
adaptive term does not disturb the training process.

5.4 Estimation Bias

In order to figure out how AEQ estimates in practice, we
measure the estimation bias of both AEQ-TD3 and AEQ-
SAC. For AEQ-TD3, the Q-value estimations are averaged
over 1000 states sampled from the replay buffer every 50000
time steps. The true Q-values are estimated by averaging the
discounted long-term rewards obtained by rolling out the cur-
rent policy starting from the sampled states every 50000 time
steps. The setting above is basically same with the origi-
nal paper of TD3. The results in Figure 6 show that AEQ-
TD3 will have a large estimation bias in the beginning, but
will reduce gradually through training achieving better per-
formance.

For AEQ-SAC, we follow the REDQ’s setting of estimat-
ing the bias for fair comparison, which the states is not sam-
pled from the replay buffer. The results in Figure 7 show that
AEQ-SAC controls the estimation bias better and is close to
0. Moreover, AEQ-SAC can adjust the estimation bias dy-
namically.
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Figure 7: Comparison of the bias of Q-value estimations of REDQ
and AEQ-SAC.
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Figure 8: The hyperparameter sensitivity of βb and βs. The dash
dotted line is the average final performance of TD3.

5.5 Hyperparameter Sensitivity
The hyperparameter βb and βs will directly affect the weight
of familiarity term and the estimation of Q-values. Therefore,
we study the sensitivity of βb and βs on HalfCheetah task
and we choose them from [0.1, 0.3, 0.5, 0.7]. The results are
shown in Figure 8, which indicates the performance of AEQ-
TD3 always better than TD3 in 4 tested βb and βs. The results
also suggest that βb and βs should not too large or too small
to keep the penalty term and adaptive term in a certain range.
Besides, the sensitivity to βb and βs indicates in part that the
uncertainty and familiarity term we proposed is effective.

6 Conclusion
In this paper, we present AEQ that controls the over- and un-
derestimation bias for specific state-action pair adaptively us-
ing uncertainty and familiarity. Our method is simple to im-
plement on any off-policy actor-critic RL algorithm, includ-
ing the most commonly used TD3 and SAC. We not only an-
alyze the property and the effect of familiarity theoretically,
but also perform the ablation experiments to demonstrate it
can improve the performance with the uncertainty. The re-
sults on continuous control tasks suggest that our AEQ can
be useful in controlling the estimation bias and can outper-
form the state-of-the-art performance on sample efficiency.

We think future work should combine familiarity with the
density model and focus on investigating how to find a more
appropriate metric to over- and underestimate for specific
state-action pair.
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