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Abstract
Graph neural networks (GNNs) have been applied
successfully in many machine learning tasks due to
their advantages in utilizing neighboring informa-
tion. Recently, with the global enactment of pri-
vacy protection regulations, federated GNNs have
gained increasing attention in academia and in-
dustry. However, the graphs owned by differ-
ent participants could be non-independently-and-
identically distributed (non-IID), leading to the de-
terioration of federated GNNs’ accuracy. In this
paper, we propose a globally consistent federated
graph autoencoder (GCFGAE) to overcome the
non-IID problem in unsupervised federated graph
learning via three innovations. First, by integrat-
ing federated learning with split learning, we train
a unique global model instead of FedAvg-styled
global and local models, yielding results consistent
with that of the centralized GAE. Second, we de-
sign a collaborative computation mechanism con-
sidering overlapping vertices to reduce communi-
cation overhead during forward propagation. Third,
we develop a layer-wise and block-wise gradient
computation strategy to reduce the space and com-
munication complexity during backward propaga-
tion. Experiments on real-world datasets demon-
strate that GCFGAE achieves not only higher accu-
racy but also around 500 times lower communica-
tion overhead and 1000 times smaller space over-
head than existing federated GNN models.

1 Introduction
Graph neural networks (GNNs) have gained broad applica-
tion in many fields [Abadal et al., 2021; Wu et al., 2021;
Wu et al., 2022]. In the real world, large graphs are often
spread across multiple participants. For example, a social
network is comprised of many personal social circles. There-
fore, multiple participants can collaborate to train a global
model by aggregating their local graphs, as depicted in Fig-
ure 1. It is common that multiple participants’ graphs have
overlapping vertices, as shown by the grey vertices. Re-
cently, with the increasing concern for personal privacy, it
is now legislated in many countries that no private data can

be exported without its owner’s consent [Jia et al., 2018;
Baik, 2020], imposing a significant obstacle to effective dis-
tributed graph learning. To tackle the issue, federated learn-
ing has emerged as a promising paradigm for developing
privacy-preserving distributed graph learning approaches, no-
tably federated GNNs [Liu and Yu, 2022; Fu et al., 2022].
Figure 1 shows a typical scenario of unsupervised federated
graph learning where multiple participants’ local graphs share
overlapping vertices and the attributes of their vertices are
identical [Fu et al., 2022]. However, federated GNNs con-
front the problem that the graphs owned by different partici-
pants could be non-independently-and-identically distributed
(non-IID), leading to the deterioration of federated GNNs’
accuracy [Xie et al., 2021]. In this paper, we focus on a spe-
cific non-IID problem in unsupervised federated graph learn-
ing, the non-independence between participants’ local graphs
caused by the missing of partial neighbors of overlapping ver-
tices in participants’ local graphs, as illustrated in Figure 1.

At present, there are three types of approaches to over-
come the non-IID problem in federated graph learning. The
first two types of approaches are personalized federated learn-
ing and single-model-based methods [Fu et al., 2022], which
rely on the improvements of different FedAvg-based ap-
proaches [McMahan et al., 2016]. However, the design of Fe-
dAvg’s training full global and local models simultaneously
means that all these improvements are hard to escape the im-
pact of non-IID data. The third type of approaches explore a
novel idea that trains a federated graph model via split learn-
ing [Thapa et al., 2022], which replaces the FedAvg-styled
training of multiple full models with the training of a unique
global model by splitting a neural network into two portions
that are independently trained by participants and the coordi-
nator, allowing them to train models consistent with those ob-
tained by centralized GNNs [Shan et al., 2021]. Nevertheless,
the third-typed approaches have certain weaknesses. First,
they do not consider the relationships between overlapping
vertices of different participants, leading to possible accuracy
loss, especially when the number of overlapping vertices in-
creases with the involvement of more participants. Second,
these approaches transmit the intermediate data related to all
vertices between participants during each round of training,
incurring high communication and space overhead.

In this paper, we propose a globally consistent federated
graph autoencoder (GCFGAE) to solve the non-IID problem
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Figure 1: Unsupervised federated graph learning. PA, PB , PC de-
note three participants, f1 ∼ f3 are the attributes of their local
graphs’ vertices. Different participants’ graphs are rendered with
different colors. The grey circles denote overlapping vertices shared
between participants.

in unsupervised federated graph learning. First, we construct
a distributed GAE framework integrating federated learning
and split learning to train a unique global model consistent
with that of the centralized GAE. Second, we design a col-
laborative computation mechanism considering overlapping
vertices for the forward propagation of GCFGAE to reduce
communication overhead by only conducting the computa-
tion related to overlapping vertices between participants and
the coordinator. Third, we develop a layer-wise and block-
wise gradient computation strategy for the backward propa-
gation of GCFGAE to decompose the computation of gradi-
ent matrices into the real-time computation of partial gradi-
ent matrices on the coordinator side, the distributed computa-
tion of local gradient matrices on the participant side and the
combination of them block by block for each neural layer’s
training. The contributions of this paper are summarized as
follows.

• It is the first attempt to overcome the non-IID problem
in unsupervised federated graph learning by integrating
federated learning with split learning so that the output
of GCFGAE is consistent with that of the centralized
GAE, that is, GCFGAE does not suffer from accuracy
loss.

• The collaborative computation mechanism applied in
the forward propagation of GCFGAE achieves signif-
icantly lower communication overhead than existing
split-learning-based solutions.

• The layer-wise and block-wise gradient computation
strategy applied in the backward propagation of GCF-
GAE can greatly decrease its space overhead.

• We demonstrate the effectiveness of GCFGAE in accu-
racy preservation and the reduction of communication
and space overhead in real-world datasets.

2 Related Work
2.1 Federated Graph Learning on Non-IID

Graphs
The non-IID problem in federated graph learning originates
from the heterogeneity of the topology and attributes of
graphs [Xie et al., 2021]. There are two types of solu-
tions from the perspective of federated learning: personal-

ized federated learning and single-model-based methods [Fu
et al., 2022]. Personalized federated learning aims to train
personalized models for each participant instead of a global
model to circumvent the non-IID problem. GCFL [Xie et
al., 2021] and FedCG [Caldarola et al., 2021] clusters par-
ticipants to improve each participant’s local model. FED-
PUB [Baek et al., 2022] is a personalized subgraph federated
learning framework that jointly improves interrelated local
GNN models. FedEgo [Zhang et al., 2022b] applies Graph-
SAGE [Hamilton et al., 2017] to ego graphs to solve the prob-
lem of non-IID labels. The methods based on single models
attempt to train more efficient global models by incorporat-
ing more information from local models. FedSage [Zhang et
al., 2021], FedNI [Peng et al., 2022] and the federated GNN
proposed in [Du and Wu, 2022] refine global models by sam-
pling or predicting a vertex’s neighbors during each partici-
pant’s local model training. All the above approaches are de-
veloped based on FedAvg and do not focus on the handling of
the non-IID problem arises from the missing of partial neigh-
bors of overlapping vertices in participants’ local graphs, as
shown in Figure 1, leading to possible accuracy loss.

2.2 Federated Learning with Split Learning
Federated learning requires that each participant trains a lo-
cal model, which is unfriendly to edge devices in the in-
ternet of things (IoT) because most edge devices have lim-
ited computational resources. Split learning is a feasible
complement to federated learning because it distributes the
training of different parts of a model among participants and
the coordinator. Therefore, integrating federated learning
with split learning has received increasing attention [Thapa
et al., 2022]. SAPGNN [Shan et al., 2021] is a privacy-
preserving GNN developed based on federated learning and
split learning that can handle the non-IID problem in super-
vised federated graph learning. HSFL[Xia et al., 2022] trains
a global model based on split federated learning to allocate
edge devices’ computational resources dynamically. Tian et
al. [Tian et al., 2022] proposed a privacy-preserving split
learning method for millimeter-wave beam selection. Spli-
tAVG [Zhang et al., 2022a] is a heterogeneity-aware split fed-
erated learning method to overcome the performance drops
from data heterogeneity in federated learning. RoSFL [Yang
et al., 2022] is a robust split federated learning paradigm to
avoid model drifting caused by non-IID labels in u-shaped
medical image network analysis. Thapa et al. [Thapa et al.,
2022] proposed a split federated learning framework to ad-
dress the issue of limited computational resources in fed-
erated learning and training overhead in split learning. All
the above approaches require high communication and space
overhead because they transmit intermediate data related to
all vertices during each round of training. They also do not
consider the non-IID problem caused by the overlapping ver-
tices, as shown in Figure 1.

3 Preliminaries
3.1 Centralized GAE
A graph is defined as G(V,E,A,X), where V =
{v1, v2, ..., vn} is a set of n vertices, E = {(vi, vj)} is a
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set of m links connecting vertices in V . A ∈ Rn×n is the
adjacency matrix where Ai,j = 1 if there is a link between
vi and vj . X ∈ Rn×d is the binary attribute matrix where
Xi,j = 1 if vertex vi has a value in the jth attribute, and 0
otherwise. Under the scenario of federated graph learning as
shown in Figure 1, each participant Pk owns a local graphGk

where a subset of vertices Vk,ov are the participant’s overlap-
ping vertices shared with others. They collaborate to train a
global GNN model by aggregating their local graphs.

We refer to the standard GAE proposed by Kipf and
Welling [Kipf and Welling, 2016] as the centralized GAE in
this paper and adapt it to federated learning to build GCF-
GAE. The centralized GAE adopts a GCN-styled encoder
which comprises L graph convolutional layers as follows.

H(L−1) = Ãσ
(
ÃXW(0)

)
· · ·W(L−1) (1)

where Ã = D−
1
2AD−

1
2 , Ã is the normalized Laplacian ma-

trix, D is the degree matrix whose diagonal elements are ver-
tex degrees, H(L−1) is the (L− 1)th-layered embedding ma-
trix containing each vertex’s embedding vector. σ is the ac-
tivation function. W(l) is the weight matrix of the lth layer.
The decoder of the centralized GAE is the inner product of
the embedding matrix H(L−1) and itself, as shown in the fol-
lowing equation.

Â = σ

(
H(L−1)

(
H(L−1)

)T)
(2)

where Â is the reconstructed adjacency matrix. The loss
function of the centralized GAE is the cross-entropy be-
tween the reconstructed and the original adjacency matrices,
as shown in the following equation.

L = − 1

m

∑
vi,vj

Ai,j log Âi,j + (1−Ai,j) log
(
Âi,j

)
(3)

where Âi,j is the adjacency between vi and vj in Â, respec-
tively.

3.2 Graph Privacy
The attack model studied in this paper is the semi-honest
model [Brickell and Shmatikov, 2005] which assumes that
each participant follows the routine of a given algorithm and
does not collude with the others to capture other participants’
privacy. Therefore, as suggested in [Majeed and Lee, 2020],
the privacy needed to be protected during federated graph
learning are: (1) graph topology including vertex degrees and
the existence of links between vertices. Most graphs in the
real world, such as social and transportation networks, exhibit
the small-world feature, that is, the distribution of vertex de-
grees is long-tailed, with only a few hub vertices possessing
high degrees. An attacker can use the feature to determine the
positions of his target vertices; (2) attribute values of vertices
and links. The personal profiles in a social network and the
points of interest (POIs) of a traveler can be used by an at-
tacker to locate his target vertices, even if he is unaware of a
graph’s topology.

Figure 2: Framework of GCFGAE

4 The Proposed Model
4.1 Framework of GCFGAE
GCFGAE is developed based on extending the centralized
GAE to the unsupervised federated graph learning while ex-
ecuting its forward and backward propagation according to
split learning to train a globally consistent model. As shown
in Figure 2, GCFGAE is composed of Laplacian matrix con-
struction, the forward propagation relying on the aggrega-
tion of overlapping vertices’ embedding vectors with the aid
of the coordinator and the backward propagation requiring
the collaboration of participants and the coordinator in gra-
dient computation. The detailed implementations including
mathematical symbols are presented in the following subsec-
tions. The analysis of GCFGAE’s privacy and consistency
and its communication and space complexity is given in the
appendix 1 due to the page limit.

4.2 Laplacian Matrix Construction
In order to construct the global Laplacian matrix Ã while pre-
serving each participant’s privacy, we employ the following
steps to compute the degrees of overlapping vertices with the
cooperation of participants and the coordinator and to con-
struct a local Laplacian matrix Ãk for each participant. The
combination of all Ãks forms the global Ã.

Step 1: Each participant Pk extracts a matrix Dk,ov corre-
sponding to the degrees of its local overlapping vertices from
its local degree matrix Dk and transforms it into 〈Dk,ov〉 us-
ing secret sharing [Shamir, 1979], where 〈·〉 denotes the ad-
ditive secret sharing, and sends it to the coordinator.

Step 2: The coordinator aggregates the 〈Dk,ov〉s into a
global degree matrix Dc,ov =

∑
k 〈Dk,ov〉 for overlapping

vertices and returns it to participants.
Step 3: Participant Pk updates its Dk,ov and Dk according

to Dc,ov by adding up the degrees of the overlapping vertices
stored in other participants’ graphs and computes its local
Laplacian matrix Ãk = (D′k)

− 1
2 Ak (D

′
k)
− 1

2 where D′k is
the updated local degree matrix. The combination of all Ãks
is Ã, which is denoted by Ã = ||Ãk, where || is the combi-
nation operator. Specifically, operator || works like building
blocks in that it puts the elements of each participant’s Ãk in

1https://github.com/gcfgae/GCFGAE/blob/main/gcfgae
appendix.pdf
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Figure 3: Collaborative computation considering overlapping ver-
tices

their correct positions in Ã according to the overlapping and
non-overlapping vertices of participants’ local graphs to form
a complete Ã.

4.3 Forward Propagation
We design a collaborative computation mechanism consider-
ing overlapping vertices to reduce communication overhead
during the forward propagation of GCFGAE. Specifically, as
illustrated in Figure 3, the collaborative computation for the
first layer of GCFGAE consists of two parts: aggregating
each participant Pk’s local embedding vectors for overlap-
ping vertices h

(0)
k,i,ov into a global embedding matrix H

(0)
c,ov

and constructing a local embedding matrix H
(0)
k

′
by com-

bining the local embedding matrices H
(0)
k,ov and H

(0)
k,nov cor-

responding to overlapping and non-overlapping vertices, re-
spectively. The communication overhead is reduced by only
transmitting the intermediate data related to overlapping ver-
tices rather than all vertices. The details are given as follows.

Step 1: All participants share initial weight matrices
W(0) ∼ W(L−1). Notably, only one set of global weight
matrices or one global model is updated during the training
of GCFGAE since we implement the forward and backward
propagation based on split learning.

Step 2: Each participant Pk constructs its local first-layered
emedding matrix H

(0)
k = σ

(
ÃkXkW

(0)
)

.
Step 3: Each participant Pk selects the embedding vec-

tor h(0)
k,i,ov of each local overlapping vertex vk,i,ov ∈ Vk,ov

from H
(0)
k and transforms it into a secret 〈h(0)

k,i,ov〉 according
to equation 4, where rk,j is the random vector generated for
each participant Pj sharing vk,i,ov with Pk. The indices of
all such participants are put in an index set Qi. A secret lo-
cal embedding matrix 〈H(0)

k,ov〉 is constructed by packing all

〈h(0)
k,i,ov〉s into a marix. A subtle problem here is that equa-

tion 4 counts the embedding vector of an overlapping vertex
vk,i,ov one more time for each participant Pj(j ∈ Qi) sharing
the vertex with Pk. Therefore, we must record the duplicated
terms in the computation of these embedding vectors in a set
Sk,ov = {sk,i,ov} for the subsequent deduction, where sk,i,ov
is a vector formed by the duplicated terms in the computation
of the embedding vectors. Secrets 〈H(0)

k,ov〉 and 〈Sk,ov〉 are

sent to the coordinator.

〈H(0)
k,ov〉 =

[
〈h(0)

k,i,ov〉
]
=

h(0)
k,i,ov −

∑
j∈Qi

rk,j

 (4)

Step 4: The coordinator extracts
〈
h
(0)
k,i,ov

〉
s corresponding

to participant Pk(k ∈ Qi) from 〈H(0)
k,ov〉 for each overlap-

ping vertex vi,ov and aggregates them into a global embed-
ding vector h(0)

c,i,ov according to equation 5. The subtraction
operation is used to deduct the duplicated terms from the sum
of 〈h(0)

k,i,ov〉s. All h(0)
c,i,ovs are encapsulated into a global em-

bedding matrix H
(0)
c,ov that is sent back to each participant.

H(0)
c,ov =

[
h
(0)
c,i,ov

]
=

∑
k∈Qi

〈
h
(0)
k,i,ov

〉
−
∑
k∈Qi

sk,i,ov

 (5)

Step 5: Participant Pk updates its local embedding ma-
trix H

(0)
k,ov of overlapping vertices according to H

(0)
c,ov and

combines it with the local embedding matrix H
(0)
k,nov of non-

overlapping vertices to construct a complete local embedding
matrix H

(0)
k

′
according to equation 6. H(0)

k,ov and H
(0)
k,nov are

combined in the same way as that in the construction of Ã in
subsection 4.2.

H
(0)
k

′
← H

(0)
k,ov||H

(0)
k,nov (6)

Steps 2 to 5 are repeated for layers 1 to (L− 1) to produce

the (L − 1)th-layered embedding matrix H
(L−1)
k

′
for each

participant.
Step 6: Each participant Pk constructs a local recon-

structed adjacency matrix Âk based on H
(L−1)
k

′
according

to equation 2 and computes the local loss Lk according to
equation 3. Then, it sends H

(L−1)
k

′
to the coordinator. In

GCFGAE, the global loss L is decomposed into each par-
ticipant’s local loss Lk. The gradients of the global loss L
with respect to embedding and weight matrices are computed
through the gradients of Lk with respect to them. The details
are presented in the next subsection.

Step 7: The coordinator combines all H(L−1)
k

′
s to con-

struct a global embedding matrix H(L−1) with the || oper-
ator and computes a global recontructed adjacency matrix Â
according to equation 2.

4.4 Backward Propagation
We develop a layer-wise and block-wise gradient computa-
tion strategy to reduce space overhead during the backward
propagation of GCFGAE. Figure 4 illustrates the application
of the strategy applies to the backward propagation of the
(L − 1)th and (L − 2)th layers. Other layers are processed
in the same manner as the (L − 2)th layer. The layer-wise
and block-wise gradient computation at the (L − 1)th layer
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Figure 4: Layer-wise and block-wise gradient computation

consists of two parts: the computation of the gradient matrix
of the global loss L with respect to the (L− 1)th-layered em-
bedding matrix H(L−1) and the computation of the gradient
matrix of L with respect to the (L− 1)th-layered weight ma-
trix

(
W(L−1)). Similarly, the layer-wise and block-wise gra-

dient computation at the (L− 2)th layer is also composed of
two parts: the computation of the blocks of the gradient ma-
trix of the global loss L with respect to the (L− 2)th-layered
embedding matrix H(L−1) corresponding to overlapping ver-
tices and the computation of the gradient matrix of L with re-
spect to the (L− 2)th-layered weight matrix

(
W(L−2)). The

blocks are computed in a real-time manner to reduce space
overhead. The backward propagation of GCFGAE is com-
posed of the following steps.

Step 1: The coordinator computes a set of gradient matri-
ces ( ∂Â

∂H(L−1) )k
2 for each participant Pk based on the recon-

structed adjacency matrix Â and the (L−1)th-layered global
embedding matrix H(L−1) and sends them to participants.
Specifically, each gradient matrix in the form of ( ∂Âi,j

∂H(L−1) )k,
where Âi,j is an element of Â, is transmitted once it has been
computed. More importantly, to further reduce the commu-
nication overhead, the coordinator only transmits the ith and
the jth row vectors of ( ∂Âi,j

∂H(L−1) )k to participants.
Step 2: Each participant Pk computes a local gradient ma-

trix ∂Lk

∂H(L−1) of local loss Lk with respect to the (L − 1)th-
layered global embedding matrix H(L−1) according to equa-

2The gradient of a matrix A with respect to another matrix B is
a set of nA gradient matrices each of which is ∂Ai,j

∂B
, where nA is

the number of elements of A, and Ai,j is an element of A.

tion 7. Index k indicates only selecting the gradient matri-
ces related to participant Pk from the gradient matrix set of

∂Â
∂H(L−1) . Index i traverses all selected matrices. Then, par-
ticipant Pk transforms ∂Lk

∂H(L−1) into a secret 〈 ∂Lk

∂H(L−1) 〉 and
sends it to the coordinator.

∂Lk

∂H(L−1) =
∑
i

((
∂Lk

∂Âk

)
i

((
∂Â

∂H(L−1)

)
k

)
i

)
(7)

Step 3: The coordinator first aggregates the received
〈 ∂Lk

∂H(L−1) 〉s into
∑

k

〈
∂Lk

∂H(L−1)

〉
. Second, it computes the gra-

dient matrix ∂L
∂Âov

of the global loss L with respect to the

reconstructed adjacency matrix Âov corresponding to over-
lapping vertices. Third, it computes the gradient matrix

∂L
∂Ânov

of L with respect to the reconstructed adjacency ma-

trix Ânov corresponding to non-overlapping vertices. Forth,
it computes the gradient matrix ∂L

∂H(L−1) of L with respect to
H(L−1) according to equation 8. Index i traverses the gradi-
ent matrices of ∂Âov

∂H(L−1) and ∂Ânov

∂H(L−1) . The subtraction opera-
tion is used to deduct the duplicated terms in

∑
k

〈
∂Lk

∂H(L−1)

〉
.

The addition operation is used to append the gradients of
L with respect to the embedding vectors of non-overlapping
vertices. Finally, the coordinator extracts

(
∂L

∂H(L−1)

)
k

corre-
sponding to participant Pk from ∂L

∂H(L−1) and sends it to the
participant.

∂L
∂H(L−1) =

∑
k

〈
∂Lk

∂H(L−1)

〉
−
∑
i

((
∂L
∂Âov

)
i(

∂Âov

∂H(L−1)

)
i

)
+
∑
i

((
∂L

∂Ânov

)
i

(
∂Ânov

∂H(L−1)

)
i

) (8)

Step 4: Each pariticpant Pk computes its local gradient ma-
trix

(
∂L

∂W(L−1)

)
k

according to equation 9 and transforms it
into a secret 〈

(
∂L

∂W(L−1)

)
k
〉 and sends it to the coordinator.(

∂L
∂W(L−1)

)
k

=

(
∂L

∂H(L−1)

)
k

∂H
(L−1)
k

∂W(L−1) (9)

Step 5: The coordinator aggregates all 〈
(

∂L
∂W(L−1)

)
k
〉s into(

∂L
∂W(L−1)

)
according to equation 10 and sends it to all par-

ticipants. (
∂L

∂W(L−1)

)
=
∑
k

〈(
∂L

∂W(L−1)

)
k

〉
(10)

Step 6: Each participant Pk updates W(L−1) based on(
∂L

∂W(L−1)

)
via stochastic gradient descent (SGD) [Shi et al.,

2020].
Step 7: Each participant Pk computes the gradient matrix
∂Lk

∂H(L−2) of local loss Lk with respect to the (L−2)th-layered
embedding matrix H(L−2) according to equation 11 where
indices k and i serve the same purpose as in equation 7, and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3772



transforms the blocks in ∂Lk

∂H(L−2) corresponding to overlap-
ping vertices into a secret 〈( ∂Lk

∂H(L−2) )ov〉 and sends it to the
coordinator.

∂Lk

∂H(L−2) =
∑
i

(((
∂L

∂H(L−1)

)
k

)
i

(
∂H

(L−1)
k

∂H
(L−2)
k

)
i

)
(11)

Step 8: The coordinator aggregates all 〈( ∂Lk

∂H(L−2) )ov〉s into(
∂L

∂H(L−2)

)
c,ov

according to equation 12 and sends it to all
participants.(

∂L
∂H(L−2)

)
c,ov

=
∑
k

〈(
∂Lk

∂H(L−2)

)
ov

〉
(12)

Step 9: Participant Pk computes
(

∂L
∂H(L−2)

)
k

by replacing
( ∂Lk

∂H(L−2) )ov with
(

∂L
∂H(L−2)

)
c,ov

and merges it with the gra-
dients of L with respect to the embedding vectors of its local
non-overlapping vertices and updates the (L − 2)th-layered
weight matrix W(L−2) according to steps 4 to 6.

Steps 7 to 9 are repeated for layers L− 3 to 0 to update the
weight matrices corresponding to those layers.

5 Experiments
We have conducted comprehensive experiments on privacy-
preserving community detection, a typical unsupervised
graph learning task, to evaluate the performance of GFGAE
and baseline models. First, we introduce the datasets and
evaluation metrics used in the experiments. Second, we
present the experimental results on the consistency with the
centralized GAE introduced in subsection 3.1, the accuracy
and the communication and space overhead compared with
baselines. Kmeans [Sooksatra et al., 2022] is used to clus-
ter the embedding vectors output by GCFGAE and baselines.
Communities are built by partitioning vertices whose embed-
ding vectors are in the same cluster into the same group.

5.1 Datasets and Evaluation Metrics
Five real-world networks are used in the experiments: (1)
Cora: n=2708, m=5278, avgd=3.90, w=1433; (2) Cite-
seer: n=3264, m=4536, avgd=2.78, w=3703; (3) DBLP:
n=1906, m=6644, avgd=6.97, w=45; (4) Amazon: n=2187,
m=6413, avgd=5.86, w=480; (5) Lastfm: n=1215, m=5707,
avgd=9.39, w=180, where n, m, avgd and w denote the
number of vertices and links, the average degree and the di-
mension of attribute vectors of a network, respectively. We
source Cora and Citeseer from LINQS 3 and DBLP, Amazon
and Lastfm asia (abbreviated as Lastfm) from SNAP 4. The
method in [Gonzalez et al., 2012] is adopted to split a network
into 2 to 10 overlapping subnetworks to simulate participants’
graphs. As the number of participants increases, the number
of overlapping vertices between participants increases, lead-
ing to more non-IID graphs. Therefore, varying numbers of
participants are used to simulate different degrees of non-IID
graphs in the experiments.

3https://linqs.soe.ucsc.edu/data
4http://snap.stanford.edu/data

Two evaluation metrics, normalized mutual information
(NMI) and adjusted rand index (ARI) [Chakraborty et al.,
2017], are used to measure models’ accuracy. A higher value
of NMI of ARI indicates higher accuracy. The communica-
tion overhead (CO) and the space overhead (SO) are mea-
sured by CO = nr

∑
i (nM,inb) and SO =

∑
j (nM,jnb),

respectively, where nr is the number of iterations, nM,i is the
number of elements in a matrix Mi transmitting between par-
ticipants and the coordinator, nb is the bytes of an element,
nM,j is the number of elements in a matrixMj that should be
simultaneously stored during an iteration.

5.2 Baselines
We first compared GCFGAE with the centralized GAE intro-
duced in subsection 3.1 to verify that it could achieve consis-
tent results with the centralized GAE. Second, we compared
GCFGAE with SAPGNN [Shan et al., 2021], FedAvg+GAE
and a simplified distributed GAE (abbreviated as SDGAE)
to evaluate its accuracy on graphs with different non-IID de-
grees and the effectiveness of the integration of federated
learning and split learning. SAPGNN is the state-of-the-art
GNN framework based on federated and split learning. How-
ever, it is designed for supervised federated graph learning.
We adapted it to our experiments by replacing its loss compu-
tation with equations 2 and 3 and using a GCN-styled encoder
similar to GCFGAE. FedAvg+GAE uses the centralized GAE
to train a participant’s local model and FedAvg to aggregate
local models to update the global model in a similar manner
to FedSage [Zhang et al., 2021]. SDGAE runs the centralized
GAE on each participant’s side with no federated learning or
split learning mechanism to find local communities and joins
them to produce final global communities. The source code
of all models is written in Python 5.

5.3 Consistency Experiment
Figure 5 shows the results of the consistency experiment. The
number after a model’s name indicates the number of par-
ticipants the model was trained on. It is evident that the
accuracy of GCFGAE is identical to that of the centralized
GAE regardless of whether it is measured by NMI or ARI,
or measured under any number of participants. Therefore,
the experimental results clearly suggest that GCFGAE bears
no accuracy loss when applying GAE to distributed privacy-
preserving community detection based on federated and split
learning, confirming our consistency analysis in the appendix.
Particularly, the proper computation considering overlapping
vertices based on the collaborative computation mechanism
and the layer-wise and block-wise gradient computation strat-
egy during the forward and backward propagation of GCF-
GAE plays a vital role.

5.4 Accuracy Experiment
The results of the accuracy experiment are shown in Figure 6.
We report the accuracy measured by NMI because Figure 5
reveals that the accuracy measured by ARI is in accordance
with that measured by NMI. As shown in Figure 6 (a) and
(b), GCFGAE surpasses all baselines on all datasets, which is

5https://github.com/gcfgae/GCFGAE
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Figure 5: Results of the consistency experiment

largely due to the integration of federated learning with split
learning and the specific design of its forward and backward
propagation. SAPGNN is inferior to FedAvg+GAE because
it ignores the relationships between the overlapping vertices,
although we adapt it to unsupervised federated graph learn-
ing by replacing its loss function. The accuracy of SDGAE
is the lowest in nearly all datasets, demonstrating the signifi-
cant superiority of federated and split learning over the simple
combination of separately running models. Figure 6 (c) and
(d) reveal that the non-IID degree of participants’ local graphs
has no effect on GCFGAE but a substantial impact on base-
lines, demonstrating the effectiveness of GCFGAE’s globally
consistent model training.

5.5 Communication and Space Overhead
Experiment

We compared GCFGAE with SAPGNN in the communica-
tion and space overhead experiments since both utilize feder-
ated learning and split learning to train a unique global model,
unlike the FedAvg-based models. The results are shown in

Figure 6: Results of the accuracy experiment

Figure 7: Results of the communication and space overhead experi-
ment

Figure 7. The logarithm of CO and SO values are used as the
vertical axes because of the great difference between the re-
sults of GCFGAE and SAPGNN. As shown in Figure 7, the
communication overhead of GCFGAE is around 500 times
lower than that of SAPGNN, and the space overhead of GCF-
GAE is nearly 1000 times smaller than that of SAPGNN.
The remarkable improvements strongly demonstrate the ef-
fectiveness of the collaborative computation mechanism and
the layer-wise and block-wise gradient computation strategy
used in the forward and backward propagation of GCFGAE.

6 Conclusion
In this paper, we propose a federated graph autoencoder GCF-
GAE to solve the non-IID problem in unsupervised federated
graph learning. We achieve lossless accuracy by training a
globally consistent model based on the integration of feder-
ated learning and split learning. The collaborative compu-
tation mechanism considering overlapping vertices and the
layer-wise and block-wise gradient computation strategy em-
ployed in the forward and backward propagation boost GCF-
GAE’s accuracy and greatly reduce its communication and
space overhead. Experiments on real-world datasets demon-
strate the effectiveness of GCFGAE.
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