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Abstract
Multicriteria decision making requires defining the
result of conflicting and possibly interacting cri-
teria. Allowing criteria interactions in a decision
model increases the complexity of the preference
learning task due to the combinatorial nature of
the possible interactions. In this paper, we pro-
pose an approach to learn a decision model in
which the interaction pattern is revealed from pref-
erence data and kept as simple as possible. We
consider weighted aggregation functions like multi-
linear utilities or Choquet integrals, admitting rep-
resentations including non-linear terms measuring
the joint benefit or penalty attached to some com-
binations of criteria. The weighting coefficients
known as Möbius masses model positive or nega-
tive synergies among criteria. We propose an ap-
proach to learn the Möbius masses, based on it-
erative reweighted least square for sparse recov-
ery, and dualization to improve scalability. This
approach is applied to learn sparse representa-
tions of the multilinear utility model and conjunc-
tive/disjunctive forms of the discrete Choquet in-
tegral from preferences examples, in aggregation
problems possibly involving more than 20 criteria.

1 Introduction
One of the main challenges of preference modeling in the
context of multicriteria decision making is to construct simple
and explainable decision models keeping sufficient flexibility
to accurately model human preferences and decision behav-
iors. In the field of multiattribute/multicriteria decision mak-
ing, the presence of possible interactions among criteria is a
source of complexity for preference modeling because it pre-
vents representing preferences by simple linear models such
as weighted arithmetic means. More sophisticated weighted
evaluation models including non-linear terms measuring the
joint benefit or penalty attached to some groups of criteria are
needed. Interactions may be represented by product terms as
in the multilinear utility model [Keeney et al., 1993], or by

∗See http://www-desir.lip6.fr/∼perny/ijcai23/appendix.pdf for
the proofs not included in the paper.

minimum or maximum operations as in the Choquet integral
[Grabisch et al., 2009], or possibly by other monotonic non-
linear factors involving several attributes or criteria.

For example, if the decision maker (DM) prefers solutions
with balanced utility vectors then one cannot simply use a
weighted arithmetic mean of type

∑n
i=1 wixi to define the

overall utility attached to a utility vector (x1, . . . , xn). For in-
stance, it would not be possible to make (0.5, 0.5) better than
(1, 0) and (0, 1) simultaneously. A simple solution in this
case may be to allocate a bonus to alternatives that perform
well on all criteria. It is sufficient to add a conjunctive term
to the weighted mean, e.g.,

∏n
i=1 xi or min{x1, . . . , xn},

weighted by a sufficiently large positive coefficient. We ob-
serve indeed that this conjunctive term takes a strictly positive
value on (0.5, 0.5) but remains null on (1,0) and (0,1). More
generally, beyond the linear part of the aggregation function,
various interaction terms could be inserted to model positive
but also negative synergies within some groups of criteria.

However, allowing the possibility of interactions in a deci-
sion model is a source of complexity in preference modeling
and preference learning due to the combinatorial nature of
these interactions. In an aggregation model involving n crite-
ria, interactions may appear in any of the 2n − n− 1 subsets
of criteria including more than one element. For n = 10
criteria it represents slightly more than 1000 possible inter-
actions to analyze. When n = 20 it already represents more
than one million possible interactions. In order to preserve
scalability in learning the interactions, a standard approach is
to reduce the combinatorial aspect of the problem by allow-
ing only a limited number of them. For example one can just
consider pairwise interactions of criteria. More generally one
could limit interactions to subsets of size k for some k signif-
icantly smaller than n. However, this prior restriction elimi-
nates very simple and natural representations of preferences
that require larger interactions. For example, in the above
example, we have shown that the introduction of a conjunc-
tive term including all criteria may be natural to promote bal-
anced solutions. Besides, another simple example is the Hur-
wicz criterion [Hurwicz, 1951] which is standardly used to
make a tradeoff between the worst and the best components.
It is defined as a convex combination of min{x1, . . . , xn}
and max{x1, . . . , xn} and therefore includes two interactions
terms. Both of them involve the entire set of criteria and can-
not be simply approximated by interactions on smaller sets.
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Here we would like to propose another approach where no
prior restriction on the possible interaction groups is made.
The useful groups will emerge from preference data with the
aim of constructing a model as simple as possible, that fits
well the preference examples. In this perspective, we con-
sider an aggregation function defined as a weighted sum of
factors made of criteria in interaction and propose a method
to learn a sparse representation of these weights.

The paper is organized as follows: In Section 2 we recall
some background on multicriteria aggregation models includ-
ing interacting components. Then in Section 3 we introduce
an approach to obtain sparse representations of interactions
by iterative reweighted least square regularization, and dual-
ization to improve the scalability of the approach. Section 4
presents some numerical tests to evaluate the performance of
the proposed approach both in terms of computation time and
generalizing performances.

2 Evaluation Models with Interacting Criteria
The general framework. In a multidimensional decision
problem, the alternatives are described with respect to n
points of views (n > 1) that must be considered in the evalua-
tion process. Depending on the decision context, these view-
points may refer to different attributes describing the alterna-
tives (multiattribute decision making), different criteria used
to compare the alternatives (multicriteria decision making),
or different individuals expressing their preferences (multi-
agent decision making). In any case, every alternative x
is described by a vector (c1(x), . . . , cn(x)) of consequences
where ci(x) represents the value of x with respect to the ith

viewpoint. Let N = {1, . . . , n} denote the index set of view-
points. Let Xi denote the set of possible consequences on the
ith viewpoint for all i ∈ N and X = X1 × . . . ×Xn the set
of all possible consequence vectors. Let ≿ be the preference
relation of the DM over X . One standard approach in prefer-
ence modeling consists of representing ≿ by a decomposable
function u on X of the form:

u(x) = F (u1(c1(x)), . . . , un(cn(x))) (1)

where ui : Xi → [0, 1], i ∈ N are marginal utility functions
representing the attractiveness of consequences ci(x) for the
DM and F : [0, 1]n → [0, 1] is an aggregation function non-
decreasing in each argument. Function u is said to represent
≿ when x ≿ y if and only if u(x) ≥ u(y). Throughout the
paper, ≻ is used to denote the asymmetric part (strict pref-
erence) of ≿ whereas ∼ denotes its symmetric part (indiffer-
ence).

Let us recall two standard examples of function u, widely
used to represent preferences in multiattribute/multicriteria
decision problems involving criteria in interaction:
Example 1. The multilinear utility model defined by:

MLv(x) =
∑
S⊆N

v(S)
∏
i∈S

ui(ci(x))
∏
i/∈S

(1− ui(ci(x))) (2)

was introduced in the context of multiattribute decision mak-
ing under risk [Keeney et al., 1993] but is also used and ax-
iomatically justified in the context of multiattribute decision
making [Dyer and Sarin, 1979] and [Grabisch, 2016, Chap.

6]. In the context of this paper, v is a set function defined
on the power set 2N and valued in the unit interval, assigning
a weight to any subset of viewpoints. Another well-known
decision model defined from a set function v is the following:

Example 2. The discrete Choquet integral

Cv(x) =
n∑

i=1

[
v(X(i))− v(X(i+1))

]
u(i)(c(i)(x)) (3)

where (.) is any permutation of N such that u(i)(c(i)(x)) ≤
u(i+1)(c(i+1)(x)) and X(i) = {(i), . . . , (n)}, i ∈ N with
x(0) = 0 and X(n+1) = ∅. For instance, if n = 3
and x is such that u2(c2(x)) ≤ u1(c1(x)) ≤ u3(c3(x)),
then Cv(x) = [v(1, 2, 3) − v(1, 3)]u2(c2(x)) + [v(1, 3) −
v(3)]u1(c1(x)) + v(3)u3(c3(x)).

The Choquet integral was initially introduced in the
context of decision making under uncertainty [Schmeidler,
1989] but is also widely used in the context of multiat-
tribute/multicriteria decision making [Grabisch, 1996; Gra-
bisch and Labreuche, 2010].

In both models (multilinear and Choquet), one can assume
that v is normalized, i.e., it satisfies boundary conditions
v(∅) = 0 and v(N) = 1. It is also generally assumed that v
is monotonic with respect to set inclusion (which guarantees
the monotonicity of u w.r.t. weak Pareto dominance). More
formally, if v(A) ≤ v(B) for all subsets A,B ⊆ N such that
A ⊆ B then ui(ci(x)) ≥ ui(ci(y)) for all i ∈ N implies
u(x) ≥ u(y) for all pairs (x, y) whether u is defined by (2)
or (3). Such monotonic set functions named capacities are
widely used in preference aggregation [Grabisch et al., 2003;
Grabisch, 2016]. The capacity provides a non-necessarily ad-
ditive weighting system (the weight of a set is not necessarily
the sum of the weights of its elements) and super-additivity
and sub-additivity are used to model positive and negative
synergies between the components of the decision model.

The capacity is a preference parameter that must be elicited
by questioning the DM or learned from preference exam-
ples. The other preference parameters used in these mod-
els are marginal utility functions ui, i ∈ N that can be ob-
tained before the identification of the capacity. In the case
of the multilinear model, marginal utilities can be elicited
using standard gamble queries under mutual utility indepen-
dence, an axiom usually assumed to justify the multilinear
model under uncertainty [Keeney et al., 1993]. They can
alternatively be derived from comparisons of preference in-
tensities under weak difference independence, an axiom usu-
ally assumed to justify the multilinear model in multicrite-
ria/multiattribute decision making [Grabisch, 2016, Chap. 6].
For the Choquet integral, the utility functions can be ob-
tained using standard sequences of tradeoff queries [Wakker
and Deneffe, 1996], or constructed with the Macbeth method
[Grabisch and Labreuche, 2010] or learned from preference
examples [Herin et al., 2022b]. We assume here that func-
tions ui have been elicited beforehand using one of the above
mentioned methods and we focus on learning the capacity
from preference examples. From now on, any alternative x
is described by the utility vector x = (x1, . . . , xn) ∈ [0, 1]n

where xi = ui(ci(x)), i ∈ N .
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Respresentations based on Möbius masses. A useful al-
ternative representation of any capacity v is given by its
Möbius transform mv defined as follows:

mv(S) =
∑

T⊆S(−1)|S\T |v(T ) with v(S) =
∑

T⊆S mv(T )

The values mv(S) are called Möbius masses. We remark that
we necessarily have

∑
T⊆N mv(T ) = 1, since v(N) = 1.

It is interesting to note that MLv(x) can be direclty defined
from Möbius masses as follows [Owen, 1975]:

MLv(x) =
∑

S⊆N mv(S)
∏

i∈S xi (4)

Similarly, Cv(x) admits several reformulations from mv
[Chateauneuf and Jaffray, 1989; Grabisch et al., 2009]:

Cv(x) =
∑

S⊆N mv(S)mini∈S{xi} conjunctive form (5)

Cv(x) =
∑

S⊆N mv̄(S)maxi∈S{xi} disjunctive form (6)

where v̄ is the conjugate of v, i.e., the capacity defined by
v̄(S) = v(N)− v(N \ S) for all S ⊆ N .

Example 3. Let N = {1, 2, 3} and v, v̄ defined on N by:

S 1 2 3 1, 2 1, 3 2, 3 1, 2, 3
v(S) 0.1 0.2 0.3 0.3 0.4 0.5 1.0
mv(S) 0.1 0.2 0.3 0.0 0.0 0.0 0.4
v̄(S) 0.5 0.6 0.7 0.7 0.8 0.9 1.0
mv̄(S) 0.5 0.6 0.7 −0.4 −0.4 −0.4 0.4

Let x = (x1, x2, x3) with x2 ≤ x1 ≤ x3. Then we have:
MLv(x) = 0.1 x1 + 0.2 x2 + 0.3 x3 + 0.4 x1x2x3 (Eq. 4)
Cv(x) = 0.1 x1 + 0.2 x2 + 0.3 x3 + 0.4 x2 (Eq. 5).

Here the disjunctive form of Cv (Eq. 6) is less interesting
because mv̄ is less sparse than mv . The converse holds for
Cv̄ . We have Cv̄(x) = 0.1x1+0.2x2+0.3x3+0.4x3 by Eq.
6 whereas the conjunctive form based on mv̄ is less compact.

In order to factorize and generalize Equations 4-6, we will
now consider a general decision model of the form:

F (x) =
∑

S⊆N mSϕS(xS) (7)

where mS are Möbius masses and ϕS aggregates the quan-
tities xi, i ∈ S to define the interaction term ϕS(xS). Thus
ϕS is the product if F is the multilinear model and ϕS is the
min (resp. max) operation if F is the conjunctive (resp. dis-
junctive) form of the Choquet integral. Note that function
F (x) reads as the following inner product F (x) = ⟨m, ϕ(x)⟩
where m = (mS)S⊆N and ϕ : Rn → R2n maps x into a non-
linear feature space: ϕ(x) = (ϕS(xS))S⊆N . Both vectors m
and ϕ(x) are indexed by the subsets S ⊆ N numbered in
lexicographic order.
Möbius masses and interactions. A capacity v is said to be
k-additive if mv(S) ̸= 0 for some S of size k and mv(S) = 0
for all S of size greater than k [Grabisch, 1997]. When v is
1-additive, all interaction terms vanish and F boils down to
a weighted arithmetic mean of components xi. When v is 2-
additive, only pairwise interactions are possible in the model
(terms of type ϕij(xi, xj) in Equation 7). Their coefficients
mv({i, j}) = v({i, j})− v({i})− v({j}) can be positive or
negative and their magnitude measures the importance of the
interaction between i and j (the gap to additivity).

It is frequently assumed that capacities are k-additive for
some k < n prior to preference analysis so as to make sure
that v admits a polynomial-size representation in terms of
Möbius masses. However, it strongly reduces the descrip-
tive power of the ML and Choquet models. For example, the
preference for balanced solutions mentioned in the introduc-
tion requires mv(N) > 0 (a bonus is given to alternatives that
perform well on all criteria) which is incompatible with k-
additivity for any k < n. In this case, a n-additive capacity is
needed without any restriction on the size of possible interac-
tions. Several measures of interaction have been proposed in
the literature to measure the magnitude of interactions within
sets of any size. For example, the Banzhaf and Shapley in-
teractions indices IB(S) and ISh(S) associated to a subset
S ⊆ N in models MLv and Cv are related to Möbius masses
mv as follows [Grabisch et al., 2009]:

IB(S) =
∑
T⊇S

mv(T )

2|T |−|S| ISh(S) =
∑
T⊇S

mv(T )

|T | − |S|+ 1

We remark that these interaction indices tend to vanish as
Möbius masses tend to 0. Thus, favouring the sparsity of
the Möbius vector m in an aggregation function defined by
Equation 7 tends to reduce the criteria interactions in the as-
sociated decision model.

Related work. As far as the identification of the capacity
used in a decision model is concerned, several approaches
based on the least squares criterion or variance minimiza-
tion of the model under preference constraints have been
proposed in the field of multicriteria analysis for the Cho-
quet integral [Grabisch et al., 2008; Grabisch and Labreuche,
2010]. In the field of machine learning different learning
algorithms have been proposed, e.g., Choquistic regression
[Tehrani and Hülermeier, 2013], support vector machines
(SVM) with Choquet kernel [Tehrani, 2021], and ridge re-
gression for Choquet regression [Kakula et al., 2020]. More-
over a neural network was recently proposed to learn a hierar-
chical Choquet model [Bresson et al., 2020]. Active learning
approaches also exists based on regret minimization [Benab-
bou et al., 2017]. Some recent contributions using regression
also exist for the multilinear model [Pelegrina et al., 2018;
Pelegrina et al., 2020].

The complexity of models involving capacities, having
in general 2n − 2 free parameters, is prohibitive for many
real-life applications. Very often, a prior complexity reduc-
tion is obtained by considering models with k-additive ca-
pacities (k = 2 being the most common choice) [Grabisch
et al., 2008; Hüllermeier and Tehrani, 2013; Galand and
Mayag, 2017; Ah-Pine et al., 2018; Bresson et al., 2020;
Pelegrina et al., 2020]. Similar restrictions exist for limit-
ing interactions with the notion of k-interactivity [Beliakov
and Wu, 2019].

A less restrictive and more flexible attempt to reduce mod-
els complexity is to derive a sparse representation of the ca-
pacity from preference data using the L1 penalty term [An-
derson et al., 2014; Adeyeba et al., 2015; Pinar et al., 2017;
de Oliveira et al., 2022] where the regularization was applied
either to the capacity, or to the interaction index. Recently,
some evidence was given that Möbius representations often
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lead to more compact preference representations and an ap-
proach based on linear programming (LP) was proposed to
learn a sparse Möbius transform of the capacity in the Cho-
quet integral [Herin et al., 2022a]. However the absence of
prior restriction on capacities comes at the expense of com-
putation times and scalability.

Our contribution in this paper is to propose a faster and
more scalable algorithm to learn sparse Möbius representa-
tions of capacities from preference examples, for the multi-
linear and Choquet models and any other instance of Eq. 7.
Our approach relies on iteratively re-weighted least squares
and dualization as explained in the next section.

3 A Dual IRLS for Sparse Preference
Learning

Our objective is to learn a sparse representation of m based
on a training set of preferences statements {(xi, yi) ∈ X 2 :
xi ≻ yi, i ∈ P} and possibly of indifference statements
{(xi, yi) ∈ X 2 : xi ∼ yi, i ∈ I}. A well-known workhorse
for learning sparse models is the L1-norm penalty. This is in-
deed a sparse-inducing penalty, in the sense that it promotes
solutions with few non-null coefficients. A major applica-
tion of this regularization is the LASSO estimate [Tibshirani,
1996] in linear regression. Then, our learning problem is to
minimize both the error on the preference examples and the
L1 norm of the Möbius vector. The L1-penalization is only
applied to the terms involving at least two criteria so as to
minimize interactions. The approximation problem is thus
formulated as follows:

(P) min
∑

i∈P ϵi +
∑

i∈I(ϵ
−
i + ϵ+i ) + λ

∑2n

j=n+1 |mj |

⟨m, ϕ(xi)⟩ − ⟨m, ϕ(yi)⟩+ ϵi ≥ δ, i ∈ P (8)

⟨m, ϕ(xi)⟩ − ⟨m, ϕ(yi)⟩+ ϵ+i − ϵ−i = 0, i ∈ I (9)
⟨m,1⟩ = 1 (10)

ϵi ≥ 0, i ∈ P, ϵ+i , ϵ
−
i ≥ 0, i ∈ I (11)

where variable mj is the jth component of vector m. The
hyper-parameter λ > 0 controls the level of regularization
and δ is a strictly positive discrimination threshold used to
separate preference from indifference situations. Variable ϵi
models the positive error made on the preference example
xi ≻ yi, while ϵ+i − ϵ−i models the signed error made on the
indifference xi ∼ yi. The constraint m(∅) = 0 is implicit.

Problem P can be solved by linear programming using the
following L1-norm linearization:

(P) min
∑
i∈P

ϵi +
∑
i∈I

(ϵ−i + ϵ+i ) + λ
∑
j>n

(w+
j + w−

j )

mj = w+
j − w−

j , j = n+ 1, . . . , 2n

w+
j , w

−
j ≥ 0, j = n+ 1, . . . , 2n

s.t. (8), (9), (10), (11)

where variables w+
j , w

−
j are used for the linearization of |mj |.

Despite a simple linearization, the obtained linear pro-
gram still drags an exponential number of variables (2n(3 −
2n) + |P | + 2|I|) and thus is hardly solvable for more than

a dozen of criteria. For the sake of scalability, we pro-
pose to solve P by solving a sequence of sub-problems Pk

that admit an efficient dual formulation. More precisely, we
use an iteratively reweighted least square (IRLS) algorithm
[Daubechies et al., 2010; Bach et al., 2012; Beck, 2015;
Grandvalet, 1998] that consists in approximating the solution
of a L1-penalized problem with a sequence of least squares
problems. Sparsity is recovered by increasingly penalizing
non significant coefficients with a squared L2 regularization.
The interest of this method lies in the fact that a least squares
problem is easy to solve in general. In our case, we will show
that the least square problem Pk admits a compact dual form
whose size is no longer exponential in n the number of crite-
ria, but linear in |P |+|I|, the number of preference examples.
More specifically, L1-optimization is linked to least squares
problems through the quadratic variational formulation of the
L1-norm [Bach et al., 2012] that allows absolute values to be
expressed as infimums of weighted squared values:∑

j>n |mj | = 1
2 minz≥0

∑
j>n(

m2
j

zj
+ zj) (12)

Using Eq. 12, we now establish Proposition 1 providing an
IRLS algorithm that approximatively solves P . The proof
relies on the framework introduced in [Beck, 2015] that
gives conditions under which an optimization problem can
be solved by alternating minimization (here on m and z) and
insights on how this algorithm can lead to IRLS sequences.
Proposition 1. Let η > 0 be a smoothing parameter. Con-
sider the sequence m(k) initialized with m(0) = 1 such that:

m(k+1) ∈ argmin
∑
i∈P

ϵi +
∑
i∈I

(ϵ−i + ϵ+i ) +
∑
j>n

λm2
j√

m
(k)
j

2 + η2

s.t. (8), (9), (10), (11)

Then we have: limk→∞ J(m(k+1))−J∗ ≤ (2n−n)η where
J is the objective function of P and J∗ its optimum. Pk refers
to the problem solved at each iteration.

Proof. Let η > 0 be a smoothing parameter and Pη the as-
sociated surrogate problem of P where the sum of absolute
values is replaced by a differentiable term:

(Pη) min
∑
i∈P

ϵi +
∑
i∈I

(ϵ−i + ϵ+i ) + λ
∑
j>n

√
m2

j + η2

s.t. (8), (9), (10), (11)

Remarking that ϵi = (δ − ⟨m, δi⟩)+ and ϵ+i − ϵ−i = ⟨m, δi⟩
at the optimum, where δi = ϕ(xi) − ϕ(yi) and (x)+ =
max(0, x) , Pη can be reformulated in an unconstrained form:

(Pη) min
∑
i∈P

(δ − ⟨m, δi⟩)+ +
∑
i∈I

|⟨m, δi⟩|

+ λ
∑
j>n

√
m2

j + η2 + 1{⟨m,1⟩=1}

with 1{⟨m,1⟩=1} = 0 if ⟨m,1⟩ = 1 and +∞ otherwise.
Then, introducing the smoothing parameter η in Eq.12 yields:

λ
∑

j>n

√
m2

j + η2 = minz≥η
2

λ
2

∑
j>n(

m2
j+η2

zj
+ zj)
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which leads to reformulate Pη as a problem involving two
blocks of variables (m, z):

(Pη) minm,z H(m, z) = g1(m) + g2(z) + f(m, z)

with


f(m, z) = λ

2

∑
j>n(

m2
j+η2

zj
+ zj)

g1(m) =
∑

i∈P (δ − ⟨m, δi⟩)+ +
∑

i∈I |⟨m, δi⟩|
+ 1{⟨m,1⟩=1}

g2(z) = 1{z≥η
2 }

Since g1, g2 are closed proper convex functions sub-
differentiable over their domains dom g1 and dom g2,
and f is convex and continuously differentiable over
dom g1 × dom g2 (and ∇zf Lispschitz continuous), this
problem fits in the class of problem solvable by alternating
minimization [Beck, 2015]. Applied on problem Pη and
initialized at m(0) this algorithm is:

z(k+1) ∈ argmin g2(z) + f(m(k), z) (13)

m(k+1) ∈ argmin g1(m) + f(m, z(k+1)) (14)

A proof of a non asymptotic sublinear convergence rate of
the alternating minimization method in this case is given in
[Beck, 2015] and guarantees:

lim
k→∞

H(m(k+1), z(k+1))−H∗ = 0 (15)

where H∗ is the minimal value of H . Since the optimization
problem in Eq. 13 has the closed form solution z

(k+1)
j =√

m
(k)
j

2 + η2, this expression can be inserted in Eq. 14
which yields the following IRLS sequence:

m(k+1) ∈ argmin g1(m) +
∑
j>n

λm2
j√

m
(k)
j

2 + η2

∈ argmin
∑
i∈P

ϵi +
∑
i∈I

(ϵ−i + ϵ+i ) +
∑
j>n

λm2
j√

m
(k)
j

2 + η2

s.t. (8), (9), (10), (11)

Let Jη denote the objective function of Pη . Using |x| ≤√
x2 + η2 ≤ |x|+ η as in [Beck, 2015], we obtain:

J(m(k+1))− J∗ = J(m(k+1))− Jη(m
(k+1))

+ Jη(m
(k+1))− J∗

η + J∗
η − J∗

≤ H(m(k+1), z(k+1))−H∗ + (2n − n)η

We conclude by passing to the limit and using Eq.15.

Proposition 1 ensures that solving problems Pk for a suf-
ficient number of iterations and a sufficiently small η pro-
vides a near-optimal solution to P . The special interest of the
IRLS method in our case is revealed when considering the
dual formulation of each problem Pk. Indeed, as in kernel-
based machine learning methods such as support vector ma-
chines [Shawe-Taylor et al., 2004; Waegeman et al., 2009;
Tehrani, 2021], one can use Lagrangian duality to obtain
a more compact mathematical programming formulation.

More precisely, since Pk is a convex problem with linear con-
straints, strong duality holds and there is no duality gap. Then
solving Pk or its dual form is equivalent. The efficiency of the
dual form of Pk is detailed in the following proposition:
Proposition 2. Problem Pk admits a dual formulation Dk

which has |P |+|I|+1 variables and 2(|P |+|I|) constraints:

(Dk) max
Γ=(α,β,µ)∈Rp+q+1

− 1

4λ
Γ⊺Q⊺Dk

−1QΓ + Γ⊺L

0 ≤ α ≤ 1

−1 ≤ β ≤ 1

where p = |P |, q = |I| and Dk is a square diago-
nal matrix of size 2n whose diagonal contains the current

weighting coefficients 1/
√

m
(k)
j

2 + η2 (and 0 for the single-
tons). Also, Q (respectively L) is a data dependent matrix
of size 2n × (p + q + 1) (respectively p + q + 1) such that{
Q = (δP, δI,1)

L = (δ,0, 1)
where δP = (δi)i∈P and δI = (δi)i∈I

are matrices of size 2n×p and 2n× q respectively and where
δ = δ(1, . . . , 1) ∈ Rp and 0 = (0, . . . , 0) ∈ Rq .
Towards higher dimensions. For a high number of criteria
n, the computation of the matrix Q⊺Dk

−1Q raises an issue
since Q and Dk have 2n columns. However, at the first it-
eration of the IRLS sequence, Dk is the identity matrix and
the matrix Q⊺Dk

−1Q = Q⊺Q can be computed in polyno-
mial time. In kernel-based machine learning, this property is
referred to as the ‘kernel trick’ [Shawe-Taylor et al., 2004].

As computing the matrix Q⊺Q requires the computation of
inner products of the form ⟨ϕ(x),ϕ(x′)⟩, the ‘kernel trick’
refers to a direct computation that does not require the calcu-
lation of vectors ϕ(x) (which are of size 2n here). A com-
putation in O(n2) is provided for the case of the Choquet
integral (ϕS(xS) = min(xS)) in [Tehrani et al., 2014]:

⟨ϕ(x),ϕ(x′)⟩ = ⟨x,x′⟩

+

n−1∑
i=1

x(i)


n−i∑
j=1

2n−i−j ·min
{
x′
(i), x

′
[j+1]i

}
where (.) is a permutation of N such that x(i) ≤ x(i+1) and
[.]i are permutations sorting each vector (x′

(i+1), . . . , x
′
(n)) by

increasing order. This formula can also be used to obtain a
polynomial computation of ⟨ϕ(x),ϕ(x′)⟩ when ϕS(xS) =
max(xS) since max(xS) = −min(−xS). In addition, we
provide a polynomial computation of the multilinear kernel
(ϕ(xS) =

∏
i∈S xi) in the following proposition:

Proposition 3 (See also [Shawe-Taylor et al., 2004]).
When ϕS(xS) =

∏
i∈S xi, we have: ⟨ϕ(x),ϕ(x′)⟩ =∑

S⊆N

∏
i∈S xi

∏
i∈S x′

i =
∏n

i=1(xix
′
i + 1)− 1.

Then ⟨ϕ(x),ϕ(x′)⟩ can be computed in O(n).
Taking into consideration these polynomial computations,

we propose to proceed to a kernelized computation of ma-
trix Q⊺Q for the first iteration of the dual IRLS method. This
provides a way to perform dimension reduction since non sig-
nificant coefficients obtained after this first iteration can be
discarded before going on.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3790



Enforcing monotonicity. Even if monotonicity constraints
on the capacity are omitted, it is likely that the learning al-
gorithm captures the monotonicity of the preference exam-
ples. It has been observed in practice with the Choquet ker-
nel SVM [Tehrani, 2021] where the learned models achieve
low monotonicity violation rates. However, if for norma-
tive reasons, we must guarantee that monotonicity w.r.t weak
Pareto-dominance holds for all possible alternatives, hard
monotonicity constraints must be put on the capacity. For
n criteria, there are C(n) =

∑n
k=1 k

(
n
k

)
monotonicity con-

straints that read in terms of Möbius masses, as follows:∑
T⊆S,T∋i mT ≥ 0, ∀i ∈ S, ∀S ⊆ N . Including in

P this set of constraints induces a dual problem Dk with
|P | + |I| + 1 + C(n) variables. Thus the dualization ben-
efit is lost and one may prefer a direct solving of P with LP.
Still, the exponential number of variables is an obstacle to
scalability and it gets even worse when an exponential num-
ber of constraints is added. Hence we propose to handle the
monotonicity constraints throughout a generation constraint
algorithm that allows an optimal solution to be reached while
incorporating only a small portion of the entire set of con-
straints [Jünger et al., 1993]. The algorithm is initialized with
a solution of P found without monotonicity constraints. Then
we iteratively insert the constraints violated in the current so-
lution. The next section presents numerical evidences of the
benefits of the proposed method.

4 Numerical Tests
In this section we present the results of numerical tests per-
formed on synthetic preference data. We test the ability of our
algorithm (denoted D-IRLS for dual IRLS) to learn a multi-
linear model or a Choquet integral for a growing number of
criteria. We compare it to an exact solving of P with LP (de-
noted ES). Preference data are generated through randomly
drawn sparse Möbius vectors m (verifying monotonicity con-
straints) and utilities vectors x, y are uniformly drawn within
[0, 1]n. The overall values u(x) and u(y) are computed and
perturbated with a Gaussian noise (σ = 0.03) before being
classified as preference or indifference training examples. We
set the size of the training sets to |P | + |I| = 500 and of the
test sets to |P | = 1000. The regularization parameter λ is set
to λ = 1. All tests are conducted on a 2.8 GHz Intel Core
i7 processor with 16GB RAM and we used the mathematical
programming Gurobi solver (version 9.1.2). For the D-IRLS
method, the smoothing parameter is set to η = 10−50 and
the algorithm terminates when ∥m(k+1) − m(k)∥2 ≤ 10−3.
Also, coefficients with absolute values smaller than 10−5 are
discarded at each iteration.

Training time and generalizing performance. In the first
experiment, we generate 10 training/test sets and evaluate the
average training time of both algorithms as well as the gener-
alizing performances of the learned models (average prefer-
ence inversion on a test set). In order to evaluate the scalabil-
ity of our method we vary the number of criteria from n = 7
to n = 22. Figure 1 shows the results for the learning of
the multilinear model (1a,1b) and for the Choquet integral in
its conjunctive form (1c,1d). We observe that for both deci-
sion models ES does not provide any solution after n = 17.

n C̃(n) C(n) Time ESG Time ESC

6 3.2±6.4 192 0.6±0.2 0.6±0.1
9 2.4±7.2 2304 4.2±1.9 18.0±4.6
12 151.9±222.2 24576 61.0±30.4 1212.6±247.6
15 2777.6±4326.5 245760 3448.6±5613.1 -

Table 1: C(n),C̃(n) and training times for ESG and ESC.

However D-IRLS allows more than 4 millions of coefficients
(n = 22) to be learned in less than 450 seconds. In contrast
we observe that the generalizing performances of the learned
decision models obtained with D-IRLS and ES are compa-
rable. Since the number of training preference examples is
constant, the test error globally increases with the number of
criteria for both methods. Finally, we can notice that the test
errors obtained for the learning of MLv are higher than the
one obtained for the learning of Cv .

Enforcing monotonicity. In a second experiment, we as-
sess the computational efficiency of the constraint generation
algorithm used to guarantee monotonicity. We use the same
experimental setting as above and let n vary from 6 to 15.
We compare the exact solving of P under all monotonicity
constraints (denoted ESC) with the exact solving of P with
constraint generation (denoted ESG). Both are solved using
LP. In Table 1 we compare C(n) the total number of mono-
tonicity constraints in ESC, and C̃(n) the average number of
constraints generated in ESG. We observe that ESC (includ-
ing all contraints) is slower than ES and limited to n = 12.
ESG performs significantly better (up to 15 criteria) due to
the progressive introduction of monotonicity constraints. We
observe that only a small fraction of the entire set of mono-
tonicity constraints are inserted before reaching an optimal
and fully monotonic capacity.

Comparison with k-additive models. The advantage of
using sparse models with possible large interactions instead
of k-additive models is illustrated in Table 2 where we com-
pare our method (D-IRLS) to an exact solving of P with
k-additivity constraints for k = 2 (2-add) and k = 3 (3-
add), still under the same experimental setting. The general-
izing performance is significantly improved while computa-
tion times remain admissible (and even better for a large n).

Test Error Training time

n D-IRLS 2-add 3-add D-IRLS 2-add 3-add

8 0.04 0.10 0.06 28.22 1.33 1.40
12 0.04 0.17 0.23 122.53 20.96 21.34
16 0.06 0.22 0.49 187.79 345.13 346.78

Table 2: Average test error and training time over 10 simulations.

Mixing different models of interactions. Preference
learning produces an instance of model F (x) defined by Eq.
7. Möbius coefficients mS are learned for any given mono-
tonic function ϕS defining the nature of interaction terms.
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(a) (b)

(c) (d)

Figure 1: Mean training time and test error boxplot for D-IRLS and ES with multilinear (top) and Choquet Integral (bottom) model.

Several interaction functions may coexist in the same model
with a possible benefit in terms of sparsity. As an illustration,
we randomly draw preference examples (noised) based on the
Hurwicz criterion: h(x) = 1

2 (mini∈N{xi}+maxi∈N{xi}).
Although the min (resp. max) term admits a sparse represen-
tation in the conjunctive form (Eq. 5) of the Choquet integral
(resp. disjunctive form, Eq. 6) this is not the case of h(x) that
includes both terms. This suggests extending the model de-
fined in Eq. 7 to include simultaneously several instances of
ϕS (like min and max). If we write v = v∧+v∨ with (v∧,v∨)
two sub-normalized capacities, we have Cv(x) = Cv∧(x) +
Cv∨(x). Then using the conjunctive form for Cv∧(x) and
the disjunctive form for Cv∨(x) we obtain: Cv(x) =∑

S⊆N (mv∧(S)mini∈S{xi}+mv̄∨(S)maxi∈S{xi}). Then
we compute a sparse representation of Cv possibly includ-
ing both conjunctive and disjunctive terms by solving a
variant of problem P using the double penalization term
λ∧

∑
j>n |mv∧(j)| + λ∨

∑
j>n |mv̄∨(j)| under the normal-

ization constraint
∑

S⊆N (mv∧(S) +mv̄∨(S)) = 1. On Fig-
ure 2 we provide the regularization path obtained for increas-
ing values of λ∧ = λ∨. As expected, a model including only
two factors (min and max) is progressively emerging.

5 Conclusion
We have addressed the problem of preference learning with
interacting criteria by considering a large class of capacity-
based decision models including the multilinear utility and
the Choquet integral, known for their expressiveness. We
proposed a unified approach to learn the models of this class

based on the search of sparse Möbius representations of ca-
pacities, leading to simple models with sparse interaction pat-
terns. This approach applies to instances possibly involving
more than 20 criteria and allows the most significant inter-
action factors to be identified within millions of possibilities.
This represents a significant improvement compared to previ-
ous approaches limited to a dozen of criteria. Moreover, the
sparsity pattern is revealed from preference examples instead
of resulting from a prior cardinality-based simplification of
interactions, which greatly enhances the descriptive possibil-
ities. The main directions to extend this work are 1) going
further in scalability (a larger use of kernels is worth inves-
tigating) and 2) extending the approach to learn interaction
functions ϕS from preference data (model selection problem).

Figure 2: Selection path for the learning of the Hurwicz model.
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[Hüllermeier and Tehrani, 2013] Eyke Hüllermeier and
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