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Abstract

The scarcity of labeled data is a long-standing chal-
lenge for many machine learning tasks. We propose
our gradient flow method to leverage the existing
dataset (i.e., source) to generate new samples that
are close to the dataset of interest (i.e., target). We
lift both datasets to the space of probability distri-
butions on the feature-Gaussian manifold, and then
develop a gradient flow method that minimizes the
maximum mean discrepancy loss. To perform the
gradient flow of distributions on the curved feature-
Gaussian space, we unravel the Riemannian struc-
ture of the space and compute explicitly the Rieman-
nian gradient of the loss function induced by the
optimal transport metric. For practical applications,
we also propose a discretized flow, and provide con-
ditional results guaranteeing the global convergence
of the flow to the optimum. We illustrate the re-
sults of our proposed gradient flow method on sev-
eral real-world datasets and show our method can
improve the accuracy of classification models in
transfer learning settings.

1 Introduction
A major challenge in many data science applications is the
scarcity of labeled data. Data augmentation methods have been
studied in the literature; see for example, the noise injection
methods [Moreno-Barea et al., 2018], generative models [Yi
et al., 2019], and [Shorten and Khoshgoftaar, 2019] for a
survey. We consider a setting where one domain has only
a few labeled samples for each class, so we cannot train a
well-performing classifier with the available data. To allevi-
ate the data scarcity problem in this setting, we propose to
enrich the target dataset by generating additional labeled sam-
ples. Using generative models is not possible in our setting
because they usually require more than a few samples for each
class to learn and generate high-quality new samples [Gao
et al., 2018]. In our work, we choose a source dataset with
extensive labeled data and then flow the labeled data to the
target dataset. Precisely, we introduce a novel data augmen-
tation methodology based on a gradient flow approach that
minimizes the maximum mean discrepancy (MMD) distance

between the target and the augmented data. Therefore, when
minimizing the MMD distance, we are able to obtain an effi-
cient scheme which generates additional labeled data from the
target distribution. Our scheme is model-independent and can
be applied to any datasets regardless of the number of classes
or dimensionality1.

Mathematically, we consider a feature space X = Rm and
a categorical label space Y . We have a source domain dataset
consisting of N samples (xi, yi) ∈ X × Y for i = 1, . . . , N ,
and a target domain dataset of M samples (x̄j , ȳj) ∈ X × Y
for j = 1, . . . ,M(M ≪ N). The ultimate goal of this paper
is to generate new samples in the target domain, and we aim to
generate new samples whose distribution is as close as possible
to the distribution that governs the target domain.

We here introduce a gradient flow method [Arbel et al.,
2019; Mroueh et al., 2019] to synthesize new, unseen data
samples. Gradient flow is a continuous flow along the path
where a considered loss function decreases its value. Because
we have extensive source domain samples, it is possible to flow
each source sample towards the target data while minimizing
the loss function. The terminal product of the flow will be
new samples that can sufficiently approximate the distribution
of the target domain. Thus, gradient flow is an approach to
synthesize new target domain samples, and is a complement
to data augmentation methods, like adding random noise.

Unfortunately, formulating a gradient flow algorithm for la-
beled data with categorical set Y is problematic. Indeed, there
is no clear metric structure on Y in order to define the topologi-
cal neighborhood, this in turn leads to the difficulty of forming
the gradients with respect to the categorical component. To
overcome this difficulty, we lift each individual label to a
richer structure. For example, a label such as “0” is replaced
by a mean vector and a covariance matrix based on the whole
distribution of the information associated to this particular la-
bel. Then it will be much more natural to apply gradient flow
algorithms in the space of the lifted representation. A gradient
flow on the dataset space with this idea was recently proposed
in [Alvarez-Melis and Fusi, 2021] by leveraging a new notion
of distance between datasets in [Alvarez-Melis and Fusi, 2020;
Courty et al., 2017; Damodaran et al., 2018]. The main idea
behind this approach is to reparametrize the categorical space

1Our code and supplementary are available at https://github.com/
LucyXH/Dynamic Flows Curved Space/
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Y using the conditional distribution of the features, which is
assumed to be Gaussian, and then construct a gradient flow
on the feature-Gaussian space. Nevertheless, the theoretical
analysis in [Alvarez-Melis and Fusi, 2021] focuses solely on
the gradients with respect to the feature with no treatment of
the flow with respect to the Gaussian component. In fact, the
space of Gaussian distributions is not a (flat) vector space, and
extracting gradient information depends on the choice of the
metric imposed on this Gaussian space. On the other hand, our
method computes the full gradient with respect to the Gaussian
component (the mean and covariance matrix component that
correspond to the label component).

Our gradient flows minimize the MMD loss function,
thus it belongs to the family of MMD gradient flows that
was pioneered in [Mroueh et al., 2019; Arbel et al., 2019],
and further extended in [Mroueh and Nguyen, 2021]. The
MMD function compares two distributions via their kernel
mean embeddings on a flat reproducing kernel Hilbert space
(RKHS). In contrast to the Kullback-Leibler divergence flow,
the MMD flow can employ a sample approximation for the
target distribution [Liu, 2017]. Further, the squared MMD
possesses unbiased sample gradients [Bińkowski et al., 2018;
Bellemare et al., 2017]. While existing literature on MMD
flows focus on distributions on flat Euclidean spaces, the flow
developed in our paper is for distributions on a curved Rie-
mannian feature-Gaussian space. Moreover, our approach is
distinctive from the flow in [Alvarez-Melis and Fusi, 2021] be-
cause we impose a specific metric on the Gaussian component,
and we compute explicitly the Riemannian gradient of the
MMD loss function with respect to this metric to formulate
our flow. Table 1 compares our work with two recent papers
on gradient flow in theory and numerical experiments.

Recently, generative models [Rezende et al., 2016; Wang
et al., 2021] are successful in generating image samples from
given distributions. The most important difference with our
method is that generative models learn a prior distribution from
massive data that are similar to the target data and generate new
target samples conditioning on the prior distribution [Wang
et al., 2020; Gao et al., 2018]. Comparatively, our algorithm
can transfer between two non-similar and non-related distribu-
tions, for example, from random Gaussian noise to MNIST in
Supplementary B.8. Another benefit of our method is that we
provide conditions for global convergence of our algorithms in
Section 4, whereas generative models or more specific, gener-
ative adversarial networks (GANs), currently do not guarantee
global convergence [Wiatrak et al., 2019].

The application of our gradient flow is few-shot transfer
learning, where we want to train classifiers with limited la-
beled data in the target domain. The numerical experiments
in Section 5 demonstrate that our gradient flows can effec-
tively augment the target data, and thus can significantly
boost the accuracy in the classification task in the few-shot
learning setting. Moreover, we run experiments on Tiny
ImageNet datasets to highlight that our algorithm is scal-
able to higher-dimensional image data, that is higher than
recent gradient flow works [Alvarez-Melis and Fusi, 2021;
Fan and Alvarez-Melis, 2022]. We also compare our method
with [Alvarez-Melis and Fusi, 2021], mixup method [Zhang
et al., 2017], and traditional data augmentation methods in

Supplementary B.7, which show that our method improves the
accuracy in transfer learning more than these methods.

Some works study nonparametric gradient flows using the
2-Wasserstein distance between distributions [Ambrosio et
al., 2008; Jordan et al., 1998; Otto, 2001; Villani, 2008;
Santambrogio, 2015; Santambrogio, 2017; Frogner and Pog-
gio, 2020], but only for distributions on Euclidean spaces and
different metrics. Nonparametric gradient flows with other
metrics include Sliced-Wasserstein Descent [Liutkus et al.,
2019], Stein Descent [Liu, 2017; Liu and Wang, 2016], and
Sobolev Descent [Mroueh et al., 2019], but only for distri-
butions on Euclidean spaces. In particular, [Liu, 2017] in-
troduce Riemannian structures for the Stein geometry on flat
spaces, while ours is on a curved space. Parametric flows
for training GANs are studied in [Chizat and Bach, 2018;
Arbel et al., 2020; Mroueh and Nguyen, 2021].

Contributions. We study a gradient flow approach to synthe-
size new labeled samples related to the target domain. To con-
struct this flow, we consider the space of probability distribu-
tions on the feature-Gaussian manifold, and we are metrizing
this space with an optimal transport distance. We summarize
the contributions of this paper as follows.

• We study in details the Riemannian structure of the feature-
Gaussian manifold in Section 3, as well as the Riemannian
structure of the space of probability measures supported on
this manifold in Supplementary A.1.

• We consider a gradient flow that minimizes the squared
MMD loss function to the target distribution. We describe
explicitly the (Riemannian) gradient of the squared MMD
in Lemma 5, and we provide a partial differential equation
describing the evolution of the gradient flow that follows
the (Riemannian) steepest descent direction.

• We propose two discretized schemes to approximate the
continuous gradient flow equation in Section 4.1 and 4.2.
We provide conditions guaranteeing the global convergence
of our gradient flows to the optimum in both schemes.

• In Section 5, we demonstrate numerical results with our
method on real-world image datasets. We show that our
method can generate high-fidelity images and improve the
classification accuracy in transfer learning settings.

Notations. We use Sn to denote the set of n × n real and
symmetric matrices, and Sn++ ⊂ Sn consists of all positive
definite matrices. For A ∈ Sn, tr(A) :=

∑
i Aii. We use ⟨·, ·⟩

and ∥ · ∥2 to denote the standard inner product and norm on
Euclidean spaces. LetP(X) be the collection of all probability
distributions with finite second moment on metric space X .
If φ : X → Y is a Borel map and ν ∈ P(X), then the push-
forward φ#ν is the distribution on Y given by φ#ν(E) =
ν(φ−1(E)) for all Borel sets E ⊂ Y . For a function f of
the continuous time variable t, ft denotes the value of f at t
while ∂tf denotes the standard derivative of f w.r.t. t. Also,
δz denotes the Dirac delta measure at z.

All proofs are provided in the Supplementary material.
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Paper Dataset On curved Riemannian space Gradient has mean
and covariance component

[Alvarez-Melis and Fusi, 2021] synthetic, *NIST, and CIFAR10
[Arbel et al., 2019] synthetic
Ours synthetic, *NIST, and TinyImageNet ✓ ✓

Table 1: To the best of our knowledge, we provide the first results on the full gradient of the features and lifted labels on a curved Riemannian
space. We also conduct numerical experiments on the highest-dimension real-world datasets.

2 Labeled Data Synthesis via Gradient Flows
of Lifted Distributions

In this section, we describe our approach to synthesize target
domain samples using gradient flows. A holistic view of our
method is presented in Fig. 1.

In the first step, we would need to lift the feature-label
space X × Y to a higher dimensional space where a met-
ric can be defined. Consider momentarily the source data
samples (xi, yi)

N
i=1. Notice that this data can be represented

as an empirical distribution ν on X × Y . More precisely,
we have ν = N−1

∑N
i=1 δ(xi,yi). As Y is discrete, the

law of conditional probabilities allows us to dis-integrate
ν into the conditional distributions νy of X|Y = y satis-
fying ν(E × F ) =

∫
F
νy(E)ν2(dy) for every E ⊂ X and

F ⊂ Y , where ν2 := N−1
∑N

i=1 δyi
is the second marginal

of ν [Ambrosio et al., 2008, Theorem 5.3.1]. The lifting
procedure is obtained by employing a pre-determined map-
ping ϕ : X → Rn, and any categorical value y ∈ Y can
now be represented as an n-dimensional distribution ϕ#νy.
Using this lifting, any source sample (xi, yi) ∈ X × Y is
lifted to a point (xi, ϕ#νyi) ∈ X × P(Rn) and the source
dataset is representable as an empirical distribution of the
form N−1

∑N
i=1 δ(xi,ϕ#νyi

).
The lifted representation of a categorical value y ∈ Y as

an n-dimensional distribution ϕ#νy ∈ P(Rn) is advanta-
geous because P(Rn) is metrizable, for example, using the
2-Wasserstein distance. The downside is that P(Rn) is infinite
dimensional, and encoding the datasets in this lifted representa-
tion is not efficient. To resolve this issue, we assume that ϕ#νy
is Gaussian for all y ∈ Y , and thus any distribution ϕ#νy can
be characterized by the mean vector µy ∈ Rn and covariance
matrix Σy ∈ Sn++ defined as µy =

∫
X ϕ(x)νy(dx) and Σy =∫

X
[
ϕ(x) − µy

][
ϕ(x) − µy

]⊤
νy(dx) for all y ∈ Y , where

⊤ denotes the transposition of a vector. In real-world set-
tings, the conditional moments of ϕ(X)|Y are sufficiently
different for y ̸= y′, and thus the representations using
(µy,Σy) will unlikely lead to any loss of label information.
With this lifting, the source data thus can be represented
as an empirical distribution ρ0 on Rm × Rn × Sn++ via
ρ0 = N−1

∑N
i=1 δ(xi,µyi

,Σyi
). By an analogous construc-

tion to compute µ̄y and Σ̄y using the target data, the target
domain data (x̄j , ȳj)

M
j=1 can be represented as another empiri-

cal distribution ϱ = M−1
∑M

j=1 δ(x̄j ,µ̄ȳj
,Σ̄ȳj

). Let us denote

the shorthand Z = Rm × Rn × Sn++, then ρ0 and ϱ are both
probability measures on Z . We refer to ρ0 and ϱ as the feature-

Gaussian representations of the source and target datasets.
We now consider the gradient flow associated with the opti-

mization problem

min
ρ∈P(Z)

{
F(ρ) := 1

2
MMD(ρ, ϱ)2

}
under the initialization ρ = ρ0. The objective function F(ρ)
quantifies how far an incumbent solution ρ is from the target
distribution ϱ, measured using the MMD distance. In Sec-
tions 3 and 4, we will provide the necessary ingredients to
construct this flow.

Suppose that after T iterations of the discretized gradient
flow algorithm, we obtain a distribution ρT ∈ P(Z) that is
sufficiently close to ϱ, i.e., F(ρT ) is close to zero. Then we
can recover new target labels by projecting the samples of the
distribution ρT to the locations on X × Y . This projection
can be computed efficiently by solving a linear optimization
problem, as discussed in Supplementary B.3.
Remark 1 (Reduction of dimensions). If m = n and ϕ is the
identity map, then our lifting procedure coincides with that
proposed in [Alvarez-Melis and Fusi, 2020]. However, a large
n is redundant, especially when the cardinality of Y is low. If
n≪ m, then ϕ offers significant reduction in the number of
dimensions, and will speed up the gradient flow algorithms.
Remark 2 (Generalization to elliptical distributions). Our
framework can be extended to the symmetric elliptical distri-
butions because the Bures distance for elliptical distributions
admits the same closed-form as for the Gaussian distributions
[Gelbrich, 1990]. In this paper, we use ϕ as the t-SNE em-
bedding. According to [van der Maaten and Hinton, 2008],
t-SNE’s low-dimensional embedded space forms a Student-t
distribution, which is an elliptical distribution.

3 Riemannian Geometry of Z and P(Z)
If we opt to measure the distance between two Gaussian distri-
butions using the 2-Wasserstein metric, then this choice would
induce a natural distance d on the space Z = Rm×Rn×Sn++
prescribed as

d
(
(x1, µ1,Σ1), (x2, µ2,Σ2)

)
:=
[
∥x1 − x2∥22 + ∥µ1 − µ2∥22 + B(Σ1,Σ2)

2
] 1

2 , (3.1)

where B is the Bures metric on Sn++ given by B(Σ1,Σ2) :=[
tr(Σ1 +Σ2 − 2[Σ

1
2
1 Σ2Σ

1
2
1 ]

1
2 )
] 1

2 .
As B is a metric on Sn+ [Bhatia et al., 2019, p.167], d

is hence a product metric on Z . In this section, first, we
study the non-Euclidean geometry of Z under the ground
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Figure 1: Schematic view of our approach: The source and target datasets are first lifted to distributions ρ0 and ϱ on the feature-Gaussian space
(left box). We then run a gradient flow for T iterations to get a terminal distribution ρT (middle). Atoms of ρT are projected to get labeled
target samples (right).

metric d. Second, we investigate the Riemannian structure on
P(Z), the space of all distributions supported on Z and with
finite second moment, that is induced by the optimal transport
distance. These Riemannian structures are required to define
the Riemannian gradients of any loss functionals on P(Z),
and will remain important in our development of the gradient
flow for the squared MMD.

The space Z is not a linear vector space. In this section, we
reveal the Riemannian structure on Z associated to the ground
metric d. As we shall see, Z is a curved space as its geodesics
are not straight lines and involve solutions to the Lyapunov
equation. For any positive definite matrix Σ ∈ Sn++ and any
symmetric matrix V ∈ Sn, the Lyapunov equation

HΣ+ ΣH = V (3.2)

has a unique solution H ∈ Sn [Bhatia, 1997, Theo-
rem VII.2.1]. Let LΣ[V ] denote this unique solution H .

The space Sn++ is a Riemannian manifold with the Bures
metric B as the associated distance function, see [Takatsu,
2011, Proposition A]. Since Z is the product of two Euclidean
spaces and Sn++, this gives rise to the following geometric
structure for Z .

Proposition 3 (Geometry ofZ). The spaceZ is a Riemannian
manifold: at each point z = (x, µ,Σ) ∈ Z , the tangent space
is TzZ = Rm × Rn × Sn and the Riemannian metric is〈

(w1, v1, V1), (w2, v2, V2)
〉
z

:= ⟨w1, w2⟩+ ⟨v1, v2⟩+ ⟨V1, V2⟩Σ (3.3)

for two tangent vectors (w1, v1, V1) and (w2, v2, V2) in Rm×
Rn × Sn, where ⟨V1, V2⟩Σ := tr

(
LΣ[V1] ΣLΣ[V2]

)
. More-

over, the distance function corresponding to this Riemannian
metric coincides with the distance d given by (3.1).

As Z is a product Riemannian manifold, any geodesic in Z
is of the form (θ, γ,Γ) with θ, γ being the Euclidean geodesics
(straight lines) and Γ being a geodesic in the Riemannian
manifold Sn++. More precisely, for each Σ ∈ Sn++ and each
tangent vector V ∈ Sn, the geodesic in the manifold Sn++
emanating from Σ with direction V is given by

Γ(t) = (I + tLΣ[V ])Σ(I + tLΣ[V ]) for t ∈ J∗, (3.4)

where J∗ is the open interval about the origin given by J∗ =
{t ∈ R : I + tLΣ[V ] ∈ Sn++} [Malagò et al., 2018]. As a
consequence, for each point (x, µ,Σ) ∈ Z and each tangent

vector (w, v, V ) ∈ Rm×Rn×Sn, the Riemannian exponential
map in Z for t ∈ J∗ is given by

exp(x,µ,Σ)(t(w, v, V )) := (θ(t), γ(t),Γ(t)). (3.5)

where θ(t) := x + tw, γ(t) := µ + tv, and Γ(t) is defined
by (3.4). By definition, t 7→ exp(x,µ,Σ)(t(w, v, V )) is the
geodesic emanating from (x, µ,Σ) with direction (w, v, V ).

Given the Riemannian metric (3.3), one can define the cor-
responding notion of gradient and divergence [Lee, 2003]. For
a differentiable function φ : Z → R, its gradient ∇̃dφ(z)
w.r.t. the metric d defined by (3.1) is the unique element in the
tangent space Rm × Rn × Sn satisfying〈

∇̃dφ(z), (w, v, V )
〉
z
= Dφz(w, v, V )

for all (w, v, V ) ∈ Rm×Rn×Sn with Dφz(w, v, V ) denoting
the standard directional derivative of φ at z in the direction
(w, v, V ). By exploiting the special form of ⟨·, ·⟩z in (3.3), we
can compute ∇̃dφ(z) explicitly:
Lemma 4 (Gradients). For a differentiable function φ : Z →
R, we have for z = (x, µ,Σ) that

∇̃dφ(z) =
(
∇xφ(z), ∇µφ(z), 2[∇Σφ(z)]Σ + 2Σ[∇Σφ(z)]

)
,

(3.6)
where (∇x,∇µ,∇Σ) are the standard (Euclidean) gradients
of the respective components.

The last component in formula (3.6) for ∇̃dφ reflects the
curved geometry of Z , and can be interpreted as the Rieman-
nian gradient of the function Σ 7→ φ(x, µ,Σ) w.r.t. the Bures
distance B.

For a continuous vector field Φ : Z → Rm×Rn×Sn and a
distribution ρ ∈ P(Z), the divergence divd(ρΦ) is the signed
measure on Z satisfying the integration by parts formula∫

Z
φ(z) divd(ρΦ)(dz) = −

∫
Z
⟨Φ(z), ∇̃dφ(z)⟩z ρ(dz)

for every differentiable function φ : Z → R with compact
support. In case ρ has a density w.r.t. the Riemannian volume
form on Z , then this definition coincides with the standard
divergence operator induced by Riemannian metric (3.3). The
optimal transport distance and its induced Riemannian metric
on the space P(Z) are relegated to Supplementary A.1.

4 Gradient Flow for Maximum Mean
Discrepancy

As P(Z) is an infinite dimensional curved space, many ma-
chine learning methods based on finite dimensional or linear
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structure cannot be directly applied to this manifold. To cir-
cumvent this problem, we use a positive definite kernel to map
P(Z) to a RKHS and then perform our analysis on it. Let k
be a positive definite kernel on Z , and let H be the RKHS
generated by k. The inner product onH is denoted by ⟨·, ·⟩H,
and the kernel mean embedding ρ ∈ P(Z) 7−→mρ(·) ∈ H is
given by mρ(z) :=

∫
Z k(z, w) ρ(dw) for z in Z . The MMD

[Gretton et al., 2012] between ρ ∈ P(Z) and the target ϱ is
defined as the maximum of the mean difference between the
two distributions over all test functions in the unit ball of H
(see Supplementary A.3). Moreover, it can be expressed by
MMD(ρ, ϱ) = ∥mρ −mϱ∥H. When k is characteristic, the
kernel mean embedding ρ 7→ mρ is injective and therefore,
MMD(ρ, ϱ) = 0 if and only if ρ = ϱ.

Consider the loss function F [ρ] := 1
2MMD(ρ, ϱ)2 =

1
2∥mρ − mϱ∥2H. As explained in the introduction, there
are three advantages of MMD over Kullback-Leibler diver-
gence: its associated gradient flow can employ a sample
approximation for the target distribution, the input distribu-
tion ρ does not have to be absolutely continuous w.r.t. the
target distribution ϱ, and the squared MMD possesses unbi-
ased sample gradients. For each ρ, the Riemannian gradient
gradF [ρ] is defined as the unique element in TρP(Z) satisfy-

ing gρ(gradF [ρ], ζ) = d
dt

∣∣∣
t=0
F [ρt] for every differentiable

curve t 7→ ρt ∈ P(Z) passing through ρ at t = 0 with tangent
vector ∂tρt|t=0 = ζ. By using the Riemannian metric tensor
(eq. A.3), we can compute explicitly this gradient.

Lemma 5 (Gradient formula). The Riemannian gradient of F
satisfies gradF [ρ] = −divd

(
ρ∇̃d[mρ −mϱ]

)
.

The Riemannian gradient gradF on P(Z) depends not
only on the gradient operator ∇̃d but also on the divergence
operator. Using Lemma 5, we can rewrite the gradient flow
equation ∂tρt = −gradF [ρt] explicitly as

∂tρt = divd
(
ρt∇̃d[mρt

−mϱ]
)

for t ≥ 0. (4.1)

The next result exhibits the rate at which F decreases its
value along the flow.

Proposition 6 (Rate of decrease). Along the gradient flow
t 7→ ρt ∈ P(Z) given by (4.1), we have

d

dt
F [ρt] = −

∫
Z

∥∥∇̃d[mρt
−mϱ]

∥∥2
z
ρt(dz) for t ≥ 0.

Proposition 6 implies that d
dtF [ρt] = 0 if and only if

∇̃d[mρt − mϱ](z) = 0 for every z in the support of the
distribution ρt. Thus, the objective function will decrease
whenever the gradient ∇̃d[mρt

−mϱ] is not identically zero.

4.1 Riemannian Forward Euler Scheme
We propose the Riemannian version of the forward Euler
scheme to discretize continuous flow (4.1):

ρτ+1 = exp(sτΦ
τ )#ρ

τ

with Φτ := −∇̃d[mρτ −mϱ],
(4.2)

where sτ > 0 is the step size. Here, for a vector field
Φ = (Φ1,Φ2,Φ3) : Z → Rm × Rn × Sn and for ε ≥
0, exp(εΦ) : Z → Z is the Riemannian exponential map
induced by (3.5), i.e., for z = (x, µ,Σ) ∈ Z:

expz(εΦ(z))=

(
x+ εΦ1(z)
µ+ εΦ2(z)

(I + εLΣ[Φ3(z)])Σ(I + εLΣ[Φ3(z)])

)
.

Notice in the above equation that the input z affects si-
multaneously the bases of the exponential map expz as
well as the direction Φ(z). This map is the ε-perturbation
of the identity map along geodesics with directions Φ.
When ρτ = N−1

∑N
i=1 δzτ

i
is an empirical distribution,

scheme (4.2) flows each particle zτi to the new position
zτ+1
i = expzτ

i
(sτΦ(z

τ
i )). The next lemma shows that Φτ

is the steepest descent direction for F w.r.t. the exponential
map among all directions in the space L2(ρτ ), which is the
collection of all vector fields Φ on Z satisfying ∥Φ∥2L2(ρτ )

:=∫
Z ∥Φ(z)∥

2
zρ

τ (dz) <∞.
Lemma 7 (Steepest descent direction). Fix a distribution
ρτ ∈ P(Z). For any vector field Φ : Z → Rm × Rn × Sn,
we have
d
dε

∣∣∣
ε=0
F [exp(εΦ)#ρτ ] =

∫
Z⟨∇̃d[mρτ −mϱ](z),Φ(z)⟩z ρτ (dz).

If Φ̂τ is the unit vector field (w.r.t. the ∥ · ∥L2(ρτ ) norm) in the
direction of Φτ given in (4.2), then

d

dε

∣∣
ε=0
F [exp(εΦ̂τ )#ρ

τ ] = −∥∇̃d[mρτ −mϱ]∥L2(ρτ )

and this is the fastest decay rate among all unit directions Φ
in L2(ρτ ).

It follows from Lemma 7 that the discrete scheme (4.2) sat-
isfies the Riemannian gradient descent property: if ∇̃d[mρτ −
mϱ] is nonzero and if sτ > 0 is chosen sufficiently small, then
F [ρτ+1] < F [ρτ ]. In Proposition 14 in the Supplementary,
we quantify the amount of decrease of F at each iteration. Al-
gorithm 1 implements the flow (4.2) iteratively. Each iteration
in Algorithm 1 has complexity O(N(Nm+ n3)), where m is
the feature’s dimension, n is the reduced dimension (n≪ m),
N is the number of particles.
Convergence. We now study the (weak) convergence of
the solution ρt of the continuous gradient flow (4.1), as well
as the discretized counterpart ρτ of flow (4.2), to the target
distribution ϱ. When the kernel k is characteristic, this con-
vergence is equivalent to limt→∞ MMD(ρt, ϱ) = 0. Because
the objective function F is not displacement convex [Arbel
et al., 2019, Section 3.1], the convergent theory for gradient
flows in [Ambrosio et al., 2008] does not apply even in the
case of Euclidean spaces. In general, there is a possibility that
MMD(ρt, ϱ) does not decrease to zero as t → ∞. In view
of Proposition 6, this happens if the solutions ρt are trapped
inside the set

{
ρ :

∫
Z

∥∥∇̃d[mρ −mϱ]
∥∥2
z
ρ(dz) = 0

}
. For

each distribution ρ on Z , we define in Supplementary A.3 a
symmetric linear and positive operator Kρ : H → H with the
property that ⟨Kρ[mρ −mϱ],mρ −mϱ⟩H =

∫
Z

∥∥∇̃d[mρ −
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Algorithm 1 Discretized Gradient Flow Algorithm for
Scheme (4.2)

1: Input: a source distribution ρ0 = N−1
∑N

i=1 δz0
i
, a target

distribution ϱ = M−1
∑M

j=1 δz̄j , a number of iterations
T , a sequence of step sizes sτ > 0 with τ = 0, 1, ..., T
and a kernel k

2: Initialization: Compute Ψ̄(z)=M−1
∑M

j=1 ∇̃1
dk(z, z̄j)

with ∇̃1
dk(z, z̄j) is ∇̃d of z 7→ k(z, z̄j)

3: repeat for each τ = 0, . . . , T − 1:
4: Compute Ψτ (z) = N−1

∑N
i=1 ∇̃1

dk(z, z
τ
i )

5: for i = 1, . . . , N
6: do zτ+1

i ← expzτ
i

(
sτ (Ψ̄−Ψτ )(zτi )

)
7: end for
8: Output: ρT = N−1

∑N
i=1 δzT

i

mϱ]
∥∥2
z
ρ(dz). We further show in Proposition 16 that ρt glob-

ally converges in MMD if the minimum eigenvalue λt of the
operator Kρt satisfies an integrability condition.

4.2 Noisy Riemannian Forward Euler Scheme
The analysis in Section 4.1 reveals that the gradient flows
suffer from convergence issues if the residual mρt

− mϱ

belongs to the null space of the operator Kρt
. To resolve

this, we employ graduated optimization [Arbel et al., 2019;
Gulcehre et al., 2016; Gulcehre et al., 2017; Hazan et al.,
2016] used for non-convex optimization in Euclidean spaces.
Specifically, we modify algorithm (4.2) by injecting Gaussian
noise into the exponential map at each iteration τ to obtain

ρτ+1 = exp(sτΦ
τ )#ρ

τ,βτ (4.3)

with fβτ :(z, u) 7→ expz(βτu), ρ
τ,βτ :=fβτ

#(ρ
τ ⊗ g).

Here g is a Gaussian measure with distributionNRm(0, 1)⊗
NRn(0, 1) ⊗ NSn(0, 1) on the tangent space and NSn(0, 1)
denotes an n-by-n symmetric matrix whose upper triangular
elements are i.i.d. standard Gaussian random variables. When
ρτ = N−1

∑N
i=1 δzτ

i
, scheme (4.3) flows each particle zτi

first to zτ,βτ

i := expzτ
i
(βτU) with noise U ∼ g and then

to zτ+1
i = expzτ,βτ

i
(sτΦ(z

τ,βτ

i )). Our next result extends
Proposition 8 in [Arbel et al., 2019] for the standard quadratic
cost on the Euclidean space to the nonstandard cost function
d2 on the curved Riemannian manifold Z++. It demonstrates
that scheme (4.3) achieves the global minimum of F provided
that k is a Lipschitz-gradient kernel and both the noise level
βτ and the step size sτ are well controlled. The proof of
Proposition 8 is given in Supplementary A.3 and relies on
arguments that are different from that of [Arbel et al., 2019].
Proposition 8 (Objective value decay for noisy scheme). Sup-
pose that k is a Lipschitz-gradient kernel2 with constant L,
and the noise level βτ satisfies

λβ2
τF [ρτ ] ≤

∫
Z
∥Φτ (z)∥2z ρτ,βτ (dz) (4.4)

2See Definition A.3 for the technical definition

for some constant λ > 0. Then for ρτ+1 obtained from scheme
(4.3), we have

F [ρτ+1] ≤ F [ρ0] exp
(
− λ

∑τ

i=0
[si
(
1− 2Lsi

)
β2
i ]
)
.

In particular, F [ρτ ] tends to zero if the sequence∑τ
i=0 si

(
1− 2Lsi

)
β2
i goes to positive infinity. For an adap-

tive step size sτ ≤ 1/4L, this condition is met if, for example,
βτ is chosen of the form (τsτ )

− 1
2 while still satisfying (4.4).

The noise perturbs the direction of descent, whereas the step
size determines how far to move along this perturbed direction.
The noise level needs to be adjusted so that the gradient is
not too blurred, but it does not necessarily decrease at each
iteration. When the incumbent distribution ρτ is close to a lo-
cal optimum, it is helpful to increase the noise level to escape
the local optimum. We demonstrate in Lemma 13 in the Sup-
plementary that any positive definite kernel k with bounded
Hessian w.r.t. distance d is a Lipschitz-gradient kernel. Algo-
rithm 2 in the Supplementary describes (4.3) in details.

5 Numerical Experiments
We evaluate the proposed gradient flow on real-world datasets
and then illustrate its applications in transfer learning. We
augment samples for the target dataset, where only a few sam-
ples in the dataset are available. We consider three datasets:
the MNIST (M) [LeCun and Cortes, 2010], Fashion-MNIST
(F) [Xiao et al., 2017], Kuzushiji-MNIST (K) [Clanuwat et
al., 2018]. To satisfy the Gaussianity assumption of the con-
ditional distributions, we cluster all the images from each
class of the datasets and keep the largest cluster for each
class. To demonstrate the scalability of our algorithm to higher-
dimensional images, we run experiments on Tiny ImageNet
(TIN) [Russakovsky et al., 2015] and upscaled SVHN [Netzer
et al., 2011] datasets, where images are of 3× 64× 64 size.

Our mapping ϕ is from Rm to R2 in the lifting procedure.
To compute the MMD distance using kernel embeddings, we
use a tensor kernel k on Z composed from three standard
Gaussian kernels corresponding for each component of the
feature space Rm, the mean space R2 and the covariance
matrix space S2++. As a consequence, k is a characteristic
kernel by [Szabó and Sriperumbudur, 2018, Theorem 4].
Experiment: Gradient Flow between Datasets. We visual-
ize the path travelled by each sample from the source domain
to the target domain, as depicted in Fig. 2. We draw randomly
N = 200 images equally for 10 classes of the source domain,
and M = 50 images equally for 10 classes of the target do-
main (M = 10 for the TIN and SVHN datasets). In each
subfigure, each column represents a snapshot of a certain time-
step and the samples flow from the source (left) to the target
(right) as the number of steps increases. The first column in
Fig. 2 are the images from the source domain, where the gradi-
ent flows start. Empirically, the algorithm converges after step
140 for *NIST datasets and step 6000 for TIN and SVHN. The
experiments are run on a C5.4xlarge AWS instance (a CPU
instance) and all finish in about one hour.

5.1 Application in Transfer Learning
Our gradient flow can alleviate the problem of insufficient
labeled data by synthesizing new samples to augment the target
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Figure 2: Sample path visualizations for five pairs of source-target domain. The original image and additional results are in the supplementary.

Figure 3: Average target domain accuracy on the test split for transfer learning with one-shot (left) and five-shot (right). Results are taken over
10 independent replications, and the range of accuracy is displayed by the error bars.

dataset. In this section, we demonstrate that the generated
target domain samples can improve the accuracy in one-shot
and five-shot transfer learning tasks.

First, we fix a source domain and pretrain a classifier P on
this domain. We draw randomly N samples from the source
domain to form the source dataset (xi, yi)

N
i=1. Next, we pick

a target domain and draw randomly a few samples from this
target domain: for example, in 1-shot learning, only 1 image
per class from the target domain is selected to form the target
dataset D = (x̄j , ȳj)

M
j=1. We then perform a noisy gradient

flow scheme (4.3) from the source dataset to the target dataset
to get N new samples ST = (xT

i , y
T
i )

N
i=1. With the target

dataset D and new samples ST , we can retrain the classifier
P . Similarly, we can also train new classifiers from scratch
using datasets D and D ∪ ST . Finally, we test the classifiers
on the test set of the target domain.

Fig. 3 presents the accuracy of five transfer learning strate-
gies on four pairs of source and target domain. For the labels
above the plot, labels without P mean training a new classifier
from scratch, whereas labels with P mean transferring the pre-
trained classifier. D and ST represent the samples in the target
domain and our flowed samples. We observe a common trend
that the addition of the flowed samples ST always improves
the accuracy of the classifiers, as we compare D ∪ ST with
D and compare P ∪D ∪ ST with P ∪D. Moreover, the data
augmentation with ST leads to a higher increase of accuracy

for the 1-shot learning, where the data scarcity problem is
more severe. The transfer learning results for SVHN and TIN
datasets are provided in the Supplementary B.6. Although
few-shot learning is more challenging due to the high com-
plexity of the datasets, the addition of ST always improves the
accuracy. We also compare with baseline3, mixup method and
image augmentation methods in Supplementary B.7.

Conclusions. This paper focuses on a gradient flow ap-
proach to generate new labeled data samples in the target
domain. To overcome the discrete nature of the labels, we rep-
resent datasets as distributions on the feature-Gaussian space,
and the flow is formulated to minimize the MMD loss func-
tion under an optimal transport metric. Contrary to existing
gradient flows on linear structure, our flows are developed on
the curved Riemannian manifold of Gaussian distributions.
We provide explicit formula for the Riemannian gradient of
MMD, and analyze in details the flow equations and the con-
vergence properties of both continuous and discretized forms.
The numerical experiments demonstrate that our method can
efficiently generate high-fidelity labeled training data for real-
world datasets, and improve the classification accuracy in few-
shot learning. The main limitation exists in the assumption
that the data of one label forms an elliptical distribution.

3The only gradient flow work that has experiments on *NIST
datasets, but it does not run experiments on TIN and SVHN.
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