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Abstract
Human activity recognition (HAR) is a fundamen-
tal sensing and analysis technique that supports di-
verse applications, such as smart homes and health-
care. In device-free and non-intrusive HAR, WiFi
channel state information (CSI) captures wireless
signal variations caused by human interference
without the need for video cameras or on-body
sensors. However, current CSI-based HAR per-
formance is hampered by incomplete CSI record-
ings due to fixed window sizes in CSI collection
and human/machine errors that incur missing val-
ues in CSI. To address these issues, we propose
DiffAR, a temporal-augmented HAR approach that
improves HAR performance by augmenting CSI.
DiffAR devises a novel Adaptive Conditional Dif-
fusion Model (ACDM) to synthesize augmented
CSI, which tackles the issue of fixed windows by
forecasting and handles missing values with im-
putation. Compared to existing diffusion models,
ACDM improves the synthesis quality by guiding
progressive synthesis with step-specific conditions.
DiffAR further exploits an ensemble classifier for
activity recognition using both raw and augmented
CSI. Extensive experiments on four public datasets
show that DiffAR achieves the best synthesis qual-
ity of augmented CSI and outperforms state-of-the-
art CSI-based HAR methods in terms of recogni-
tion performance. The source code of DiffAR is
available at https://github.com/huangshk/DiffAR.

1 Introduction
Human activity recognition (HAR) supports a significant
number of important yet differing applications in the fields of
security [Lin et al., 2020], smart homes [Bianchi et al., 2019],
healthcare [An and Ogras, 2021], etc. It aims to classify hu-
man actions using signals from various sources (e.g, cameras,
wearable sensors, and radars). However, these traditional ap-
proaches have several drawbacks. People may object to being
constantly videoed or wearing on-body sensors, so these de-
vices will fail to gather signals [Yang et al., 2018]. Cameras
require adequate illumination and line-of-sight (LOS) condi-
tions to capture acceptable frames to analyze [Hussain et al.,
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Figure 1: Different human activities interfere with wireless signals
between transmitters (Tx) and receivers (Rx), manifesting distinct
WiFi CSI patterns which contain implicit human features for HAR.

2020]. Radar sensing approaches may solve these issues, re-
placing vision with radio frequency (RF), but rely on costly
dedicated devices and require particular deployment method-
ologies [Nirmal et al., 2021].

To overcome these drawbacks, the use of WiFi channel
state information (CSI) has emerged [Yousefi et al., 2017].
CSI records the state of the wireless signals that experience
interference, where human movement is one such interfer-
ence [Wang et al., 2015]. Different human activities lead to
distinct WiFi CSI patterns, as shown in Figure 1. Hence, re-
cent studies [Tan et al., 2022] have exploited CSI for non-
intrusive HAR, because CSI does not require cameras or
sensors, nor are they restricted by illumination or LoS con-
straints. More importantly, ubiquitous off-the-shelf WiFi de-
vices can provide vast amounts of CSI data, enabling device-
free HAR without the need for dedicated devices.

Since WiFi was initially designed for communication, not
sensing, the implicit human features in CSI are not easy to ex-
tract, so further schemes are required to interpret CSI patterns
for HAR. Much effort has been devoted to learn implicit fea-
tures using deep learning (DL). Initial research applied Long
Short Term Memory (LSTM) to extract temporal features
from CSI [Yousefi et al., 2017]. Some studies [Wang et al.,
2019; Moshiri et al., 2021] used Convolutional Neural Net-
works (CNNs) to learn spatial features from CSI. Recently,
significant progress has been made by attention-based models
[Vaswani et al., 2017], such as attention-based bi-directional
LSTM (ABLSTM) [Chen et al., 2018] and two-stream con-
volution augmented transformers (THAT) [Li et al., 2021].

Regardless of this, in practice, the constraints of off-the-
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Figure 2: Comparison of DiffAR and THAT under different ratios
of missing values in CSI. THAT0 is tuned by samples with missing
values, while THAT1 is not tuned by samples with missing values.

shelf WiFi devices usually lead to incomplete CSI samples,
limiting the maximal attainable performance of HAR. Most
devices apply fixed windows to process CSI, such as the 2-
second windows in [Yousefi et al., 2017]. These fixed win-
dows cannot match the durations of different activities, pro-
ducing gaps where CSI is not recorded and impacting HAR
performance. Similarly, device failures and/or human errors
[Tashiro et al., 2021] incur missing values in CSI, hinder-
ing models to extract distinctive features. For example, the
performance of THAT [Li et al., 2021] on the dataset Office
[Yousefi et al., 2017] significantly decreases with increasing
numbers of missing values, as shown in Figure 2. These deep-
rooted issues seriously hamper CSI-based HAR performance.

In this paper, we propose a temporal-augmented HAR ap-
proach, DiffAR, to improve the recognition performance by
augmenting incomplete CSI. DiffAR devises a novel Adap-
tive Conditional Diffusion Model (ACDM) to synthesize aug-
mented CSI, which tackles fixed windows by forecasting and
handles missing values with imputation. Existing diffusion
models [Ho et al., 2020] synthesize samples through pro-
gressive steps guided by constant conditions [Tashiro et al.,
2021], but different steps may actually require step-specific
conditions to synthesize patterns of different granularity. In-
tuitively, when synthesizing CSI guided by its spectrogram,
low-frequency features can contribute to earlier steps to syn-
thesize global patterns, while high-frequency features can as-
sist in later steps to synthesize local patterns. Hence, ACDM
employs an adaptive conditioner which learns step-specific
conditions to guide each progressive step. Ultimately, an en-
semble classifier uses both raw CSI and augmented CSI for
activity recognition. Our main contributions are as follows:
• We propose a novel temporal-augmented HAR approach,

DiffAR, to strengthen CSI-based HAR using diffusion
models. To the best of our knowledge, this is the first at-
tempt to augment WiFi CSI with diffusion models and to
thereby improve the performance of CSI-based HAR.

• In ACDM, we present an adaptive conditioner which guides
the progressive steps with step-specific conditions to syn-
thesize patterns of different granularity. This proves the
feasibility of step-specific conditions which improve the
synthesis quality of diffusion models.

• Extensive experiments on four public datasets show that
DiffAR realizes the best quality of augmented CSI. With
augmented CSI, DiffAR also outperforms state-of-the-art
CSI-based HAR methods in recognition performance.

2 Related Work
CSI-based HAR. Recent years have witnessed the increas-
ing popularity of WiFi-based human sensing [Tan et al.,
2022], where WiFi CSI is the main signal source [Wang et al.,
2015; Ma et al., 2019]. Traditional methods extracted human
features from CSI using handcrafted solutions, such as short-
time Fourier transform (STFT) [Yousefi et al., 2017]. For
example, the STFT-based random forest (ST-RF) approach
was one of the best traditional models [Li et al., 2021], but
handcrafted solutions require expert knowledge and find it
difficult to extract implicit features from complex data. With
the rise of deep learning (DL), many studies have explored
DL models for CSI-based HAR [Nirmal et al., 2021]. Com-
pared with ST-RF, LSTM showed better performance since
it extracted implicit temporal features [Yousefi et al., 2017].
Focusing on local temporal features, one-dimensional CNN
(CNN-1D) [Wang et al., 2019] was proposed and further im-
proved recognition accuracy. Regarding CSI mapped as im-
ages, two-dimensional CNN (CNN-2D) [Moshiri et al., 2021]
was introduced to learn spatial features from CSI, resulting in
further improved recognition performance. When CNN and
LSTM were combined to learn both temporal and spatial fea-
tures from CSI [Shalaby et al., 2022], the performance was
just slightly improved. Motivated by the success of atten-
tion mechanism [Vaswani et al., 2017], ABLSTM [Chen et
al., 2018] applied an attention-based bi-directional LSTM to
learn weighted temporal features and significantly increased
recognition performance. Recently, THAT [Li et al., 2021]
has established a two-stream transformer to learn both tem-
poral and channel features using multi-scale convolutions,
achieving state-of-the-art performance in CSI-based HAR.
However, the above studies relied on complete CSI and ne-
glected the practical issues of incomplete CSI.

Generative Time-series Models. In real-world applica-
tions, time-series data are omnipresent and generative time-
series models have attracted much attention from researchers
[Wen et al., 2021]. For time-series synthesis, generative ad-
versarial networks (GANs) [Goodfellow et al., 2020] have
been widely used [Mogren, 2016; Esteban et al., 2017]. For
example, TimeGAN [Yoon et al., 2019] regulated GANs with
autoregressive models to obtain satisfactory synthesis quality.
For better synthesis quality, recent studies have exploited dif-
fusion models [Ho et al., 2020; Yang et al., 2022], which
have achieved state-of-the-art performance in image gener-
ation [Rombach et al., 2022], waveform synthesis [Kong et
al., 2021], etc. For time-series forecasting, TimeGrad [Rasul
et al., 2021] combined diffusion models with an RNN, whose
hidden states were used as conditions to guide the synthesis in
diffusion models. For time-series imputation, CSDI [Tashiro
et al., 2021] integrated diffusion models with a Transformer
encoder [Vaswani et al., 2017] to impute missing values in
time series, showing competitive imputation quality. Dif-
fWave [Kong et al., 2021] developed a non-autoregressive
diffusion model to synthesize waveforms conditioned on mel-
spectrogram, achieving the best synthesis quality. Though
none of these studies have investigated CSI augmentation,
they proved the potential of diffusion models in coping with
incomplete CSI by forecasting and imputation.
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Figure 3: Overview of the proposed DiffAR.

3 DiffAR
We outline the overview of DiffAR in Figure 3, consisting
of an ACDM and an ensemble classifier. ACDM synthe-
sizes augmented CSI in line with typical diffusion models
[Ho et al., 2020] which generate high-quality samples from
Gaussian noise by progressive steps. In contrast to typical
diffusion models which guide progressive steps with con-
stant conditions [Ho and Salimans, 2021; Rombach et al.,
2022], ACDM applies step-specific conditions to guide dif-
ferent steps. Specifically, ACDM exploits the spectrogram
of CSI as input conditions, from which an adaptive condi-
tioner distinguishes step-specific conditions that are critical
to different steps. It enables ACDM to synthesize conditional
patterns of different granularity in different steps. After aug-
mentation, DiffAR feeds both raw CSI and augmented CSI to
an ensemble classifier to recognize human activities.

3.1 Preliminaries
Problem Definition
Given a raw CSI sample x ∈ RC×N with C channels, N
denotes the time steps of its fixed window size, while λmiss

denotes the ratio of missing values in it. Temporal-augmented
HAR includes two objectives: (1) to augment CSI samples by
forecasting and imputation; (2) to recognize human activities
with augmented CSI samples.

Towards the first objective, a forecasting model gfc(·) fore-
casts a future sequence xfc ∈ RC×Nfc with xfc = gfc(x),
where Nfc = λfcN is the future steps to forecast, and
λfc represents the forecasting ratio. Subsequently, an im-
putation model gim (·) imputes the missing values in x by
xim = gim(x) to obtain xim ∈ RC×N under the imputation
ratio λim = λmiss. After forecasting and imputation, the aug-
mented CSI is x̂ = xfc + xim, where x̂ ∈ RC×(1+λfc)N . We
formulate this self-supervised augmentation as x̂ = g (x).

Towards the second objective, an ensemble classifier f(·)
uses both raw CSI and augmented CSI to predict activity la-
bel ŷ = f (x, x̂) = f (x, g (x)). f (·) aims to maximize the
accuracy of ŷ with respect to the ground-true activity label y.

Background: Diffusion Models
We apply diffusion models to augment CSI samples by fore-
casting and imputation. Diffusion models [Ho et al., 2020]
aim to learn a model distribution pθ (x̂0) to approximate a
data distribution q (x̂0) using two mutually inverse processes:
the forward process and the reverse process. The forward
process converts q (x̂0) to a Gaussian distribution q (x̂T ) with
a fixed T -step Markov chain, while the reverse process con-
verts a Gaussian distribution p (x̂T ) = N (x̂T ; 0, I) to pθ (x̂0)
with a learnable T -step Markov chain. The forward process
is formulated as q (x̂1:T |x̂0) with fixed Gaussian transitions
q(x̂t|x̂t−1) for t = [1, ..., T ]. Conversely, the reverse process
is formulated as pθ (x̂0:T ) with learnable Gaussian transitions
pθ (x̂t−1|x̂t) for t = [T, ..., 1]. Applying these formulations
in practice, diffusion models optimize a denoising function
ϵθ (·) to synthesize x̂0 by iterating t = [T, ..., 1]. We attach
the detailed formulations and corresponding objective func-
tion of diffusion models in Appendix A.

3.2 Adaptive Conditional Diffusion Model
We propose ACDM in line with the formulations of diffu-
sion models. In particular, ACDM synthesizes augmented
CSI x̂ = x̂0 from Gaussian noise x̂T ∈ RC×(1+λfc)N by T -
step progressive synthesis conditioned on CSI spectrogram S.
To the best of our knowledge, this work is the first to adopt
diffusion models for CSI augmentation.

We present the network architecture of ACDM in Figure 4.
To estimate the conditional denoising function ϵθ (·), ACDM
takes x̂t as inputs and uses a 5 × 5 convolution followed by
an ReLU activation to extract both temporal and channel-
wise features. To incorporate the step information into ϵθ (·),
ACDM performs step encoding and linear projections on each
step t to obtain the step embedding t̂. The primary novelty
of ACDM lies in two core components: the adaptive con-
ditioner and the residual blocks. The adaptive conditioner
extracts step-specific conditions from the spectrogram S, so
that ACDM can synthesize patterns of different granularity in
different steps. The residual blocks apply multi-scale dilated
convolutions to learn both local and global features for com-
prehensive synthesis. The output of each residual block acts
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Figure 4: The network architecture of ACDM to estimate ϵθ (·).
ψ (·) is the adaptive conditioner to extract step-specific conditions.

as the input of next residual block, while the outputs of all
residual blocks are summarized to estimate ϵθ (·).
Adaptive Conditioner
Original diffusion models are unconditional [Ho et al., 2020]
and cannot be directly leveraged for CSI augmentation. To
implement conditional diffusion models, a common practice
[Ho and Salimans, 2021; Rombach et al., 2022] is to add con-
ditions c to the reverse process as:

pθ (x̂0:T |c) := p (x̂T )

T∏
t=1

pθ (x̂t−1|x̂t, c) , (1)

where pθ (x̂t−1|x̂t, c) = N (x̂t−1;µθ (x̂t, t, c) ,Σθ (x̂t, t, c))
is a conditional Gaussian transition. The objective function
of conditional diffusion models is formulated as:

Lc (θ) := E
[∥∥ϵ− ϵθ

(√
ᾱtx̂0 +

√
1− ᾱtϵ, t, c

)∥∥2] . (2)

Such conditional diffusion models guide progressive steps
with constant conditions, but different steps may actually re-
quire step-specific information to synthesize conditional pat-
terns of different granularity. For example, when synthesizing
CSI conditioned on the spectrogram, the earlier steps (i.e., the
smaller t) may require the low-frequency features of spec-
trogram to synthesize global patterns, while the later steps
(i.e., the larger t) may require the high-frequency features of
spectrogram to synthesize local patterns. Revisiting the pre-
liminary of diffusion models, samples are gradually synthe-
sized from Gaussian noise, so the variance βt is varying along
progressive steps. The variance schedule contributes to syn-
thesize the details of samples to different extents in different

steps. Unlike the variance, existing diffusion models apply
constant conditions along progressive steps, where models
may fail to distinguish critical information for different steps
and result in limited synthesis quality.

To address this issue, we introduce a novel adaptive con-
ditioner ψ(·) in ACDM to learn step-specific conditions from
input conditions for different steps:

ct = ψ
(
S, t̂

)
= υ (S)⊙ φ

(
ωt̂+ b

)
, (3)

where ⊙ is the element-wise multiplication, t̂ is the step em-
bedding of t, and φ is a sigmoid function. ω and b are weights
and biases to compute the linear projection of t̂. υ is a resam-
ple function composed of deconvolutional layers (Deconv)
[Zeiler et al., 2010] to project conditions to the latent space.

Intuitively, for different steps, φ
(
ωt̂+ b

)
acts as a step-

specific filter to extract critical information from input con-
dition features υ (S). Hence, ct represents the critical condi-
tional information for different steps. ACDM feeds ct to ev-
ery residual block, so the adaptive conditioner can be jointly
optimized with ϵθ (·). This adaptive conditioner can also ex-
pand to other conditional diffusion models to improve their
synthesis quality.

Residual Blocks
The stack of residual blocks is the core component of ACDM
to synthesize augmented CSI. In each residual block, we ap-
ply layer normalization [Vaswani et al., 2017] on the feature
maps of x̂t, after which the linear projection of t̂ is added as a
bias term. To guide the progressive steps in ACDM, the pro-
jection of step-specific conditions ct is concatenated in each
residual block. Further, we use a multi-scale dilated convo-
lution layer to learn both local and global features for com-
prehensive synthesis. Multi-scale convolution is able to learn
local features in a range-based fashion [Li et al., 2021], so
we utilize it in each residual block. Dilated convolution can
extract global features by skipping values at certain intervals
[Kong et al., 2021], so we employ it over the stack of resid-
ual blocks, where the interval in each residual block follows
a dilation cycle (e.g., [1, 2, 4, 8]). Finally, we adopt a gated
activation unit [Oord et al., 2016] based on a tanh function
and a sigmoid function (φ) to learn the nonlinear features.

Step Embedding
To synthesize augmented CSI by progressive steps, it is nec-
essary to take steps as inputs to estimate ϵθ (·). The adap-
tive conditioner also requires step information to adapt in-
put conditions to step-specific conditions. Herein, we con-
vert each step t into a learnable step embedding t̂. Step
embedding involves step encoding and linear projections.
We apply sine and cosine functions [Vaswani et al., 2017;
Kong et al., 2021] to compute the step encoding te ∈ RM :

te =
[
sin

(
10

4m
M/2−1 t

)
, ..., cos

(
10

4m
M/2−1 t

)
, ...

]
, (4)

for m ∈ [0, ..., (M/2− 1)]. We further adopt two linear pro-
jection layers to compute t̂ = (ω1(ω0te + b0) + b1) as the
step embedding, where ω0 and ω1 are the weights of two lay-
ers, and b0 and b1 are the biases of two layers. We formulate
this step embedding as t̂ = embed (t), which is further fed to
the adaptive conditioner and every residual block.
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Algorithm 1 Training
repeat

1: x̂0 ∼ q (x) # regard raw CSI as augmented CSI
2: S′ = stft (x′) where x′ = mask (x̂0)
3: t̂ = embed (t) where t ∼ Uniform ({1, ..., T})
4: c′t = ψ

(
S′, t̂

)
# apply the adaptive conditioner

5: ϵ ∼ N (0, I)
6: Take gradient step on
7: ▽θ

∥∥ϵ− ϵθ
(√
ᾱtx̂0 +

√
1− ᾱtϵ, t, c′t

)∥∥2
until converged

Adaptive Conditional Training and Synthesis
Combining the above components, we can add the step-
specific conditions to the reverse process in ACDM as:

pθ (x̂0:T |S) := p (x̂T )
T∏

t=1

pθ (x̂t−1|x̂t, ct) ,

pθ (x̂t−1|x̂t, ct) = pθ
(
x̂t−1|x̂t, ψ

(
S, t̂

))
.

(5)

The objective function based on step-specific conditions can
be formulated as:

La (θ) := E
[∥∥ϵ− ϵθ

(√
ᾱtx̂0 +

√
1− ᾱtϵ, t, ct

)∥∥2] . (6)

Training. We train ACDM in a self-supervised manner,
where we mask certain values of raw CSI to simulate in-
complete CSI x′ and regard raw CSI as the augmented CSI
x̂0. With x′ = mask (x̂0), we use random masks to sim-
ulate missing values under λim and mask the rear part of
CSI to simulate the forecasting targets under λfc. We per-
form short-time Fourier transform (STFT) on x′ to calculate
its spectrogram S′ = stft (x′). Since x̂0 acts as ground-true
targets, we can train ACDM conditioned on c′t = ψ

(
S′, t̂

)
by

minθ La (θ), as illustrated in Algorithm 1.
Synthesis. After training ACDM, we can exploit it to syn-
thesize augmented CSI samples x̂0 based on incomplete CSI
x ∈ RC×N . We again perform STFT to obtain the spectro-
gram S = stft (x) and sample x̂T ∈ RC×(1+λfc)N from Gaus-
sian noise for synthesis. For each step t in [T, .., 1], ACDM
computes its step-specific condition ct = ψ

(
S, t̂

)
to guide

the synthesis pθ (x̂t−1|x̂t, ct), as illustrated in Algorithm 2.

3.3 Ensemble Classifier
After augmentation, an ensemble classifier in DiffAR em-
polys both raw CSI and augmented CSI to recognize activ-
ities. Though ACDM has imputed the missing values in raw
CSI, the positions of missing values may have certain patterns
that are useful for recognition. Besides, ACDM synthesizes
the augmented CSI as a whole instead of patching up raw
CSI, so taking raw CSI as inputs can ensure no information
loss and improve model robustness towards incomplete CSI.

In the ensemble classifier, two CNN-1D networks extract
the local temporal features from inputs, after which their fea-
ture maps are concatenated for subsequent learning. A Trans-
former encoder [Vaswani et al., 2017] further learns implicit
features using the self-attention mechanism. Finally, a linear
layer followed by a softmax function predicts the probability
of each activity.

Algorithm 2 Synthesis
Input: incomplete CSI x ∈ RC×N

1: S = stft (x)
2: x̂T ∼ N (0, I) where x̂T ∈ RC×(1+λfc)N

3: for t = T, ..., 1 do
4: t̂ = embed (t)
5: z ∼ N (0, I) if t > 1 else z = 0
6: ct = ψ

(
S, t̂

)
# apply the adaptive conditioner

7: x̂t−1 = 1√
αt

(
x̂t − βt√

1−ᾱt
ϵθ (x̂t, t, ct)

)
+ σtz

8: end for
return x̂0

4 Experiments
4.1 Datasets
We evaluate DiffAR on four public datasets, which differ in
the number of samples, the number of activities, sample rate
and window sizes. The variety of datasets enables a compre-
hensive evaluation. Table 1 describes the statistics of datasets.
Office [Yousefi et al., 2017] contains 557 CSI recordings of 6
individuals in an office area. As suggested by the authors, we
segment these CSI recordings into 2-second windows and ob-
tain 1984 samples, each of which owns 90 channels. SignFi
[Ma et al., 2018] involves 276 activities (sign language ges-
tures) captured by WiFi CSI with 90 channels. Each activity
comprises 30 samples for recognition. Interactions [Alazrai
et al., 2020] consists of CSI samples with 180 channels mon-
itoring 12 human-to-human interactions between 40 pairs of
individuals. Widar 3.0 [Zhang et al., 2021] includes CSI
samples with 90 channels collected in 15 days. We use the
samples of 6 activities from 4 individuals for evaluation.

4.2 Baselines
We compare DiffAR with 11 baselines to demonstrate its ef-
fectiveness. To examine the quality of augmented CSI, we
compare DiffAR with the following state-of-the-art genera-
tive time-series models. (1) TimeGrad [Rasul et al., 2021]
combined diffusion models with RNNs for time-series fore-
casting. (2) CSDI [Tashiro et al., 2021] applied diffusion
models based on Transformer encoders for time-series impu-
tation. (3) WaveGrad [Chen et al., 2020] utilized diffusion
models with a gradient-based sampler for waveform synthe-
sis. (4) DiffWave [Kong et al., 2021] synthesized waveform
using diffusion models based on dilated convolutions.

To evaluate the recognition performance, we compare Dif-
fAR with the following CSI-based HAR methods. (1) ST-RF
[Yousefi et al., 2017] employed STFT to extract handcrafted
features for HAR. (2) LSTM [Yousefi et al., 2017] learned

Datasets Samples Activities Rate (Hz) Window (s)

Office 1984 7 1000 2.00
SignFi 8280 276 12.5∼200 1.00∼16.0
Interactions 4800 12 320 3.25∼7.03
Widar 3.0 17986 6 1000 0.26∼3.90

Table 1: Statistics of four public CSI-based HAR datasets.
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Models Ratio Office SignFi Interactions Widar 3.0
λfc λim MAE MSE CRPS MAE MSE CRPS MAE MSE CRPS MAE MSE CRPS

Forecast
TimeGrad 0.2 0.0 1.074 1.886 1.321 0.938 1.596 1.351 1.247 2.626 1.406 1.028 1.696 1.282
CSDI 0.2 0.0 1.084 1.764 1.363 0.856 1.246 1.199 0.864 1.204 1.100 1.038 1.661 1.285
WaveGrad 0.2 0.0 0.862 1.181 1.084 0.730 1.031 1.020 0.860 1.212 1.094 0.878 1.210 1.087
DiffWave 0.2 0.0 0.848 1.141 1.066 0.779 1.154 1.089 0.835 1.126 1.062 0.858 1.140 1.061
DiffAR (Ours) 0.2 0.0 0.819 1.071 1.029 0.721 1.010 1.007 0.811 1.058 1.032 0.816 1.019 1.009

Imputation
CSDI 0.0 0.2 1.064 1.708 1.338 0.856 1.246 1.200 0.860 1.187 1.095 1.006 1.599 1.246
WaveGrad 0.0 0.2 0.868 1.215 1.091 0.730 1.030 1.019 0.864 1.247 1.099 0.881 1.237 1.090
DiffWave 0.0 0.2 0.855 1.166 1.074 0.784 1.164 1.095 0.840 1.153 1.069 0.864 1.167 1.069
DiffAR (Ours) 0.0 0.2 0.811 1.117 1.019 0.718 1.003 1.002 0.808 1.066 1.028 0.827 1.051 1.023

Forecast + Imputation
CSDI 0.2 0.2 1.046 1.667 1.315 0.856 1.245 1.199 0.889 1.265 1.132 0.986 1.537 1.221
WaveGrad 0.2 0.2 0.862 1.195 1.083 0.729 1.029 1.018 0.856 1.216 1.089 0.874 1.211 1.082
DiffWave 0.2 0.2 0.850 1.150 1.068 0.754 1.096 1.054 0.834 1.132 1.060 0.858 1.147 1.062
DiffAR (Ours) 0.2 0.2 0.822 1.134 1.033 0.717 1.003 1.001 0.809 1.068 1.028 0.817 1.023 1.011

Table 2: The quality of augmented CSI using different generative time-series models in terms of Mean Absolute Error (MAE), Mean Squared
Error (MSE) and Continuous Ranked Probability Score (CRPS). Lower results indicate better quality. Bold highlights the best results.

temporal features for HAR. (3) CNN-1D [Wang et al., 2019]
applied convolutions to learn local spatial features. (4) CNN-
2D [Moshiri et al., 2021] regarded CSI as images to learn
local channel-wise features. (5) CNN-LSTM [Shalaby et al.,
2022] combined CNN with LSTM to learn both temporal and
spatial features. (6) ABLSTM [Chen et al., 2018] equipped
bi-directional LSTM with attention to learn feature dependen-
cies. (7) THAT [Li et al., 2021] exploited both attention and
convolutions to outperform other CSI-based HAR methods.

4.3 Evaluation Metrics
To measure the quality of augmented CSI, we adopt three
common metrics for time-series models, including Mean Ab-
solute Error (MAE), Mean Squared Error (MSE) and Contin-
uous Ranked Probability Score (CRPS) [Tashiro et al., 2021].
MAE calculates the absolute differences between synthesized
samples and ground-true samples, while MSE calculates their
squared differences. CRPS [Matheson and Winkler, 1976]
evaluates the compatibility of generative distributions with
ground-true observations [Rasul et al., 2021].

To measure the recognition performance, we employ Ac-
curacy (Acc.), Weighted Precision (WP) and F1 score as met-
rics. Accuracy indicates the performance of classifying all
activities, while WP summarizes the recognition precision of
each activity as a weighted average. F1 score is the harmonic
mean of Precision and Recall for comprehensive evaluation.

4.4 Implementation Details
In ACDM, we establish 10 residual blocks whose dimension
for skip connections is 32. Each residual block applies multi-
scale dilated convolutions whose kernel sizes are {1, 3, 5},
and the dilation cycle across these blocks is [1, 2, 4, 8, 16].
The dimension of step embedding is set to M = 128. To
use CSI spectrogram as conditions, we set the size of STFT
to 256, and the hop length to 64. We adopt a linear spaced

noise schedule where βt ∈
[
10−5, 10−2

]
with diffusion steps

T = 100. In the ensemble classifier, each CNN-1D net-
work contains 3 convolutional layers whose numbers of filters
are {32, 64, 128} and kernel sizes are {7, 5, 3} with strides
{3, 2, 1}. Each convolutional layer is followed by an ReLU
activation with a dropout rate of 0.1. After concatenation, the
feature dimension becomes 256, which is the input dimension
of Transformer encoder. The Transformer encoder contains 2
encoder layers, where the number of heads is 8.

We train ACDM in a self-supervised manner, as mentioned
in Section 3.2. (1) To evaluate the quality of augmented CSI,
we apply masks to raw CSI and augment the masked CSI
using DiffAR or other generative time-series models. We
assess the quality by measuring the similarity between aug-
mented CSI and raw CSI, where we set λim = λfc = 0.2. (2)
To evaluate the recognition performance, we further augment
raw CSI using DiffAR or other generative time-series mod-
els. Specifically, we simulate the missing values with random
masks and lengthen the raw CSI by forecasting. With the
further augmented CSI, we compare the performance of CSI-
based HAR methods, where we set λim = 0.5 and λfc = 0.2.
(3) We further conduct a hyper-parameter sensitivity study of
DiffAR, where we set λfc = λim = {0.2, 0.4, 0.6, 0.8}, as
attached in Appendix B.

We implement DiffAR using Pytorch 1.13 with Python 3.9
and train it on a single Nvidia RTX A5000 GPU. The model
is optimized by Adam [Kingma and Ba, 2014] with a fixed
learning rate 10−4 and the batch size of 16. Each dataset is
splited into a training set (80%), a validation set (10%), and a
test set (10%). We leverage training sets to optimize ACDM
for 105 epochs and exploit the trained ACDM to augment all
three sets. The augmented training sets are used to optimize
the ensemble classifier for 200 epochs. We apply validation
sets to select the best models for evaluation on test sets.
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Methods Ratio Office SignFi Interactions Widar 3.0
λfc λim Acc. WP F1 Acc. WP F1 Acc. WP F1 Acc. WP F1

Baselines
ST-RF 0.0 0.0 89.95 90.58 85.61 84.06 88.98 82.37 75.42 75.23 74.58 55.42 56.06 55.39
LSTM 0.0 0.0 94.44 94.53 91.50 88.40 90.99 86.15 82.71 82.67 81.89 67.13 67.07 66.73
CNN-1D 0.0 0.0 95.45 95.86 93.47 97.34 98.04 97.36 82.92 83.05 82.45 77.98 78.69 78.19
CNN-2D 0.0 0.0 96.46 96.67 94.85 97.34 97.77 96.19 90.21 90.90 89.86 87.99 88.02 87.95
CNN-LSTM 0.0 0.0 91.92 92.32 88.58 88.04 91.04 87.37 76.25 77.51 75.64 70.52 70.91 70.63
ABLSTM 0.0 0.0 95.96 96.13 94.92 96.38 97.04 95.60 86.46 86.88 85.92 73.47 73.50 73.36
THAT 0.0 0.0 96.97 97.02 95.85 96.74 97.42 96.29 90.63 91.19 90.30 90.04 90.06 90.01

Forecast
THAT + TimeGrad 0.2 0.0 97.49 97.51 96.25 95.65 96.76 95.58 90.83 91.36 90.68 91.22 91.32 91.21
THAT + DiffWave 0.2 0.0 96.98 97.04 95.99 97.10 97.92 96.28 90.83 91.13 90.75 91.39 91.53 91.40
DiffAR (Ours) 0.2 0.0 97.99 98.10 97.16 98.07 98.78 97.72 94.17 94.37 94.02 91.78 91.76 91.71

Imputation
CNN-1D + DiffWave 0.0 0.5 95.48 95.46 93.76 97.58 98.01 96.92 85.42 85.62 85.07 81.39 81.65 81.14
THAT + DiffWave 0.0 0.5 96.48 96.40 94.46 96.98 97.75 95.47 90.63 90.78 90.44 91.11 91.09 91.07
DiffAR (Ours) 0.0 0.5 97.99 97.95 96.82 97.95 98.48 97.39 93.75 93.96 93.40 91.67 91.67 91.61

Forecast + Imputation
CNN-1D + DiffWave 0.2 0.5 96.98 97.01 95.54 97.71 98.03 96.80 85.83 86.18 85.46 82.17 82.41 82.03
THAT + DiffWave 0.2 0.5 96.48 96.76 95.03 97.22 97.48 95.60 90.63 90.97 90.22 90.61 90.62 90.58
DiffAR (Ours) 0.2 0.5 98.49 98.54 98.22 98.19 98.59 98.22 94.58 94.67 94.50 92.06 92.19 92.04

Table 3: The recognition performance (unit: %) of CSI-based HAR methods in terms of Accuracy (Acc.), Weighted Precision (WP) and F1
score. Higher results indicate better performance. Bold highlights the best results.

4.5 Results and Discussions
Table 2 compares the quality of augmented CSI with differ-
ent generative time-series models, and Table 3 presents the
recognition performance of CSI-based HAR methods.

DiffAR achieves the best quality of augmented CSI. We
compare DiffAR with four generative time-series models re-
garding the quality of forecast, imputation and forecast + im-
putation. DiffAR obtains better quality than other models in
all these situations, as shown in Table 2. Compared with
other models forecasting CSI, DiffAR reduces MAE, MSE
and CRPS by 1.2∼35.0%, 2.0∼59.7% and 1.3∼26.6%, re-
spectively. For CSI imputation, DiffAR realizes 1.7∼23.8%
lower MAE, 2.7∼34.6% lower MSE, and 1.7∼23.9% lower
CRPS than other models. If we preform both forecasting and
imputation, DiffAR outperforms other models by 1.6∼21.4%
on MAE, 1.4∼33.4% on MSE, and 1.7∼21.5% on CRPS.
DiffAR outperforms other models since it adopts multi-scale
dilated convolutions to learn both local and global features,
while other models either failed to extract long-range feature
dependencies (TimeGrad), or did not consider channel-wise
features (WaveGrad and DiffWave). More critically, DiffAR
can learn step-specific conditions for progressive steps to syn-
thesize high-quality samples under different granularity.

DiffAR outperforms state-of-the-art CSI-based HAR meth-
ods. Compared with existing CSI-based HAR baselines with-
out augmentation, DiffAR attains better performance with
augmented CSI, as shown in Table 3. In contrast to the best
baselines without forecasts, DiffAR increases the accuracy by
0.75∼3.9%. For imputation-augmented HAR, the accuracy
of DiffAR is 0.62∼3.44% higher than that of the baselines. If
we augment CSI by forecasting and imputation, DiffAR out-

performs the baselines by 0.87∼4.35% on accuracy. Similar
results can be observed in terms of WP and F1. We also dis-
cuss the impact of missing values in Appendix C and conduct
an ablation study in Appendix D.

To further illustrate the effectiveness of DiffAR, we equip
CSI-based HAR baselines with generative models for com-
parison. For forecast-augmented HAR, DiffAR obviously ex-
cels THAT assisted by TimeGrad or DiffWave, though they
have already achieved better performance than THAT with-
out forecasts. Compared with imputation-augmented HAR
baselines, DiffAR also attains the highest accuracy, WP, and
F1. With both forecasting and imputation, the accuracy of
DiffAR outperforms the second best results by 0.49∼4.35%.

In summary, using generative time-series models to tempo-
rally augment CSI can enhance the performance of CSI-based
HAR. DiffAR achieves the best quality of augmented CSI and
thus outperforms state-of-the-art CSI-based HAR methods.

5 Conclusion
We propose DiffAR as a pioneering work in WiFi sensing
to augment incomplete CSI with diffusion models and im-
prove CSI-based HAR. In DiffAR, we devise ACDM to fore-
cast CSI from fixed windows and to impute missing values in
CSI. ACDM adopts a novel adaptive conditioner which learns
step-specific conditions for progressive steps to synthesize
conditional patterns of different granularity. It proves the fea-
sibility of using step-specific conditions to improve synthesis
quality and can expand to other conditional diffusion mod-
els. Extensive experiments illustrate that DiffAR achieves the
best quality of augmented CSI and outperforms state-of-the-
art CSI-based HAR methods in recognition performance.
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