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Abstract
Robotic agents trained using reinforcement learn-
ing have the problem of taking unreliable actions
in an out-of-distribution (OOD) state. Agents
can easily become OOD in real-world environ-
ments because it is almost impossible for them to
visit and learn the entire state space during train-
ing. Unfortunately, unreliable actions do not en-
sure that agents perform their original tasks suc-
cessfully. Therefore, agents should be able to rec-
ognize whether they are in OOD states and learn
how to return to the learned state distribution rather
than continue to take unreliable actions. In this
study, we propose a novel method for retraining
agents to recover from OOD situations in a self-
supervised manner when they fall into OOD states.
Our in-depth experimental results demonstrate that
our method substantially improves the agent’s abil-
ity to recover from OOD situations in terms of
sample efficiency and restoration of the perfor-
mance for the original tasks. Moreover, we show
that our method can retrain the agent to recover
from OOD situations even when in-distribution
states are difficult to visit through exploration.
Code and supplementary materials are available at
https://github.com/SNUChanKim/SeRO.

1 Introduction
Reinforcement learning (RL) has been used to solve challeng-
ing tasks in the field of robotics control and has achieved
human-level performance [Schulman et al., 2016; Heess et
al., 2017; Gu et al., 2017; Akkaya et al., 2019]. However,
several limitations prevent RL from being applied in real-
world environments. One of the main limitations is the un-
reliable actions of RL agents in out-of-distribution (OOD)
states that deviate from the learned state distribution. While
operating in real-world environments, agents can fall eas-
ily into OOD states because the state space is extensive and
non-stationary, which makes it impossible for the agent to
cover the entire space during training. Unfortunately, un-
reliable actions in OOD states can lead to the failure of the
agent [Amodei et al., 2016] because they do not ensure that
the agent performs its original tasks successfully. Therefore,

agents should learn how to return to learned state distribu-
tion from the time they recognize that they have fallen into
an OOD state, rather than continue to take unreliable actions.
Take a quadruped walking robot trained using RL as an ex-
ample and suppose that the robot has never been overturned
during training. If the robot collides with a person outside
the robot’s field of view while operating in the real world, it
can overturn and unintentionally fall into an OOD state. In
this situation, unreliable actions will not enable the robot to
operate in its original purpose (walking) because the robot
has never been trained for such a situation. Instead of tak-
ing unreliable actions, the robot should learn how to turn
its body over, which enables it to return to the learned state
distribution. However, the desired behavior for returning to
the learned state distribution differs depending on the envi-
ronment and the OOD situation. Hence, designing the cor-
responding reward function for each environment and OOD
situation is laborious and requires prior knowledge.

Several studies in model-based RL have proposed methods
to prevent agents from falling into OOD situations [Kahn et
al., 2017; Lütjens et al., 2019; Henaff et al., 2019; Kang et
al., 2022]. However, these methods focus on discouraging
agents from visiting OOD states. They do not consider the
situations where trained agents have already fallen into OOD
states, which can unintentionally occur in the real world.

In this study, we propose an RL method for Self-supervised
Recovery from OOD situations (SeRO), which can retrain
agents to recover from OOD situations without prior knowl-
edge of the environment or OOD situations. Recovery from
OOD situations involves both 1) learning to return to the
learned state distribution from the OOD situations and 2)
restoring performance for the original task after the return.
Unlike previous studies that aim to prevent the agent from
falling into OOD situations, our method aims to recover the
agent when the trained agent has already fallen into an OOD
state during operation. We emphasize that our method is or-
thogonal and complementary to previous studies that focus
on preventing agents from falling into OOD situations.

We denote the agent’s training for solving the original task
as the training phase, whereas the retraining phase refers to
the additional training required for returning to the learned
state distribution and restoring original performance when the
trained agent falls into OOD states during operation. When
the agent is in OOD states, the agent cannot know the reward
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function for the desired behavior of returning to the learned
state distribution without prior knowledge of the environment
and OOD situation. To retrain the agent to return without an
explicit reward designed based on prior knowledge, we pro-
pose an intrinsically motivated auxiliary reward that increases
as the agent approaches the learned state distribution. The
auxiliary reward is implemented based on a metric called the
uncertainty distance, which we introduce to approximate the
relative distance of the state from the learned state distribu-
tion. However, learning the behaviors to return to the learned
state distribution can be thought of as learning a new task that
is different from the original task. This can cause the agent to
forget the original task while learning to return to the learned
state distribution. To prevent such a situation, we propose
uncertainty-aware policy consolidation. The main contribu-
tions of our paper can be summarized as follows:

• We propose a self-supervised RL method, SeRO, which
retrains the agent to recover from OOD situations in a
self-supervised manner.

• We introduce a metric called the uncertainty distance,
which approximately represents the relative distance of
the state from the learned state distribution.

• Our in-depth experimental results demonstrate that our
method substantially improves the agent’s ability to re-
cover from OOD situations in terms of sample efficiency
and restoration of the performance for the original tasks.

• Moreover, we demonstrate that the proposed method can
successfully retrain the agent to recover from OOD sit-
uations even when in-distribution states are difficult to
visit through exploration.

2 Related Work
2.1 Preventing OOD Situations in RL
Several attempts have been made to prevent an agent from
falling into OOD situations in model-based RL. Kahn et al.
[2017] and Lütjens et al. [2019] proposed methods that used
model-based RL with model predictive control (MPC) to pre-
vent agents from falling into uncertain situations such as col-
lision. In these works, the uncertainty of the learned model is
calculated for all motion primitives and MPC chooses the ac-
tion sequence among motion primitives by considering their
cost and uncertainty. Similarly, Henaff et al. [2019] proposed
a method that uses the uncertainty of the learned model to
regularize the agent to stay in in-distribution states. Instead
of using predefined motion primitives, they penalize the pol-
icy during learning when the simulated trajectory generated
by the policy causes high uncertainty in the learned model.
Kang et al. [2022] suggested combining concepts from the
density model that estimates training data distribution and the
Lyapunov stability [Sastry, 1999] to avoid distribution shifts
when using learning-based control algorithms.

In the field of offline RL [Levine et al., 2020], the policy
is trained using a fixed offline dataset without additional in-
teraction with the environment. Offline RL methods are more
likely to fall into OOD situations because the distribution of
the offline dataset cannot entirely cover that of the environ-
ment. To address this problem, Fujimoto et al. [2019] and

Kumar et al. [2019] proposed methods to regularize the pol-
icy towards the distribution of an offline dataset, and Wu et al.
[2019], Kumar et al. [2020], and Li et al. [2022] proposed
methods to penalize the value function when the policy devi-
ates from the distribution of an offline dataset during training.

However, these methods focus on preventing the agent
from falling into OOD situations by discouraging the pol-
icy from selecting the action that leads the agent to OOD
states. Unlike previous works, our method addresses situa-
tions where the agent has already fallen into OOD situations
unexpectedly during operation. Because previous works fo-
cus on preventing OOD situations, they do not deal with such
situations. In this study, we focus on retraining the agent
to recover from such situations in a self-supervised manner,
which has the concept of recovery rather than prevention.
Therefore, our method is orthogonal and complementary to
previous works that focus on preventing OOD situations.

2.2 Returning to a Particular State Distribution in
RL

In the field of autonomous RL [Sharma et al., 2022b] which
aims to train the agent in non-episodic environments, the
agent is trained to autonomously return to states to restart
the training. Eysenbach et al. [2018] proposed a method to
train a reset policy that leads the agent to a predefined initial
state distribution. However, in this method, the reward for the
training reset policy must be defined based on prior knowl-
edge of the initial state distribution, e.g., in locomotion envi-
ronments, the reset reward is large when the agent is standing
upright. Alternatively, in order to accelerate learning, Sharma
et al. suggested a training policy to return to states selected by
a value-based curriculum [2021] or the distribution of expert
demonstrations [2022a], rather than a predefined initial state.
In the field of safe RL, Thananjeyan et al. [2021] suggested a
training recovery policy to return to safe states. In this study,
a safety critic that indicates the risk of the action in the given
state is pretrained using an offline dataset that contains con-
trolled demonstrations of constraint-violating behavior. Dur-
ing policy training, when the policy generates an action with
high risk, a recovery policy is executed to generate an action
to return to a state with low risk.

These methods all address returning from states that are in-
cluded in training environments while our method addresses
returning from OOD states that are completely unseen in the
training environments. Moreover, these methods only deal
with tasks where returning to a particular state distribution is
symmetric to original tasks, e.g., in navigation tasks, moving
to particular positions for returning is symmetric to moving
to goal positions, and in manipulation tasks, collocating ob-
jects in particular positions for returning is symmetric to col-
locating objects in goal positions. Conversely, our method
deals with tasks where returning is not symmetric to original
tasks, e.g., the agent should learn to turn its body over to re-
turn to the learned state distribution, whereas the original task
is moving forward as fast as possible.
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3 Preliminaries
3.1 Uncertainty Estimation
Uncertainty can be categorized into two types: aleatoric and
epistemic [Abdar et al., 2021]. Aleatoric uncertainty, also
known as data uncertainty, is caused by the inherent ran-
domness of an input. In contrast, epistemic uncertainty, also
known as model uncertainty, is caused by insufficient knowl-
edge about the data. In this study, we focus on epistemic
uncertainty and refer to it as uncertainty throughout the pa-
per for the sake of simplicity. Uncertainty can be represented
as the variance of the posterior distribution of network pa-
rameters W . Hence, knowledge about the posterior distribu-
tion of parameters p(W |D) is required, where D refers to the
data composed of input x and output y. However, the pos-
terior distribution does not exist in a general neural network
because a general neural network is optimized over the de-
terministic parameter. On the other hand, in Bayesian neural
networks (BNN) [Goan and Fookes, 2020], p(W |D) exists
by assuming the prior distribution of the parameter p(W ). In
BNN, given a deterministic input x, the output y is a random
variable because the parameter W is assumed to be a random
variable, and the distribution of y given D and x is as follows:

p(y|D,x) =

∫
W

p(y|x,W )p(W |D) dW, (1)

When data that the network has never learned is given,
the variance of the posterior distribution p(W |D) in-
creases, thereby increasing the variance of output distribution
p(y|D,x). This enables the estimation of uncertainty σu via
the variance of output distribution as σu = Varp(W |D)(y).

Gal et al. [2016] proposed a Monte Carlo dropout (MCD)
method that uses dropout as a Bayesian approximation to es-
timate uncertainty. They proved that using multiple forward
passes of the network with random dropout activation approx-
imates the Bayesian inference of the deep Gaussian process.
The uncertainty estimated using MCD for neural network f
with input x is calculated as follows:

σu ≈
N∑
i=1

(f i(x)− f̄)2

N
, with f̄ =

N∑
i=1

f i(x)

N
, (2)

where N is the number of forward passes, and f i refers to the
ith forward pass of neural network f with dropout activation.
We used MCD to estimate the uncertainty of the state, as it is
empirically proven to accurately represent the uncertainty in
RL [Wu et al., 2021].

3.2 Soft Actor-Critic (SAC)
SAC [Haarnoja et al., 2018] is an off-policy actor-critic
method based on a maximum entropy RL framework, which
aims to maximize expected reward while also maximizing
entropy. Improvement in exploration and robustness due to
maximum entropy formulation enables SAC to solve the chal-
lenges of high sample complexity and brittle convergence
properties of model-free RL. In this method, soft value iter-
ation for updating the Q-function and the policy is proposed.
Soft value iteration alternates soft policy evaluation for updat-
ing the Q-function and soft policy improvement for updating

Figure 1: Environment step of SeRO in the retraining phase: All net-
works with subscript ϕ are the components of the policy πϕ. enϕ with
n = h, 1, 2, ..., N refers to the encoder network eϕ with dropout
activation, and µϕ and σϕ refer to the networks that generate the
parameters of the Gaussian action distribution. Note that, the uncer-
tainty distance dut is calculated using the fixed original policy πϕorg .

the policy. It is proven that the policy provably converges to
the optimal policy through soft policy iteration. The objec-
tives for updating the parameterized Q-function Qθ and the
policy πϕ are as follows:

J(θ) = Est,at

[
1

2
(Qθ(st, at)− y)2

]
, (3)

J(ϕ) = Est,at [α log πϕ(at|st)−Qθ(st, at)] , (4)

with y = rt+γEst+1,at+1 [Qθ(st+1, at+1)− α log πϕ(at+1|st+1))],
where α is entropy coefficient, θ and ϕ are the parameters
of the Q-function and the policy respectively. We refer the
readers to the original paper for proof of convergence.

4 Method
In this section, we introduce the SeRO framework, which
aims to retrain agents to recover from OOD situations in a
self-supervised manner. SeRO is implemented by expand-
ing SAC. Note that although our method expands SAC, it can
be combined with any RL algorithm trained using the pol-
icy gradient method. We propose a novel auxiliary reward
that increases as the agent approaches the learned state dis-
tribution. When the agent is in the OOD state during the re-
training phase, it is trained using the auxiliary reward until it
returns to the in-distribution state. Moreover, in order to pre-
vent the agent from forgetting the original task while learning
to return to the learned state distribution, we used uncertainty-
aware policy consolidation. In the remainder of this section,
we describe how our method is implemented in detail.

4.1 Auxiliary Reward for Recovery From OOD
Situations

Because it is infeasible to directly calculate the distance of the
agent’s state from the learned state distribution, we approxi-
mate it using the uncertainty of the state predicted through
MCD. When state st is given, the uncertainty of st is calcu-
lated by applying Eq. (2) to the encoder network eϕ, which is
a component of policy πϕ, as shown in Fig. 1. The calculated
uncertainty σu is a vector that has the same dimensions as the
output because it approximates the variance of the output dis-
tribution of eϕ. To represent the relative distance of the state
from the learned state distribution using the uncertainty vec-
tor σu, we propose using the mapping function g : Rd → R,
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which maps σu to the uncertainty distance du. First, each el-
ement in σu is normalized using min-max normalization to
generalize the range of each element to between [0, 1]; this
enables the uncertainty distance to have a generalized range
for all environments. The element-wise maximum value of
σu is saved in the policy and updated whenever a new maxi-
mum value occurs during the training as follows:

⟨σmax⟩i =


−∞ if t = 0

⟨σu
t ⟩i else if ⟨σu

t ⟩i > ⟨σmax⟩i
⟨σmax⟩i otherwise

, ∀i ∈ {1, 2..., d},

(5)
where ⟨·⟩i is the ith element of the vector, d is the dimension
of the σu, and t is the time step of the training. Because MCD
approximates the variance of the output distribution of eϕ, the
element-wise minimum value of σu is set to zero which is
the lower bound of the variance. Finally, the uncertainty dis-
tance du is calculated by normalizing each element of σu and
taking the element-wise weighted average of the normalized
uncertainty vector as follows:

dut = g(σu
t ) =

d∑
i=1

wi
⟨σu

t ⟩i
⟨σmax⟩i

, where wi =

⟨σu
t ⟩i

⟨σmax⟩i∑d
i=1

⟨σu
t ⟩i

⟨σmax⟩i

.

(6)
We used the weighted average to prevent an element with
high uncertainty from being offset by one with low uncer-
tainty. As each element of the uncertainty vector is guaran-
teed to be in the range of [0, 1], the uncertainty distance is also
in the range of [0, 1]. The uncertainty distance is close to 1
when the state of the agent has high uncertainty, which means
the state is far from the learned state distribution. In contrast,
the uncertainty distance is close to 0 when the state of the
agent has low uncertainty, which means the state is close to
the learned state distribution. We designed an auxiliary re-
ward as a negative uncertainty distance as follows:

ru(st, at, st+1) = −dut+1 = −g
(
σu
t+1

)
. (7)

When the agent chooses action at at state st and reaches the
next state st+1, it receives a reward according to the uncer-
tainty distance of the next state. When the agent takes an ac-
tion that minimizes the uncertainty distance of the next state,
which means approaching the learned state distribution, it re-
ceives a high auxiliary reward. Accordingly, by maximizing
the expected cumulative auxiliary reward, the agent can learn
how to return to the learned state distribution.

4.2 Uncertainty-Aware Policy Consolidation
(UPC)

Catastrophic forgetting for the original task is problematic in
terms of the sample efficiency of the retraining phase because
the agent should relearn the original task after learning how to
return to the learned state distribution. In order to prevent the
agent from forgetting the original task during the retraining
phase, we proposed UPC loss as follows:

Lπ
con = (1− dut )DKL (π(at|st)||πorg(at|st)) , (8)

where πorg is the policy for the original task, which is the
fixed policy after the training phase. When the uncertainty
distance is small, which indicates that the agent is close to the

learned state distribution, the effect of the UPC is increased
to regularize the policy to take action that is similar to the
original policy to solve the original task. In contrast, when
the agent’s state is far from the learned state distribution, the
effect of the UPC is reduced, which enables the agent to learn
new behavior to return to the learned state distribution.

4.3 Self-Supervised RL for Recovery From OOD
Situations

As SeRO expands SAC, we consider the parameterized Q-
function Qθ(st, at) and the policy πϕ(at|st). The policy and
Q-function are updated based on soft value iteration using
experience sampled from the replay buffer D. The Qθ is up-
dated by minimizing Eq. (3) where the reward function rt is
defined as follows:

rt =

{
ret if st ∈ Sin

λrut else if st ∈ SOOD = (Sin)
c , (9)

where re is an environmental reward for the original tasks, λ
is the weight coefficient, and Sin and SOOD correspond to
in-distribution state space and OOD state space, respectively.
The objective for updating the policy πϕ is based on Eq. (4)
and augmented by UPC loss to regularize the policy. The
augmented objective for training πϕ is as follows:

J(ϕ) = E(st,d
u
t )∼D,at∼πϕ

[
α log πϕ(at|st)−Qθ(st, at) + Lπϕ

con

]
.

(10)
By updating the Q-function and the policy alternately, the
agent is trained to return to the learned state distribution in the
OOD states using the proposed auxiliary reward, and trained
to solve the original tasks using an environmental reward
when the agent returns to the learned state distribution. A
detailed explanation of the overall retraining procedure can
be found in the supplementary material.

5 Experiments
Our in-depth experiments were designed to answer the fol-
lowing questions: 1) Is retraining for recovery from OOD sit-
uations necessary? 2) Can the proposed uncertainty distance
successfully represent the relative distance of the state from
the learned state distribution? 3) Can our method improve the
agent’s ability to recover from OOD situations compared to
the baseline? 4) Can our method self-recognize whether the
agent is in an OOD state and retrain the agent to recover from
OOD situations? 5) What is the effect of each component of
the proposed method?

We conducted experiments on four OpenAI gym’s Mu-
JoCo environments [Brockman et al., 2016] to answer the
above questions. To evaluate the improvement of the agent’s
ability to recover from OOD situations, we used SAC as a
baseline because our method was implemented by expanding
it. In the remainder of this section, we explain how we imple-
mented the environments for the experiments and the result
of the experiment for each question in detail. Note that the
experiments for the second and fifth questions can be found
in the supplementary material.
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Method HalfCheetah-v2 Hopper-v2 Walker2D-v2 Ant-v2

HalfCheetahNormal-v2 HalfCheetahOOD-v2 HopperNormal-v2 HopperOOD-v2 Walker2DNormal-v2 Walker2DOOD-v2 AntNormal-v2 AntOOD-v2

SAC 11895.96±591.54 -635.38±112.47 3411.02±146.90 758.47±366.47 4069.70±432.95 576.48±527.65 5555.20±866.35 0.86±8.49

Table 1: Average returns computed over 100 episodes after the training phase.

(a) Training environments

(b) Retraining environments

Figure 2: Training environments (top) and retraining environments
(bottom). From left: HalfCheetah-v2, Hopper-v2, Walker2D-v2,
and Ant-v2.

5.1 Environments
We used HalfCheetah-v2, Hopper-v2, Walker2D-v2, and
Ant-v2 from the gym’s MuJoCo environments. To evaluate
our method, we modified the original environments to im-
plement training environments (e.g., HalfCheetahNormal-v2,
HopperNormal-v2, Walker2DNormal-v2, and AntNormal-
v2) and retraining environments (e.g., HalfCheetahOOD-v2,
HopperOOD-v2, Walker2DOOD-v2, and AntOOD-v2) sep-
arately as shown in Fig. 2. In the retraining environments,
we emphasize that a trained agent is spawned in a state that
is unseen in the training phase. In the experiments, we de-
noted states in the training environments as the in-distribution
states, and the states belonging to the rest of the state space
as the OOD states for the sake of clarity. We want to note that
our method solely addressed OOD states that can be recov-
ered by the agent based on its physical characteristics.
HalfCheetah-v2: In HalfCheetahNormal-v2, the episode is
terminated when the agent flips over. Whether the agent flips
over is determined by whether the angle of the agent’s front
tip is out of a certain range. In HalfCheetahOOD-v2, the
agent is spawned upside down. To return to the learned state
distribution, the agent should learn how to turn its body over.
Hopper-v2 & Walker2D-v2: In HopperNormal-v2 and
Walker2DNormal-v2, the episode is terminated when the
agent falls down. Whether the agent falls down is determined
by whether the angle of the agent’s top part or the height
is out of a certain range. The agent is spawned lying face
up and lying face down on the floor in HopperOOD-v2 and
Walker2DOOD-v2, respectively. To return to learned state
distribution, the agent should learn how to stand up.
Ant-v2: In AntNormal-v2, the episode is terminated when
the agent flips over. Whether the agent flips over is deter-
mined when the pitch or roll angle of the agent’s torso is
out of a certain range. In AntOOD-v2, the agent is spawned
upside down. To return to the learned state distribution, the
agent should learn how to turn its body over.

We refer the readers to the supplementary material for a

more detailed explanation of the environments.

5.2 Analysis of the Necessity of Retraining
In this subsection, we analyze whether the retraining of the
trained agent is necessary for OOD situations. If agents
trained for solving the original tasks can perform well in the
OOD states without retraining, retraining for recovery from
OOD situations may not be needed. To verify the necessity of
retraining, we first trained the agents in the training environ-
ments for 1 million steps using SAC, and we then evaluated
the trained agents in the training environments and retraining
environments respectively. Table 1 displays the average re-
turns of the environmental reward for the original tasks com-
puted over 100 episodes on five random seeds. As shown
in the table, the average return of the agent was significantly
lower in the retraining environments than in the training en-
vironments. This result suggests that the trained agent could
not perform the original tasks well when it fell into an OOD
state, and therefore, retraining for recovery from OOD situa-
tions is necessary.

5.3 Retraining for Recovery From OOD Situations
We conducted an experiment to compare our method and
SAC to answer the question that whether our method can
improve the agent’s ability to recover from OOD situations.
Both methods are trained in the training phase for 1 million
steps. Subsequently, the trained agents are retrained to re-
cover from OOD situations in the retraining phase. We re-
trained the SAC agent in two different ways; One is SAC–env
which receives environmental rewards for the original tasks in
OOD states, and the other is SAC–zero which receives zero
rewards in OOD states. Both methods receive environmental
rewards for the original tasks in in-distribution states. In the
case of SAC–zero, the agent is guided to return to the learned
state distribution because the agent has a chance to receive a
high reward if it visits in-distribution states while receiving
zero rewards if it stays in OOD states. Fig. 3 shows learning
curves acquired in the training phase and retraining phase for
each environment. The learning curves represent the average
return of the environmental reward for the original tasks. We
emphasize that the learning curves for the retraining phase
are calculated by setting the reward in OOD states to zero to
intuitively represent whether the agent successfully learns to
return to in-distribution states so that a higher average return
means that the agent returned to the learned state distribution
and performed the original tasks successfully.

As shown in the figure, both methods exhibited compara-
ble performance in the training environments. However, in
the retraining phase, SAC–env agent failed to recover from
OOD situations in all environments. We found that the agent
falls into a local optimum and tries to perform the original
tasks without returning to the learned state distribution, e.g.,
in AntOOD-v2, the agent moves without turning their body.
Further analysis and qualitative results of the SAC–env after
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(a) HalfCheetah-v2 (b) Hopper-v2 (c) Walker2D-v2 (d) Ant-v2

Figure 3: Learning curves for the training environments (top) and the retraining environments (bottom), calculated for five episodes of
evaluation at every 5000 steps of training. The darker-colored lines and shaded areas represent the average returns and standard deviations
computed over five random seeds. The black dashed horizontal line represents the average return of the SeRO agent after the training phase.

Figure 4: Qualitative results of SeRO after the retraining phase. The figure shows the agent’s motion for a time increasing from left to right
in each environment.

the retraining phase can be found in the supplementary ma-
terial. When comparing SeRO and SAC–zero, SeRO showed
much higher sample efficiency and average return than SAC–
zero. Moreover, while SAC–zero failed to restore the original
performance, SeRO successfully restored the original perfor-
mance for all environments considering that the average re-
turn converges to that reached in the training phase. These re-
sults are due to the two characteristics of SeRO. First, the aux-
iliary reward enables SeRO agents to distinguish the values
of OOD states according to their distance from the learned
state distribution even before visiting in-distribution states.
We refer the readers to the experiment for the second ques-
tion in the supplementary material for whether the uncer-
tainty distance can approximate the distance of the state from
the learned state distribution. In contrast, SAC–zero agents
cannot distinguish the values of OOD states until it visits in-
distribution states because it receives constant zero rewards in
OOD states. Therefore, SeRO agents can quickly learn how
to return to learned state distribution, while SAC–zero agents
cannot learn until they first visit in-distribution states through
exploration. We found that SAC–zero failed to return to the

learned state distribution in HalfCheetahOOD-v2 where in-
distribution states are difficult to visit through exploration,
while our method succeeded for all seeds. Second, UPC pre-
vents SeRO agents from forgetting the original tasks during
learning to return to the learned state distribution and also
regularizes agents to take action similar to what they learned
in the training phase once they return to in-distribution states.
Therefore, once the agent learns to return to the learned state
distribution, SeRO converges quickly to the average return
comparable to that reached in the training phase. To summa-
rize the results, the reward for the original tasks cannot lead
the agent to return to the learned state distribution and there-
fore the reward for recovery should be defined separately. The
constant zero rewards in OOD states are also not suitable be-
cause they cannot guarantee the agent to return to the learned
state distribution in environments where in-distribution states
are difficult to visit through exploration. In contrast, the pro-
posed auxiliary reward successfully leads the agent to return
even in such environments. Moreover, the proposed UPC en-
ables the agent to restore the original performance for the
original tasks quickly by preventing catastrophic forgetting.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3889



(a) HalfCheetahOOD-v2 (b) HopperOOD-v2

(c) Walker2DOOD-v2 (d) AntOOD-v2

Figure 5: Learning curves for the retraining environments of SeRO
and SeRO+OC, calculated for five episodes of evaluation at every
5000 steps of training. The darker-colored lines and shaded areas
represent the average returns and standard deviations computed over
five random seeds. The black dashed horizontal line represents the
average return of the SeRO agent after the training phase.

As a result, our method improves the agent’s ability to re-
cover from OOD situations in terms of sample efficiency and
restoration of the original performance for the original tasks.

Fig. 4 visualizes the qualitative results of the agent trained
using SeRO after the retraining phase. In HalfCheetahOOD-
v2, the agent first shakes its legs to create rotational force and
then hits the floor and tumbles to turn over. As shown in the
figure, because our auxiliary reward is not designed explicitly
for the desired behavior, agents learn diverse ways to return
to the learned state distribution, such as tumbling forward or
backward. In HopperOOD-v2, the agent first bends its top
part to raise the body and then stands up by pushing the floor
using the top part. In Walker2DOOD-v2, the agent first raises
its top part, steps on the floor with one knee, and then stands
up by pushing the floor with the knee. In AntOOD-v2, the
agent turns its body over with momentum by hitting the floor
with its legs. Although there is no explicit reward based on
the prior knowledge of the OOD situations and environments,
the agent trained using SeRO successfully learns the desired
behavior to return to the learned state distribution in a self-
supervised manner.

5.4 Retraining for Recovery From OOD Situations
With the Agent’s Own Criterion

In the previous subsections, we defined the states in the train-
ing environments as in-distribution states sin ∈ Straining and
states belonging to the rest of the state space as the OOD
states sOOD ∈ (Straining)

c for the experiments. Accord-
ingly, the reward function for retraining SeRO in Section 5.3
can be formulated as follows:

rt =

{
ret if st ∈ Straining

λrut otherwise
, (11)

However, determining whether the current state is in
Straining requires prior knowledge of Straining , which is

infeasible in real-world environments. The reason we used
explicit criterion for distinguishing in-distribution states and
OOD states in this way was for a fair comparison with the
baseline (SAC–zero), which could not recognize whether the
current state is the in-distribution state or the OOD state itself.
To retrain the agent completely without prior knowledge or
human intervention, the agent should recognize whether the
current state is the OOD state or the in-distribution state based
on its own criterion. In this experiment, we retrained SeRO
with its own criterion based on the uncertainty distance. The
corresponding reward function for retraining SeRO can be
formulated as follows:

rt =

{
ret if dut < ϵ

λrut otherwise
, (12)

where ϵ is the threshold. When the uncertainty distance is
smaller than ϵ, which means that the agent’s state is close to
the learned state distribution, the agent is trained using en-
vironmental rewards to solve the original task. Otherwise,
the agent is trained using auxiliary rewards to return to the
learned state distribution.

We first trained the SeRO agent in the training environ-
ments for 1 million steps. Subsequently, the trained agent
is retrained in the retraining environments with the reward
function Eq. (12). Fig. 5 shows the learning curves of the
SeRO trained in Section 5.3 and the SeRO trained with its
own criterion which we refer to as SeRO+OC. Note that the
same trained agent is used for both algorithms in the retrain-
ing phase. For a fair comparison with SeRO, the average
return of SeRO+OC in the plots is calculated in the same
way as in Section 5.3 using an explicit criterion based on the
prior knowledge of Straining , although SeRO+OC is actually
trained using the reward function in Eq. (12) with its own
criterion. As shown in the figure, SeRO+OC shows compa-
rable performance to SeRO for all environments. The results
demonstrate that our method can learn to return to the learned
state distribution and perform original tasks successfully with
its own criterion by self-recognizing whether the current state
is the OOD state or the in-distribution state according to the
uncertainty distance, which enables self-supervised recovery
without prior knowledge about environments and OOD situ-
ations.

6 Conclusion
In this study, we addressed the situation in which a trained
agent has already fallen into an OOD state, which can happen
unintentionally in real-world environments. We introduced
SeRO, a self-supervised RL method for recovery from OOD
situations. In particular, we proposed an auxiliary reward
that guides the agent to the learned state distribution. We
also proposed uncertainty-aware policy consolidation to pre-
vent the agent from forgetting the original task while learn-
ing how to return to the learned state distribution. We eval-
uated our method on OpenAI gym’s MuJoCo environments
and demonstrated that the proposed method can improve the
agent’s ability to recover from OOD situations. Moreover,
we also showed that our method successfully learns to re-
cover from OOD situations even when in-distribution states
are difficult to visit through exploration.
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