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Abstract
In this paper, we study how to achieve two charac-
teristics highly-expected by incomplete multi-view
clustering (IMvC). Namely, i) instance common-
ality refers to that within-cluster instances should
share a common pattern, and ii) view versatil-
ity refers to that cross-view samples should own
view-specific patterns. To this end, we design a
novel dual-stream model which employs a dual at-
tention layer and a dual contrastive learning loss
to learn view-specific prototypes and model the
sample-prototype relationship. When the view
is missed, our model performs data recovery us-
ing the prototypes in the missing view and the
sample-prototype relationship inherited from the
observed view. Thanks to our dual-stream model,
both cluster- and view-specific information could
be captured, and thus the instance commonality
and view versatility could be preserved to facilitate
IMvC. Extensive experiments demonstrate the su-
periority of our method on five challenging bench-
marks compared with 11 approaches. The code
could be accessed from https://pengxi.me.

1 Introduction
Clustering is a fundamental tool in data analysis [Van Gans-
beke et al., 2020; Li et al., 2021; Li et al., 2022], which
aims at partitioning instances into different clusters without
the help of data annotations. To handle multi-view data,
many efforts have been devoted to developing multi-view
clustering (MvC) methods [Tao et al., 2017; Hu et al., 2019;
Huang et al., 2019; Yang et al., 2021a; Yang et al., 2021b].
Almost all of MvC works implicitly or explicitly take the data
completeness assumption, i.e., all instances exist in all views.
In practice, however, the assumption is always violated due
to the complexity of data collection and transmission, leading
to the incomplete problem in multi-view data. For example,
when building medical history for patients, the multi-view
healthcare data is susceptible to be incomplete due to disease
concealment in the data collection or information loss during
treatment transfer.

To achieve incomplete multi-view clustering (IMvC), a
feasible solution is employing the observed cross-view sam-

Figure 1: Our basic idea. (a) Three typical sample-based data recov-
ery paradigms in existing IMvC studies, namely, i) neighborhood-
based recovery, ii) cross-view prediction, and iii) adversarial gen-
eration. One limitation of the three paradigms is that two highly-
expected characteristics in IMvC, i.e., instance commonality and
view versatility, are not fully explored. (b) The proposed prototype-
based imputation paradigm. In brief, the data is recovered using the
sample-prototype relationship inherited from the observed view and
the prototypes from the missing view. Such a paradigm could re-
cover both cluster- and view-specific information, thus preserving
instance commonality and view versatility.

ples to recover the missing counterparts and then performing
clustering. As shown in Fig 1(a), one of the most straightfor-
ward paradigms is using observed samples to find cross-view
neighbors which are further used to recover missing samples.
Such a paradigm implicitly assumes that the views could be
mapped into a common space wherein the neighbors of the
missing sample could be accurately identified by its cross-
view counterpart. In practice, however, such an assumption
is satisfied always at the cost of the view versatility since the
view-specific information is often excluded to learn the com-
mon space. To compensate for view versatility, some stud-
ies propose capturing the view-specific information using a
cross-view predictor [Lin et al., 2021] or generator [Wang
et al., 2018]. Unfortunately, such a generative paradigm es-
sentially learns an equivalent mapping for the whole dataset
across views, which will lose the instance commonality, i.e.,
within-cluster compactness and between-cluster scatterness.

Different from the aforementioned sample-based impu-
tation methods, we propose a prototype-based imputation
paradigm as shown in Fig. 1(b). Unlike existing methods that

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3911

https://pengxi.me


restore the missing sample through learning a common rep-
resentation for cross-view samples, we propose performing
data recovery using the prototypes from the missing view and
the sample-prototype relationship from the observed view.
Thanks to our paradigm, the instance commonality and the
view versatility can be preserved because the prototypes cap-
ture the cluster- and view-specific information. Furthermore,
our invariance assumption on the sample-prototype relation-
ship is milder than that on the cross-view representation taken
in these works.

To implement the prototype-based imputation, ones have
to overcome the following two technical challenges, i.e., i)
incorporating prototypes and samples to enhance the instance
commonality, and ii) learning view-specific prototypes to pre-
serve view versatility. To this end, we propose an incomplete
multi-view clustering method based on a novel dual-stream
model consisting of a dual attention layer and a dual con-
trastive learning loss. To be specific, the dual attention layer
aims to enhance the instance commonality by representing
samples and prototypes with each other. More specifically,
the sample representation is learned by aggregating the sam-
ple itself and the corresponding prototype, thus enhancing the
commonality of with-cluster instances. In a dual manner, the
prototype representation is learned through aggregating pro-
totype itself and the current input samples, thus integrating
the historical and current information. The dual contrastive
learning loss is designed to preserve view versatility, which
consists of the standard contrastive learning on samples and
a new bounded contrastive loss on the prototypes. Thanks to
the bounded contrastive loss, the prototypes will embrace the
unique view-specific information, thus preserving the view
versatility. The major contributions of this paper could be
summarized as follows:

1. From the standpoint of data recovery for IMvC, we pro-
posed a novel imputation method which restores the
missing samples using the prototypes and the sample-
prototype relationship. Such a prototype-based imputa-
tion paradigm could preserve instance commonality and
view versatility that are favorites to IMvC.

2. From the standpoint of unsupervised multi-view rep-
resentation learning, we propose a novel dual-stream
model which learns sample representation using proto-
types and prototype representation using the input sam-
ples. Thanks to the dual-stream model, our method
could learn better representation for boosting IMvC per-
formance.

3. Extensive experiments on five benchmarks demonstrate
the superiority of our method in both incomplete multi-
view clustering and data recovery performance, com-
pared with 11 baselines.

2 Related Work
In this section, we briefly review two related topics, namely,
incomplete multi-view clustering and attention-based model.

2.1 Incomplete Multi-View Clustering
IMvC is a long-standing task in the multi-view learning com-
munity, which has attracted numerous studies. Based on the

way to utilize the cross-view information, classic IMvC meth-
ods could be divided into three categories, including matrix
factorization based [Li et al., 2014; Zhao et al., 2016; Shao et
al., 2015; Hu and Chen, 2019], kernel learning based [Bach
and Jordan, 2002; Liu et al., 2020], and similarity relation
based [Wang et al., 2019; Liu et al., 2019]. To handle more
complex and large-scale data, several deep IMvC methods
have been developed recently. Based on the paradigm of re-
covering the missing data, deep IMvC methods could be di-
vided into three categories, including i) neighborhood-based
methods [Tang and Liu, 2022; Yang et al., 2022b], which
impute the missing data with the help of cross-view near-
est neighbors, ii) predictor-based methods [Lin et al., 2021;
Lin et al., 2022], which learn a direct mapping from ob-
served views to missing views for data recovery, and iii)
GAN-based methods [Wang et al., 2018; Jiang et al., 2019;
Zhang et al., 2020], which recover the missing data through
adversarial generation.

Among the above works, deep IMvC methods are most
similar to this study. However, this study is remarkably dif-
ferent from existing works in the following aspects. First,
the existing works impute data based on the observed coun-
terparts which might discard either instance commonality or
view versatility. In contrast, the proposed prototype-based
imputation paradigm performs recovery using the prototypes
in the missing view and the sample-prototype relationship in
the observed view, thus taking the best of both worlds. Sec-
ond, to the best of our knowledge, this could be the first
attention-based model in the IMvC community, showing its
great potential in unsupervised data recovery and IMvC.

2.2 Attention-Based Model

The attention-based model learns better representation by
focusing on regions with relevant information, which has
achieved great success in various tasks such as image clas-
sification [Yu et al., 2018], person re-identification [Yang et
al., 2022a], object detection [Woo et al., 2018], neural ma-
chine translation [Vaswani et al., 2017], and sentence sum-
marization [Rush et al., 2015]. Recently, some works have
explored the attention mechanism in multi-view learning. For
example, [Qu et al., 2017] promotes using attention to collab-
orate different views for multi-view representation learning.
[Zhou and Shao, 2018] proposes a viewpoint-aware attention
model for vehicle re-identification. [Luo et al., 2020] im-
plements attention-enhanced matching confidence volume in
multi-view stereo. [Yan et al., 2022] introduces lateral con-
nections by cross-view attention, and fuses multi-view infor-
mation for video recognition.

The major differences between this work and previous
attention-based models lie in two aspects. First, different
from most existing works that focus on single-stream and
instance-wise attention, the proposed dual-stream model em-
ploys a novel dual attention layer to incorporate samples and
learnable prototypes with each other. Second, unlike most
existing works that solely use attention for general multi-
view feature fusion, the proposed dual attention layer is
IMvC-oriented, which simultaneously facilitates clustering-
favorable feature extraction and data recovery.
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Figure 2: Overview of our ProImp method. (a) The dual attention layer. The attention is computed between samples and prototypes to
incorporate each other. On the one hand, the sample representation aggregates the sample itself and the corresponding prototype, thus
enhancing the commonality of with-cluster instances. On the other hand, the prototype representation aggregates the prototype itself and the
current input samples, thus integrating the historical and current information. (b) The ProImp model and dual contrastive learning objective.
To optimize the entire model as well as learnable view-specific prototypes, in addition to conducting standard contrastive learning on samples,
we dually contrast prototypes with a new bounded contrastive loss to preserve view versatility. (c) The prototype-based missing data recovery.
The missing samples are recovered with the attention inherited from the observed view and prototypes in the missing view, which enjoys both
instance commonality and view versatility. Meanwhile, samples from the observed view are skip-connected to introduce instance consistency
in the recovered data.

3 Method
In this section, we propose a dual-stream model dubbed
ProImp to achieve incomplete multi-view clustering. As illus-
trated in Fig. 2, ProImp is composed of a dual attention layer
to model the relationship between samples and prototypes, as
well as a dual contrastive learning loss to learn attention and
view-specific prototypes. For data recovery, ProImp adopts
the prototype-based imputation paradigm to preserve instance
commonality and view versatility. In the following, we first
introduce our dual attention layer in Sec. 3.1, then elaborate
on the dual contrastive learning loss in Sec. 3.2, and finally
present the prototype-based imputation paradigm in Sec. 3.3.

3.1 Dual Attention Layer
Without loss of generality, we take bi-view data as an example
for clarity. Let X =

{
X1,2,X1,X2

}
be an incomplete multi-

view dataset, where X1,X2,X1,2 refer to three subsets of
instances that have data observed in the first, the second, and
both views. We denote the set of N complete instances as
X1,2 = {X1, X2}, where Xv = {xv

1, x
v
2, . . . , x

v
N} denotes

the samples in the v-th view.
As illustrated in Fig. 2, the dual attention is computed be-

tween samples Xv and a set of learnable prototypes Cv =
{cv1, cv2, . . . , cvK}, where K corresponds to the target clus-
ter number. Mathematically, the attention Av is computed
through

Av = Softmax
(
(W v

I X
v)TW v

PC
v/
√
d
)
, (1)

where W v
I and W v

P are two linear layers for samples and pro-
totypes in v−th view respectively, and d is the dimension of
features.

The attention Av is then used to incorporate samples and
prototypes in a dual manner. For sample representation,
the corresponding prototype is aggregated to each sample,
namely,

Zv = Xv +W ′v
PC

v (Av)
T
, (2)

where Zv = {zv1 , zv2 , . . . , zvN} is the new representation of
samples, and W ′v

P is another linear layer for prototypes. Such
behavior intrinsically pulls each sample to its corresponding
cluster center, thus enhancing the instance commonality fa-
vored in clustering.

Likewise, for prototype representation, features of current
samples would be aggregated into prototypes, namely,

Uv = Cv +W ′v
IX

vAv, (3)
where Uv = {uv

1, u
v
2, . . . , u

v
K} is the new representation of

prototypes, and W ′v
I is another linear layer for samples. Such

behavior enables prototypes to integrate the historical and
current cluster information.

Notably, an encoder network is adopted to extract the fea-
tures of samples in each view before feeding them to the dual
attention layer. Here we omit it in mathematical notations for
simplicity.

3.2 Dual Contrastive Learning
As discussed above, the dual attention layer outputs
prototype-incorporated samples and sample-incorporated
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prototypes in each view. To optimize the entire model and
learnable view-specific prototypes, we conduct dual con-
trastive learning on samples and prototypes, respectively.

Sample-Wise Contrastive Learning
To mine instance consistency between cross-view samples,
we adopt the following contrastive loss that maximizes the
similarities between cross-view samples of the same instance,
while minimizing those between samples of different in-
stances, namely,

LS =
1

2N

N∑
i=1

(
L1,2
i + L2,1

i

)
, (4)

L1,2
i = − log

es(z
1
i ,z

2
i )/τI∑N

j=1

[
es(z

1
i ,z

1
j )/τI + es(z

1
i ,z

2
j )/τI

] , (5)

where s (·, ·) denotes the cosine similarity, τI = 0.5 is the
temperature parameter, and L2,1

i is defined similarly as L1,2
i .

Prototype-Wise Contrastive Learning
As discussed, our prototype-based imputation paradigm re-
quires prototypes to capture view versatility. In other words,
prototypes from different views should not collapse into an
identical representation. To this end, instead of simply max-
imizing the similarities between cross-view prototypes of the
same cluster, we propose to optimize their similarities to a
bound. Meanwhile, to achieve a more distinct clustering,
we minimize the similarities between prototypes of differ-
ent clusters, which leads to the following bounded contrastive
loss,

LP =
2

K

K∑
i=1

∣∣s (u1
i , u

2
i

)
− α

∣∣
τP

+
1

K

2∑
v1=1
v2=1

K∑
i=1

log

e|s(uv1
i ,u

v2
i )−α|/τP +

K∑
j=1,j ̸=i

es(u
v1
i ,uv2

j )/τP

 ,

(6)
where α denotes the similarity bound and τP = 2.0 is the
temperature parameter.

Attention Regularization
Recall that the dual attention Av defined in Eq. 1 is an N×K
matrix, where Av

ij intrinsically corresponds to the probability
of the i-th sample belonging to the j-th cluster. To achieve
more distinct clustering, we expect each sample to be confi-
dently assigned to a certain cluster. Meanwhile, we should
prevent the trivial solution where most samples are assigned
to the same cluster. For these purposes, we propose the fol-
lowing attention regularization term, namely,

LR =
2∑

v=1

K∑
j=1

[
Av

·j logA
v
·j − β

N∑
i=1

Av
ij logA

v
ij

]
, (7)

where Av
·j =

∑N
i=1 A

v
ij and β is the weight parameter to

balance the sharpness and uniformity of attention.

Combining the dual contrastive learning loss and the at-
tention regularization term, we arrive at the overall objective
function of the proposed ProImp, namely,

L = LS + LP + LR. (8)

3.3 Prototype-Based Imputation
To recover the missing samples in the incomplete data
{X1,X2}, we design the following prototype-based impu-
tation strategy as illustrated in Fig. 2(c). Specifically, given
data X1 observed in view 1, the missing data in view 2 is
recovered with attention A1 and prototypes C2 through

Ẑ2 = X1 +W ′2
PC

2
(
A1

)T
, (9)

where A1 is the dual attention computed in view 1 according
to Eq. 1, and Ẑ2 is the recovered data in view 2. The idea
behind such an attention inheritance is that the instance se-
mantics are expected to be consistent across different views.
By incorporating cluster- and view-specific information from
prototypes, both instance commonality and view versatility
could be preserved in the recovered data. In addition, samples
from the observed view are skip-connected to the recovered
data to introduce instance consistency.

Likewise, the missing data Ẑ1 in view 1 is similarly recov-
ered given data X2 observed in view 2. Let Z1 and Z2 denote
the observed views in the incomplete data, the representation
Z = {{Z1, Z2}, {Z1, Ẑ2}, {Ẑ1,Z2}} of both the observed
and recovered data is concatenated and fed into the k-means
algorithm to achieve clustering. Notably, though the atten-
tion itself intrinsically corresponds to the cluster assignment,
it only utilizes data from a single view. Therefore, a simple
concatenation operation is applied to gather multi-view infor-
mation.

4 Experiment
In this section, we evaluate the proposed ProImp method on
five widely-used multi-view datasets compared with 11 base-
lines. First, we present the experimental setting and imple-
mentation details in Sec. 4.1. Then, we compare our ProImp
with state-of-the-art methods in Sec. 4.2. After that, we con-
duct the parameter analyses and ablation studies in Sec. 4.3.
Finally, we present visualization results in Sec. 4.4.

4.1 Experimental Settings
Five multi-view datasets are used in our experiments, includ-
ing Scene15 [Fei-Fei and Perona, 2005], Reuters [Amini et
al., 2009], NoisyMNIST [Wang et al., 2015], CUB [Zhang
et al., 2019a], and MNIST-USPS [Peng et al., 2019]. We
randomly remove one view for m instances to simulate in-
complete multi-view data with a missing rate of m/n, where
n corresponds to the total number of instances.

The proposed ProImp is implemented in PyTorch 1.11.0
and all the experiments are conducted on an NVIDIA 3090
GPU on Ubuntu 20.04 OS. The model is trained for 150
epochs using the Adam optimizer with an initial learning rate
of 1e-3, with a batch size of 1,024 on all datasets. The simi-
larity bound α in Eq. 6 and the weight parameter in Eq. 7 are
set to 0.75 and 0.02, respectively. In practice, we first warm
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Setting Method Scene-15 Reuters NoisyMNIST CUB MNIST-USPS
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Incomplete

DCCA 28.78 28.35 13.24 45.84 26.08 18.00 63.75 61.72 41.17 44.20 43.30 26.65 78.29 75.69 68.33
DCCAE 29.01 29.13 12.86 47.04 28.00 14.48 65.42 62.87 38.32 42.33 40.87 25.46 79.53 79.19 68.40
BMVC 32.45 30.87 11.56 32.10 6.98 2.89 30.71 19.16 10.60 29.79 20.28 6.35 43.90 39.00 21.00
AE2-Nets 22.44 23.43 9.56 29.08 7.55 4.84 29.88 23.78 11.81 35.87 32.00 15.90 40.90 29.30 19.70
PMVC 25.47 25.37 11.31 29.32 7.42 4.42 33.13 25.49 14.62 57.73 54.37 38.29 60.50 47.10 39.80
UEAF 28.95 26.92 8.37 33.32 20.06 12.19 37.45 34.42 25.71 45.80 45.25 26.88 63.32 58.86 49.23
DAIMC 27.00 23.47 10.62 40.94 18.66 15.04 33.81 26.42 15.96 62.70 58.48 47.72 55.20 49.60 38.60
EERIMVC 31.50 31.11 14.82 29.77 12.01 4.21 55.62 45.92 36.76 68.73 63.90 53.77 65.20 55.70 48.90
COMPLETER 39.50 42.35 23.51 34.61 17.53 2.93 80.01 75.23 70.66 53.66 65.45 47.26 88.91 89.52 85.31
SURE 39.60 41.58 23.49 47.18 30.89 23.32 92.34 84.99 84.31 58.33 50.37 37.44 92.34 84.99 84.31
DSIMVC 30.56 35.47 17.24 39.87 19.61 17.13 57.47 55.12 44.08 54.57 51.35 35.04 96.71 91.82 92.98
ProImp(Ours) 41.58 42.86 25.31 51.89 35.54 28.53 94.86 87.43 89.08 73.30 66.38 54.84 96.81 91.85 93.06

Complete

DCCA 36.61 39.20 21.03 47.95 26.57 12.71 89.64 88.33 83.95 55.60 56.11 43.18 87.19 91.65 86.73
DCCAE 34.58 39.01 19.65 41.98 20.30 8.51 78.00 81.24 68.15 55.30 58.70 45.05 96.80 97.73 96.58
BMVC 40.50 41.20 24.11 42.39 21.86 15.14 88.31 77.01 76.58 66.21 61.70 48.69 87.10 84.50 82.00
AE2-Nets 37.17 40.47 22.24 42.39 19.76 14.87 52.83 51.24 39.52 48.80 46.71 30.49 54.00 46.50 35.40
PMVC 30.83 31.05 14.98 32.50 11.11 7.48 41.09 36.36 24.47 64.53 70.34 53.11 60.40 59.50 47.30
UEAF 34.37 36.69 18.52 40.19 24.34 15.94 66.22 64.34 54.83 63.33 56.91 44.48 77.78 73.77 66.31
DAIMC 32.09 33.55 17.42 40.78 21.15 15.98 38.40 34.66 22.98 71.57 70.69 57.89 65.10 65.50 54.20
EERIMVC 39.60 38.99 22.06 33.21 14.28 3.90 65.66 57.60 51.34 74.00 73.05 62.41 79.00 68.10 62.40
COMPLETER 41.07 44.68 24.78 36.20 18.87 4.75 89.08 88.86 85.47 63.57 70.18 52.92 94.46 95.63 93.20
SURE 40.95 43.19 25.01 49.06 29.91 23.56 98.36 95.38 96.43 58.00 59.32 45.16 99.31 98.06 98.47
DSIMVC 31.66 35.61 17.21 43.20 23.29 19.02 60.98 58.09 46.74 59.67 57.12 41.26 98.50 95.70 96.60
ProImp(Ours) 43.61 45.02 26.84 56.54 39.35 32.77 99.17 97.48 98.18 80.63 75.48 66.04 99.61 98.86 99.14

Table 1: The clustering performance on four multi-view benchmarks. The best and second best results are denoted in bold and underline.

Figure 3: Clustering performance on Scene-15 under different missing rates. The colored regions denote the standard variances in five random
experiments.

up the model with the sample-wise contrastive loss in Eq. 5
and the regularization term in Eq. 7 for 50 epochs. After that,
we align the prototypes in different views with the Hungarian
algorithm and train the model with the overall loss in Eq. 8
till the end.

Three widely-used metrics including Accuracy (ACC),
Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI) are used for evaluation. A higher value of these
metrics indicates a better clustering performance.

4.2 Comparisons with State of the Arts
We compare ProImp with 11 state-of-the-art multi-view clus-
tering baselines, including DCCA [Andrew et al., 2013],
DCCAE [Wang et al., 2015], BMVC [Zhang et al., 2018],
AE2-Nets [Zhang et al., 2019b], PMVC [Li et al., 2014],
UEAF [Wen et al., 2019], DAIMC [Hu and Chen, 2019],
EERIMVC [Liu et al., 2020], COMPLETER [Lin et al.,
2021], SURE [Yang et al., 2022b], and DSIMVC [Tang and
Liu, 2022].

We first evaluate ProImp and baselines under the Incom-
plete (with the missing rate of 50%) and Complete (with

the missing rate of 0%) scenarios. Table 1 shows the aver-
age clustering performance under five random experiments.
As can be seen, our ProImp significantly outperforms the
state-of-the-art methods on all datasets. In particular, ProImp
achieves a relatively 22% (28.53% v.s. 23.32%) and 39%
(32.77% v.s. 23.56%) ARI improvement under the Incom-
plete and Complete scenarios on the Reuters dataset, com-
pared with the second best method SURE. The superior
performance demonstrates the effectiveness of the proposed
dual-stream model, including the dual attention layer and dual
contrastive learning objective.

We further explore the robustness of ProImp by increas-
ing the missing rate from 0% to 90% with a gap of 10% on
the Scene-15 dataset. Considering that the number of com-
plete instances would be greatly reduced under large missing
rates, we adjust the batch size to 128 and set the learning rate
as 3e-4 in this experiment. As shown in Fig. 3, our ProImp
substantially outperforms baselines under all missing rates.
In addition, the performance of ProImp drops less as the miss
rate increases. For example, in terms of ACC, ProImp outper-
forms SURE by 2.23% (43.18% v.s. 40.95%) under the com-
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Figure 4: Parameter analyses on Scene-15. (a) The clustering performance of ProImp under different choices of the similarity bound α and
the balance weight β. (b) The cross-view prototype similarity and clustering performance under different choices of α.

plete scenario, and the performance gap increases to 4.26%
(39.17% v.s. 34.91%) under 90% missing rate. Such a re-
sult demonstrates the superiority of our attention imputation
strategy for data recovery, as it could preserve both the view
versatility and instance commonality information.

In this section, to better understand the effectiveness of
each component in ProImp, we conduct a series of parameter
analyses and ablation studies. In brief, we first investigate the
influence of the similarity bound α in the prototype stream
loss and the balance weight β in the attention regularization
term. Then we perform ablation studies on each loss term.
Finally, we test variant data recovery strategies.

Influence of Hyper-Parameters α and β

There are two hyper-parameters in the proposed ProImp,
namely, the similarity bound α in the prototype stream loss
and the balance weight β in the attention regularization term.
To investigate how they influence the performance of ProImp,
we change α in the range of {0, 0.25, 0.5, 0.75, 1} and β in
the range of {0.001, 0.02, 0.1, 0.5, 2}. As shown in Fig. 4a,
ProImp achieves the best performance when α = 0.75.
According to the cross-view prototype similarity shown in
Fig. 4b, positive prototype pairs get closer as α increases.
An over-small cross-view prototype similarity would harm
view consistency, and an over-large value would sacrifice the
view versatility, both leading to inferior performance. As for
the other parameter β, we find that ProImp achieves promis-
ing results under a reasonable range (i.e., from 0.001 to 0.1).
However, when the balance weight is too large, the attention
between each instance and prototype tends to be equal. Such
a collapsed attention would cause a significant performance
drop.

Effectiveness of Each Loss Term
To explore the effectiveness of the proposed sample-wise
contrastive loss, prototype-wise contrastive loss, and atten-
tion regularization, we conduct the ablation experiments on
the three losses in Eq. 8. According to the results shown
in Table 2, the regularization term LR itself is not suffi-
cient to learn appropriate attention. Both LS and LP could
guide attention optimization, leading to better clustering per-
formance. The best performance is achieved when all three
losses are adopted, as both the instance commonality and
view versatility are achieved.

LS LP LR ACC NMI ARI
✓ 25.12 23.91 10.72

✓ ✓ 39.37 42.21 23.86
✓ ✓ 27.73 25.29 12.20

✓ ✓ ✓ 41.58 42.86 25.31

Table 2: Ablation study of three losses on Scene-15, where ”✓”
denotes the loss is adopted.

4.3 Parameter Analyses and Ablation Studies

Variants of Data Recovery Strategy
Recall that to preserve instance commonality and view versa-
tility, we recover the missing view by the sample-prototype
attention inherited from the observed view and prototypes
from the missing view, namely, Ẑ2 = X1 +W ′2

PC
2
(
A1

)T
via Eq. 9. Here, to prove the superiority of our paradigm, we
further investigate three other variants of recovery strategies
on the Scene-15 dataset. Specifically,

• Prototypes from observed views: recovering by using
the prototypes and sample-prototype attention from the
observed view, i.e., Ẑ2 = X1 +W ′1

PC
1
(
A1

)T
;

• Prototypes from missing views only: recovering by only
using prototypes from the missing view, i.e., Ẑ2 =

2W ′2
PC

2
(
A1

)T
;

• Samples from observed views only: recovering by only
using the observed cross-view counterparts, i.e., Ẑ2 =
2X1;

Notably, as both sample and prototype features are L2 nor-
malized, we scale the features of the last two variants to
keep the length consistent. From the results in Table 3, one
could have the following conclusions. First, replacing the
missing view prototypes with those in the observed view
would lose the view versatility, thus remarkably degrading
the performance. Second, solely using prototypes or cross-
view counterparts suffers from losing either cross-view con-
sistency or instance commonality, resulting in sub-optimal re-
sults. In comparison, our default paradigm takes the best of
both worlds, leading to the best performance.
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Strategy ACC NMI ARI
P. from observed views 32.23 34.44 17.73
P. from missing views only 36.32 39.06 21.14
S. from observed views only 40.17 41.43 23.66
Default 41.58 42.86 25.31

Table 3: Ablation study on different data recovery strategies on
Scene-15. “P.” denotes prototypes and “S.” denotes samples.

Figure 5: t-SNE visualization on the NoisyMNIST dataset across
the training process.

4.4 Visualizations
In this section, we present two visualization results on the
NoisyMNIST dataset with a missing rate of 0.5 to provide an
intuitive understanding of the training process and data recov-
ery performance of ProImp.

Features Learned by ProImp Across the Training Process
We conduct t-SNE visualization on features learned by
ProImp at three different training epochs in Fig. 5. As can be
seen, data forms four clusters at the initialization, which cor-
responds to the observed and recovered data from two views.
After 50 epochs, data tends to form semantic clusters. How-
ever, as the prototypes are not yet matched across views, the
recovered data is not semantically aligned with the observed
data. At the end of the training, the gap between observed and
recovered within-cluster samples is significantly narrowed,
indicating a good instance commonality. Meanwhile, sam-
ples from different views are still not collapsed together, in-
dicating that the view versatility is well preserved.

Data Recovery Performance
As discussed, a major advantage of our prototype-based im-
putation strategy is that it could preserve both instance com-
monality and view versatility in the recovered data. To prove
its superiority, we visualize the observed and recovered data
learned by our ProImp and the best competitor SURE in
Fig. 6. From the results, one could see that i) data recov-
ered by our ProImp forms more compact clusters, thanks to
the dual-stream model which enhances the commonality be-
tween within-cluster instances, and ii) data recovered by our
ProImp shows a more distinct pattern with observed data,
which demonstrates that the view versatility is preserved from
the view-specific prototypes.

To provide a quantitative evaluation of instance commonal-
ity, we compute the silhouette score on the data recovered by
different paradigms. A larger value indicates better within-
cluster compactness and between-cluster scatter. The results
in Table 4 show that our prototype-based imputation strategy

Method Silhouette Score
COMPLETER 58.52
SURE 63.31
ProImp w/o Prototype 44.08
ProImp 65.45

Table 4: Comparsions on instance commonality with different data
recovery paradigms on NoisyMNIST.

Figure 6: t-SNE visualization of the observed and recovered data on
NoisyMNIST, compared with the best competitor SURE. Data are
colored by classes and views in the first and second rows, respec-
tively.

significantly enhances the instance commonality, surpassing
existing generative and neighborhood-based paradigms.

5 Conclusion
To implement the proposed prototype-based imputation
paradigm, we propose a dual-stream model by designing
a dual attention layer and a dual contrastive learning loss.
Thanks to the proposed model, the instance commonality and
view versatility could be preserved into representation, thus
boosting the IMvC performance. Extensive experiment re-
sults demonstrate the superiority of our model in both clus-
tering and data recovery performance. In the future, we plan
to extend ProImp to handle the datasets that consist of three
and more views.
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