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Abstract
In recent studies, the generalization properties for
distributed learning and random features assumed
the existence of the target concept over the hy-
pothesis space. However, this strict condition is
not applicable to the more common non-attainable
case. In this paper, using refined proof techniques,
we first extend the optimal rates for distributed
learning with random features to the non-attainable
case. Then, we reduce the number of required ran-
dom features via data-dependent generating strat-
egy, and improve the allowed number of partitions
with additional unlabeled data. Theoretical analy-
sis shows these techniques remarkably reduce com-
putational cost while preserving the optimal gener-
alization accuracy under standard assumptions. Fi-
nally, we conduct several experiments on both sim-
ulated and real-world datasets, and the empirical re-
sults validate our theoretical findings.

1 Introduction
A fundamental problem in machine learning is to achieve
tradeoffs between statistical properties and computational
costs [Bottou and Bousquet, 2008; Li et al., 2018], while
this challenge is more severe in kernel methods. Despite
the excellent theoretical guarantees, kernel methods do not
scale well in large-scale settings because of high time and
memory complexities, typically at least quadratic in the num-
ber of examples. To break the scalability bottlenecks, re-
searchers developed a wide range of practical algorithms, in-
cluding distributed learning, which produces a global model
after training disjoint subset on individual machines with
necessary communications [Zhang et al., 2015; Lin et al.,
2017], Nyström approximation [Williams and Seeger, 2001;
Rudi et al., 2015; Li et al., 2019a] and random Fourier fea-
tures [Rahimi and Recht, 2007; Rudi and Rosasco, 2017] to
alleviate memory bottleneck, as well as stochastic methods
[Lin and Cevher, 2020] to improve the training efficiency.

From the theoretical perspective, many researchers have
studied the statistical properties of those large-scale ap-
proaches together with kernel ridge regression (KRR) [Rudi

∗Corresponding author

et al., 2015; Lin and Rosasco, 2016; Lin et al., 2017]. Us-
ing integral operator techniques [Smale and Zhou, 2007] and
the effective dimension to control the capability of RKHS
[Caponnetto and De Vito, 2007], the generalization bounds
have achieved the optimal learning rates. Recent statistical
learning studies on KRR together with large-scale approaches
demonstrate that these approaches can not only obtain great
computational gains but still remain the optimal theoretical
properties, such as KRR together with divide-and-conquer
[Guo et al., 2017; Mücke and Blanchard, 2018], with ran-
dom projections including Nyström approximation [Rudi et
al., 2015] and random features [Rudi and Rosasco, 2017;
Carratino et al., 2018; Li et al., 2020; Li, 2021]. Since the
communication cost is high to combine local kernel estima-
tors in RKHS, it’s more practical to combine the linear esti-
mator in the feature space, e.g. federated learning [McMahan
et al., 2017].

The existing works on DKRR [Guo et al., 2017; Lin et
al., 2017; Mücke and Blanchard, 2018] and random fea-
tures [Rudi and Rosasco, 2017; Li et al., 2019b; Li, 2021]
have primarily focused on attainable cases, ignoring the non-
attainable cases where the true regression is out of the hy-
pothesis space. Since it’s hard to select the suitable kernels to
guarantee the attainable cases, the non-attainable cases are
more common in practice. Therefore, the statistical guar-
antees for the non-attainable are of practical and theoreti-
cal interest in the context of the statistical learning theory.
The optimal rates for DKRR have been extended to a part of
the non-attainable case via sharp analysis for the distributed
error [Lin and Cevher, 2020] and multiple communications
[Lin et al., 2020; Liu et al., 2021], but these techniques
are hard to improve the results for random features. Mean-
while, recent studies extended the capacity-independent opti-
mality to the non-attainable cases, including distributed learn-
ing [Sun and Wu, 2020], random features [Sun et al., 2018]
and Nyström approximation [Kriukova et al., 2017], but these
capacity-independent results are suboptimal when the capac-
ity of RKHS is small. The capacity-optimality for the com-
bination of distributed learning and random features to the
non-attainable case is still an open problem.

In this paper 1, we aim at extending the capacity-dependent
optimal guarantees to the non-attainable case and improve the
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computational efficiency with more partitions and fewer ran-
dom features. Firstly, using the refined estimation of oper-
ators’ similarity, we refine the optimal generalization error
bound that allows much more partitions and pertains to a part
of the non-attainable case. Then, generating random features
in a data-dependent manner, we relax the restriction on the di-
mension of random features, and thus fewer random features
are sufficient to reach the optimal rates. By using additional
unlabeled data to reduce label-independent error terms, we
further enlarge the number of partitions and improve the ap-
plicable scope in the non-attainable case. Finally, we validate
our theoretical findings with extensive experiments. Note
that, we leave proofs and experiments in the full version

1.1 Our Contributions
We highlight our contributions as follows:

1) On algorithmic front: higher computational efficiency
This work presents the currently maximum number of par-
titions and the minimal dimension of random features, ex-
tremely improving the computational efficiency.

More partitions. To achieve the optimal learning rate,
the traditional distributed KRR methods [Lin et al., 2017;
Guo et al., 2017] impose a strict constraint on the number
of partitions m ≲ N

2r−1
2r+γ , which heavily limits the computa-

tional efficiency. In this paper, using a novel estimation of the
key quantity, we first relax the restriction to m ≲ N

2r+γ−1
2r+γ .

Then, introducing a few additional unlabeled examples, we
improve the number of partitions to m ≲ N

2r+2γ−1
2r+γ for the

first time.

Fewer random features. By generating random features in
a data-dependent manner rather than in a data-independent
manner, we reduce the requirement on the number of ran-
dom features from M ≳ N

(2r−1)γ+1
2r+γ ∀r ∈ [1/2, 1] to

M ≳ N
2r+γ−1
2r+γ ∨N

γ
2r+γ ∀r ∈ (0, 1], where M is the num-

ber of random features and ∨ indicates the bigger one.

2) On theoretical front: covering non-attainable cases
The conventional optimal properties for KRR [Caponnetto
and De Vito, 2007; Rudi and Rosasco, 2017; Guo et al., 2017]
only pertain to the attainable case r ∈ [1, 1/2], assuming the
true regression belongs to the hypothesis space fρ ∈ H where
the problems can not be too difficult. However, the condition
fρ ∈ H is too ideal and the non-attainable r ∈ (0, 1/2) as-
suming fρ /∈ H deserve more attention. In this paper, we first
restate the classic results in the attainable r ∈ [1/2, 1]. Then,
by relaxing the restriction on the number of partitions, we ex-
tend the optimal theoretical guarantees to the non-attainable
case with the constraints 2r + γ ≥ 1 and 2r + 2γ ≥ 1. Note
that we prove KRR with random features applies to all non-
attainable cases r ∈ (0, 1/2).

3) Extensive experimental validation
To validate our theoretical findings, we conduct extensive ex-
periments on simulated data and real-world data. We first
construct simulated experiments under different difficulties to
validate the learning rate and training time. Then, we perform

comparison on a small real-world dataset to verify the effec-
tiveness of data-dependence random features (with a novel
approximate leverage score function) and additional unla-
beled examples. Finally, we compare the proposed DKRR-RF
with related work in terms of the performance on three real-
world datasets.

4) Technical challenges
More partitions with additional unlabeled examples. In
the error decomposition, only sample variance is label-
dependent. At the same time, other terms are label-
independent, and thus we employ additional unlabeled exam-
ples to reduce the estimation of label-independent error terms.
We further improve the applicable scope in the non-attainable
case to m ≲ N

2r+2γ−1
2r+γ .

Random features error in all non-attainable cases. Us-
ing an appropriate decomposition on the operatorial level for
random features error, we prove KRR with random features
pertains to both attainable and non-attainable case r ∈ (0, 1].

Overall, by overcoming several technical hurdles, we
present the optimal theoretical guarantees for the combina-
tion of DKRR and RF. With more partitions and fewer ran-
dom features, the theoretical results not only obtain signifi-
cant computational gains but also preserve the optimal learn-
ing properties to both the attainable and non-attainable case
r ∈ (0, 1]. Indeed, KRR [Caponnetto and De Vito, 2007],
DKRR [Guo et al., 2017], and KRR-RF [Rudi and Rosasco,
2017] are special cases of this paper. Thus, the techniques
presented here pave the way for studying the statistical guar-
antees of other types kernel approaches (even neural net-
works) that can apply to the non-attainable case.

2 Distributed Learning with Random Feature
In a standard framework of supervised learning, there is a
probability space X×Y with a fixed but unknown distribution
ρ, where X = Rd is the input space and Y = R is the output
space. The training set D = {(xi, yi)}Ni=1 is sampled i.i.d.
from X × Y with respect to ρ. The primary objective is to fit
the target regression fρ on X × Y . The Reproducing Kernel
Hilbert Space (RKHS) H induced by a Mercer kernel K is
defined as the completion of the linear span of {K(x, ·),x ∈
X} with respect to the inner product ⟨K(x, ·),K(x′, ·)⟩H =
K(x,x′). In the view of feature mappings, an underlying
nonlinear feature mapping ϕ : X → H associated with the
kernelK is ϕ(x) := K(x, ·), so it holds f(x) = ⟨f, ϕ(x)⟩H.

2.1 Kernel Ridge Regression (KRR)
With an RKHS norm term, kernel ridge regression (KRR) is
one of the popular empirical approaches to conducting a non-
parametric regression. KRR can be stated as

f̂λ := argmin
f∈H

{
1

N

N∑
i=1

(f(xi)− yi)
2 + λ∥f∥2H

}
. (1)

Using the representation theorem, the nonlinear regres-
sion problem (1) admits a closed form solution f̂λ(x) =∑N

i=1 α̂iK(xi,x) with

α̂ = (KN + λNI)−1yN , (2)
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where λ > 0,yN = [y1, · · · , yN ]T and KN is the N × N
kernel matrix with KN (i, j) = K(xi,xj). Although KRR
characterizes optimal statistical properties [Smale and Zhou,
2007; Caponnetto and De Vito, 2007], it is unfeasible for
large-scale settings because of O(N2) memory to store ker-
nel matrix and O(N3) time to solve the linear system (2).

2.2 Distributed KRR with Random Features
(DKRR-RF)

Assume that the kernel K have an integral representation

K(x,x′) =

∫
Ω

ψ(x, ω)ψ(x′, ω)p(ω)dω, ∀x,x′ ∈ X , (3)

where (Ω, π) is a probability space and ψ : X × Ω → R.
We define analogous operators for the constructed kernel
KM (x,x′) = ϕM (x)⊤ϕM (x′) to approximate the primal
kernel K(x,x′) in (3) with its corresponding random fea-
tures via Monte Carlo sampling

ϕM (x) =
1√
M

(
ψ(x, ω1), · · · , ψ(x, ωM )

)⊤
, (4)

where ω1, · · · , ωM ∈ Ω are sampled w.r.t. p(ω).
Let the training set D be randomly partitioned into m dis-

joint subsets {Dj}mj=1 with |D1| = · · · = |Dm| = n. The
local estimator ŵj on the subset Dj is defined as

ŵj = argmin
w∈RM

{
1

n

n∑
i=1

(f(xi)− yi)
2 + λ∥f∥2

}
, (5)

where the estimator is f(x) = ⟨w, ϕM (x)⟩. It admits a
closed-form solution

ŵj =
[
Φ⊤

MΦM + λI
]−1

Φ⊤
M ŷn, (6)

where λ > 0. Note that for j-th subset Dj , it holds ∀(x, y) ∈
Dj ,ΦM = 1√

n
[ϕM (x1), · · · , ϕM (xn)]

⊤ ∈ Rn×M and ŷn =
1√
n
(y1, · · · , yn)⊤. The average of local estimators (6) yields

a global estimator

f̂MD,λ(x) =
1

m

m∑
j=1

f̂MDj ,λ(x). (7)

3 Theoretical Assessment
In this section, we present the theoretical analysis on the
generalization performance of kernel ridge regression with
divide-and-conquer and random features.

The generalization ability of a regression predictor f :
X → R is measured in terms of the expected risk

E(f) =
∫
X×Y

(f(x)− y)2dρ(x, y). (8)

In this case, the target regression fρ =
∫
Y ydρ(y|x), ∀x ∈ X

minimizes the expected risk over all measurable functions f :
X → R. The generalization ability of a KRR estimator f ∈
L2
ρX

is measured by the excess risk, i.e. E(f)−E(fρ), where
L2
ρX

= {f : X → R | ∥f∥2ρ =
∫
X
|f(x)|2dρX < ∞} is

the square integral Hilbert space with respect to the marginal
distribution ρX on the input space X .

3.1 Assumptions
We first introduce two standard assumptions, which are also
used in statistical learning theory [Smale and Zhou, 2007;
Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017].
Assumption 1 (Random features are continuous and
bounded). Assume that ψ is continuous and there is a κ ∈
[1,∞), such that |ψ(x, ω)| ≤ κ, ∀x ∈ X , ω ∈ Ω.

Assumption 2 (Moment assumption). Assume there exists
B > 0 and σ > 0, such that for all p ≥ 2 with p ∈ N,∫

R
|y|pdρ(y|x) ≤ 1

2
p!Bp−2σ2. (9)

According to Assumption 1, the kernel K is bounded by
K(x,x) ≤ κ2. The moment assumption on the output y
holds when y is bounded, sub-gaussian or sub-exponential.
Assumptions 1 and 2 are standard in the generalization anal-
ysis of KRR, always leading to the learning rate O(1/

√
N)

[Smale and Zhou, 2007] in general cases.
Definition 1 (Integral operators). ∀ g ∈ L2

ρX
(X, ρX), the

integral operators L,LM are defined by the kernelK and the
random features ϕM , respectively

(Lg)(·) =
∫
X

K(·,x)g(x)dρX(x),

(LMg)(·) =
∫
X

⟨ϕM (·), ϕM (x)⟩g(x)dρX(x).

Definition 2 (Effective dimension). The effective dimension
of the RKHS H induced by the kernel K is defined as

N (λ) = Tr
(
(L+ λI)−1L

)
, λ > 0,

NM (λ) = Tr
(
(LM + λI)−1LM

)
, λ > 0.

The effective dimension N (λ) is used to measure the com-
plexity of RKHS H, and its empirical counterpart is also
called degree of freedom [Bach, 2013]. Similarly, we de-
fine the effective dimension NM (λ) for the random features
mapping ϕM to measure the size of the approximate RKHS
HM , which is induced by finite dimensional random features
ϕM : X → RM .
Assumption 3 (Capacity assumption). Assume there exists
Q > 0 and γ ∈ [0, 1], such that for any λ > 0

N (λ) ≤ Q2λ−γ .

Assumption 4 (Regularity assumption). Assume there exists
R > 0, r > 0, and g ∈ L2

ρX
, such that

fρ = Lrg,

where fρ is the target regression, ∥g∥ρ ≤ R and the operator
Lr denotes the r-th power of the integral operatorL : L2

ρX
→

L2
ρX

, thus it is also a positive trace class operator.

The above two conditions are commonly used to prove the
optimal statistical properties of the exact KRR [Caponnetto
and De Vito, 2007; Smale and Zhou, 2007], and its large-scale
extensions including divide-and-conquer [Lin et al., 2017;
Guo et al., 2017] and random features [Rudi and Rosasco,
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Figure 1: Time complexity and space complexity of Theorem 1 in
different settings. The color closer to red represents higher complex-
ity. Blank areas represent unfeasible situations.

2017]. Those two assumptions reflect the capacity of the
RKHS H and the regularity of fρ, respectively. We pro-
vide some intuitive interpretations of the above assumptions,
and more details can be found in [Caponnetto and De Vito,
2007]. Assumption 3 holds when the eigenvalues of the
integral operator have a polynomial decay i−1/γ , ∀i > 1
[Rudi and Rosasco, 2017; Li et al., 2019b]. Thus, faster
convergence rates are derived when the eigenvalues decay
faster, a.k.a. γ approaches 0, while γ = 1 corresponds to
the capacity-independent case. Assumption 4 (source con-
dition) controls the regularity of the target function fρ. The
bigger the r is, the stronger regularity of the regression is,
and the easier the learning problem is. Both these two as-
sumptions are widely used in the optimal theory for KRR
[Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017;
Guo et al., 2017].

3.2 General Results with Fast Rates
One can prove the optimal generalization guarantees for
DKRR-RF by combining the theories in KRR-DC [Lin et
al., 2017] and KRR-RF [Rudi and Rosasco, 2017]. The at-
tainable case r ∈ [1/2, 1] requires the existence of fH =
minf∈H E(f), such that fρ = fH almost surely [Stein-
wart and Christmann, 2008], which is widely used in KRR
and its variants including distributed KRR and random fea-
tures based KRR [Caponnetto and De Vito, 2007; Rudi and
Rosasco, 2017; Guo et al., 2017].
Theorem 1. Under Assumptions 1, 2, 3 and 4, if r ∈
[1/2, 1], γ ∈ [0, 1], and λ = N− 1

2r+γ , then

1 ≲ m ≲ N
2r−1
2r+γ , M ≳ N

(2r−1)γ+1
2r+γ ,

are enough to guarantee, with a high probability, that

E E(f̂MD,λ)− E(fH) = O
(
N− 2r

2r+γ

)
.

The optimal learning rate O
(
N− 2r

2r+γ

)
stated in Theo-

rem 1 in the above bound is optimal in a minimax sense
for KRR approaches [Caponnetto and De Vito, 2007]. Dis-
tributed KKR methods have obtained the same optimal error
bounds with a stronger condition on the number of partitions,
such as KRR-DC [Lin et al., 2017; Mücke and Blanchard,
2018] with m ≲ N

2r−1
2r+γ . In particular, for the general case

r = 1/2, the number of local processors m = O(1) becomes

a constant number that is independent of the sample size N .
The time complexity of DKRR-RF is O(NM2/m) and the
space complexity O(NM/m), thus we report the computa-
tional complexities of Theorem 1 in Figure 1.
Remark 1. The general results in Theorem 1 have three fa-
tal drawbacks: 1) the above bound is only suitable for the
attainable case r ∈ [1/2, 1] and fail to apply to the non-
attainable case r ∈ (0, 1/2) induced by more complicated
problems; 2) random features generated via Monte Carlo are
data-independent, which requires much more features than
the data-dependent generating features; 3) the constraint on
the number of partitions m ≲ N

2r−1
2r+γ is too strict, leading to

a constant number of partitions when r is close to 1/2.

3.3 Refined Results in the Non-attainable Case
Theorem 2. Under Assumptions 1, 2, 3 and 4, if r ∈ (0, 1],
γ ∈ [0, 1], 2r + γ ≥ 1 and λ = N− 1

2r+γ , then the number of
partitions corresponding to

1 ≲ m ≲ N
2r+γ−1
2r+γ

and the number of random features M satisfying

M ≳ N
1

2r+γ when 0 < r < 1/2 and

M ≳ N
(2r−1)γ+1

2r+γ when 1/2 ≤ r ≤ 1,

are enough to guarantee, with a high probability, that

E E(f̂MD,λ)− E(fρ) = O
(
N− 2r

2r+γ

)
.

Compared to Theorem 1, Theorem 2 allows more parti-
tions and extends the optimal learning guarantees to the non-
attainable case r ∈ (0, 1/2) where the true regression does
not lie in RKHS H. Thus, it achieves significant improve-
ments in both computational efficiency and statistical guaran-
tees. With the same optimal learning rates, Theorem 2 relaxes
the restriction on m from m ≲ N

2r−1
2r+γ to m ≲ N

2r+γ−1
2r+γ ,

which allows more partitions and relaxes the constraints from
r ≥ 1/2 to 2r + γ ≥ 1. More importantly, for the gen-
eral cases when r = 1/2, the number of partitions becomes
m ≲ N

γ
2r+γ , which increases as the sample size N becomes

larger and avoids the constant number of partitionsm = O(1)
in the conventional KRR-DC methods [Guo et al., 2017;
Lin et al., 2017]. When r ∈ (0, 1/2), the number of random
features M ≳ N

1
2r+γ increases as the r approaches zero,

because fρ becomes far away from H when r is near zero.
When r ∈ [1/2, 1], we obtain the same level of the number

of random features M ≳ N
(2r−1)γ+1

2r+γ as KRR-RF [Rudi and
Rosasco, 2017], which is continuous to M ≳ N

1
2r+γ at the

critical points r = 1/2. Compared to Figure 1, Figure 2 il-
lustrates Theorem 2 not only enlarge the applicable case but
also improve the computational efficiency.
Remark 2. The common optimal generalization learning of
KRR [Smale and Zhou, 2007] with random features tech-
niques [Rudi and Rosasco, 2017] and divide-and-conquer
[Zhang et al., 2015; Lin and Rosasco, 2016] focus on the
generalization properties on the standard setting fρ ∈ H
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Figure 2: Time complexity and space complexity of Theorem 2 in
different settings. The color closer to red represents higher complex-
ity. Blank areas represent unfeasible situations.

under the condition r ∈ [1/2, 1]. Note that, in this pa-
per, we extend the range of regularity assumption to r ∈
(0, 1/2) for considering the situation fρ /∈ H. Meanwhile,
when r > 1, the divide-and-conquer approach can only re-
duce the sample error and computational variance, but not
bias. The situation is called the saturation phenomenon
and observed in KRR-DC approaches [Zhang et al., 2015;
Lin and Cevher, 2020]. In the future, it’s worthy to reducing
the bias with multi-communications using stochastic methods
rather than the divide-and-conquer strategy.

Remark 3. Theorem 2 extends the optimal generalization
theories from only attainable case r ∈ [1/2, 1] to the non-
attainable case 2r + γ ≥ 1, which include a part of difficult
problems r ∈ (0, 1/2). However, there are also many cases
satisfying 2r+γ < 1 in the non-attainable case r ∈ (0, 1/2),
where the optimal learning guarantees in Theorem 2 are no
longer valid. Inspired the literature [Chang et al., 2017], we
employ additional unlabeled samples to relax the restriction
2r + γ ≥ 1 in Section 3.5.

3.4 Fewer Features with Data-dependent Sampling
Assumption 5 (Compatibility assumption [Rudi and
Rosasco, 2017]). Define the maximum effective dimension as

N∞(λ) = sup
ω∈Ω

∥(L+ λI)−1/2ψ(·, ω)∥2ρX
, λ > 0.

Assume there exists α ∈ [0, 1] and F > 0, such that

N∞(λ) ≤ Fλ−α.

Using the definition of N (λ), we characterize the lower
bounds for N∞(λ):

N (λ) = Eω∥(L+ λI)−1/2ψ(·, ω)∥2ρX

≤ sup
ω∈Ω

∥(L+ λI)−1/2ψ(·, ω)∥2ρX
= N∞(λ).

Compared to the (average) effective dimension used in As-
sumption 3, the maximum effective dimension offers a finer-
grained estimate for the capacity of RKHS [Alaoui and Ma-
honey, 2015; Rudi and Rosasco, 2017; Rudi et al., 2018],
which often leads to shaper estimate for the related quantities.
Using the compatibility assumption, we relax the constraints
on the dimension of random features and the number of par-
titions by generating features in a data-dependent manner, as
shown in [Rudi et al., 2018; Bach, 2017; Li et al., 2019b].
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Figure 3: Time complexity and space complexity of Theorem 3 in
different settings. The color closer to red represents higher complex-
ity. Blank areas represent unfeasible situations.

Theorem 3. Under the same assumptions of Theorem 2 and
Assumption 5, if r ∈ (0, 1], γ ∈ [0, 1], 2r + γ ≥ 1 and
λ = N− 1

2r+γ , then the number of partitions m satisfying

1 ≲ m ≲ N
2r+γ−1
2r+γ

and the number of random features M satisfying

M ≳ N
α

2r+γ when 0 < r < 1/2 and

M ≳ N
(2r−1)(1+γ−α)+α

2r+γ when 1/2 ≤ r ≤ 1,

is sufficient to guarantee, with a high probability, that

E E(f̂MD∗,λ)− E(fρ) = O
(
N− 2r

2r+γ

)
.

The learning rates of the above theorem are optimal, same
as Theorems 2. Achieving the same optimal learning rates,
Theorem 3 reduce the computational costs with fewer ran-
dom features. The number of required random features is
reduced from O

(
N

1
2r+γ

)
to O

(
N

α
2r+γ

)
when r ∈ (0, 1/2)

and O
(
N

(2r−1)γ+1
2r+γ

)
to O

(
N

(2r−1)γ+1+2(r−1)(1−α)
2r+γ

)
when r ∈

[1/2, 1], where the term 2(r − 1)(1 − α) ≤ 0. We report the
applicable area and computational complexities of Theorem 3
in Figure 3. It shows the use of data-dependent sampling sig-
nificantly reduce both the time and space complexities. The
situations near the boarderline 2r + γ = 1 are away from the
same computational complexities as the exact KRR.
Remark 4. From Theorem 1 in [Li et al., 2019b], we find
that the requirement on the data-dependent random features
is bounded as M ≳ dl̃ := supw∈Ω lλ(w)/q(w), where dl̃ ∝
N∞(λ) ≤ FN

α
2r+γ . The condition is the same as Theorem 3

in the non-attainable r ∈ (0, 1/2) and milder than Theorem
3 in the attainable case r ∈ [1/2, 1]. However, the theoretical
analysis provided in [Li et al., 2019b] only pertains to the
general case (r = 1/2, γ = 1) and obtains error bounds
with the convergence rate O(1/

√
N).

Remark 5. According to the definition of N∞(λ), the sam-
pling probability of random features π(ω) is independent of
data, which leads to a pessimistic estimate of α. However,
generating random features in a data-dependent manner re-
laxes the estimate of α closer to γ. A theoretical example
of data-dependent random features was given in Example
2 [Rudi and Rosasco, 2017], which guarantees N∞(λ) =
N (λ) (such that α = γ) by constructing random features
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Figure 4: Time complexity and space complexity of Theorem 4 ver-
sus different values of r and γ. The color which is closer to red
represents higher complexity.

generated in a data-dependent way. In practice, leverage
sampling algorithms were proposed to obtain data-dependent
random features [Li et al., 2019b], where α is close to γ. To
intuitively illustrate the improvement of data-dependent ran-
dom features, we boldly assume α = γ by generating data-
dependent random features.

3.5 More Partitions with Unlabeled Data
Theorem 2 illustrates the optimal learning rates for DKRR-RF
needs the number of local partitions satisfying

m ≲ N
2r+γ−1
2r+γ .

The number of partitions avoids a constant number of par-
titions when r ∈ [1/2, 1], but it is still unfeasible for many
challenging problems in the non-attainable case r ∈ (0, 1/2).
In this part, we introduce the additional unlabeled samples
D̃j to relax this restriction further. We consider the merged
dataset D∗ on the j-th processor, D∗

j = Dj ∪ D̃j with

y∗i =

{
|D∗

j |
|Dj | yi, if(xi, yi) ∈ Dj ,

0, otherwise.

Let D∗ =
⋃m

j=1D
∗
j , |D∗| = N∗ and |D∗

1 | = · · · = |D∗
m| =

n∗. We define semi-supervised kernel ridge regression with
divide-and-conquer and random features by

f̂MD∗,λ =
1

m

m∑
j=1

f̂MD∗
j ,λ
. (10)

Theorem 4. Under the same assumptions of Theorem 3, if
r ∈ (0, 1], γ ∈ [0, 1], 2r + 2γ ≥ 1 and λ = N− 1

2r+γ , then
the total number of samples corresponding to

N∗ ≳ NN
γ+α−1
2r+γ ∨N,

the number of local processors satisfying

1 ≲ m ≲ N
2r+2γ−1

2r+γ

and the number of random features M satisfying

M ≳ N
α

2r+γ when 0 < r < 1/2 and

M ≳ N
(2r−1)(1+γ−α)+α

2r+γ when 1/2 ≤ r ≤ 1,

are sufficient to guarantee, with a high probability, that

E E(f̂MD∗,λ)− E(fρ) = O
(
N− 2r

2r+γ

)
.

To our best knowledge, for the first time, we prove that
the number of partitions can achieve m ≲ N

2r+2γ−1
2r+γ , while

the existing constraints on m of the existing work [Lin and
Cevher, 2020; Liu et al., 2021] are m ≲ N

2r+γ−1
2r+γ . Such that,

much more partitions are allowed in distributed KRR meth-
ods. The relaxation of condition on the partition number m
can not only lead to better computational efficiency but also
covers more difficult problems, where the suitable problems
are enlarged from the situation 2r + γ ≥ 1 to the situation
2r + 2γ ≥ 1. Figure 4 reveals the advantages of DKRR-RF
with unlabeled data. Theorem 4 provides the largest appli-
cable area 2r + 2γ ≥ 1 but also the highest computational
efficiency owing to more partitions.
Remark 6. From the error decomposition, there are two er-
ror terms related to the number of partitions m: sample
variance and empirical error. Sample variance depends on
the number of labeled samples n, while empirical error is
input-dependent but output-independent; thus, it is related
to the number of total samples n∗. Meanwhile, the simi-
larity between empirical and expected covariance operators
∥Ĉ−1/2

M,λ C
1/2
M,λ∥ is also label-free, and thus it is related to the

total sample size n∗ rather than n. To achieve the optimal
learning rates, we consider the constraints on both the re-
quired labeled samples n and the total samples n∗. Consid-
ering both conditions for supervised learning m = N/n and
semi-supervised learning m = N∗/n∗, we then obtain two
constraints on the number of partitions m and consolidate
them together.

4 Compared with Related Work
The existing optimal learning guarantees of KRR [Capon-
netto and De Vito, 2007], KRR-DC [Guo et al., 2017; Mücke
and Blanchard, 2018] and KRR-RF [Rudi and Rosasco, 2017;
Liu et al., 2021] only apply to the attainable case r ∈
[1/2, 1]. In this paper, we apply the optimal generalization
error bounds to the non-attainable case r ∈ (0, 1/2) with
some restrictions, including 2r + γ ≥ 1 in Theorem 2 and
2r + 2γ ≥ 1 in Theorem 4. Using refined estimation, we
extend the random features error to the non-attainable case.

4.1 Applicable Area from r ∈ [1/2, 1] to 2r+ γ ≥ 1

The key to obtaining the optimal learning rates with
integral-operator approach is to bound the identity ∥(ĈM +

λI)−1/2(CM + λI)1/2∥ as a constant, where CM and ĈM

are the expected and empirical covariance operators defined
in Definition 4. In conventional distributed KRR [Lin et al.,
2017; Chang et al., 2017], they estimated the operator differ-
ence after first order (or second order) decomposition

∥(CM + λI)−1/2(ĈM + λI)1/2∥2

≤ ∥(CM + λI)−1/2∥∥(CM + λI)−1/2(CM − ĈM )∥+ 1

= O

(
m

λN
+

√
N (λ)m

λN

)
. Section 4 [Guo et al., 2017].

To bound the identity as a constant, the local sample size
should be larger enough n ≥ N (λ)

λ . It holds m ≲ N
2r−1
2r+γ
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for KRR-DC and only applies to r ≥ 1/2. However, this pa-
per directly estimates the identity in total (rather than in parts
after decomposition) based on concentration inequalities for
self-adjoint operators and obtain

∥(C + λI)−1/2(ĈM + λI)1/2∥

≤
(
1−

∥∥∥(C + λI)−1/2(C − ĈM )(ĈM + λI)−1/2
∥∥∥)−1/2

= O
(
m

λN
+

√
m

λN

)
. Theorem 2

To bound the identity as a constant, the local sample size only
needs n ≥ 1

λ , which is smaller than [Guo et al., 2017] with
N (λ). Therefore, our estimation of ∥(CM + λI)−1/2(ĈM +

λI)1/2∥ in Theorem 2 is
√

N (λ) tighter than that in [Guo
et al., 2017]. To bound identity as a constant, we then have
m ≲ N

2r+γ−1
2r+γ , which is the key to obtain more partitions and

extends the optimal learning guarantees to the non-attainable
case 2r + γ ≥ 1.

4.2 Applicable Area from 2r + γ ≥ 1 to
2r + 2γ ≥ 1

Only sample variance is dependent on the labeled samples,
while other error terms involving the estimate of ∥(C +

λI)−1/2(ĈM + λI)1/2∥ are label-free. Thus, there are two
restrictions on the number of partitions m: sample variance
(label-dependent) and the estimate of ∥(C + λI)−1/2(ĈM +
λI)1/2∥ (label-free).

As shown in the proof of Theorem 3, the global sample
variance (label-dependent) can be estimated

1

m
E∥f̂MDj ,λ − f̃MDj ,λ∥

2
ρ ≤ O

(
mN

1−4r−2γ
2r+γ +N

−2r
2r+γ

)
To achieve the optimal learning rates O(N

−2r
2r+γ ), the number

of partitions should satisfy m ≲ N
2r+2γ−1

2r+γ . Then, we utilize
additional unlabeled samples to relax the condition on the es-
timate of ∥(C + λI)−1/2(ĈM + λI)1/2∥. Using Assumption
5, one can further relax the condition of m due to

∥(C + λI)−1/2(ĈM + λI)1/2∥

≤ O

(
mN∞(λ)

N∗ +

√
mN∞(λ)

N∗

)

= O
(

m

λαN∗ +

√
m

λαN∗

)
. Theorem 4

To guarantee the key quantity ∥(CM + λI)−1/2(ĈM +
λI)1/2∥ be a constant, we have m ≲ λαN∗ =

O(N∗N
−α

2r+γ ). We then consider the dominant constraints:

• The case α < 1− γ. It holds 2r+2γ− 1 < 2r+ γ−α,
thus the number of partition is m ≲ N

2r+2γ−1
2r+γ .

• The case α ≥ 1−γ. It holds γ+α−1 ≥ 0 and we make
use of additional unlabeled examples N∗ ≳ NN

γ+α−1
2r+γ

to guarantee m ≲ N
2r+γ−α
2r+γ ≤ N

2r+2γ−1
2r+γ .

4.3 Random Features Error in the Non-attainable
Case

Using appropriate decomposition on operatorial level, we de-
rive the random features error for both attainable and non-
attainable case, where the dimension of random features
should satisfy M ≳ N

γ
2r+γ for the non-attainable case r ∈

(0, 1/2). The extension from the attainable case to the non-
attainable case is non-trivial, where the non-attainable case
requires refined estimations for operators similarity.

The operatorial definitions of intermediate estimators
f̃MDj ,λ

, fMλ and fλ in Lemma 1 involve the true regression
fρ, where fρ = Lrg (under Assumption 4) is related to
the range of r. Such that, we estimate the last three error
items (empirical error ∥f̃MDj ,λ

− fMλ ∥, random features er-
ror ∥fMλ − fλ∥ and approximation error ∥fλ − fρ∥) that in-
volve f̃MDj ,λ

, fMλ and fλ for the non-attainable case. Mean-

while, because the empirical error satisfies ∥f̃MDj ,λ
− fMλ ∥ ≤

(
√
2 + 2)

(
∥fMλ − fλ∥+ ∥fλ − fρ∥

)
and the approximation

error ∥fλ − fρ∥ naturally applies to the non-attainable case,
only random features error ∥fMλ − fλ∥ is needed to specifi-
cally estimated for the non-attainable case.

5 Conclusion
This paper explores the generalization performance of ker-
nel ridge regression with two commonly used efficient large-
scale techniques: divide-and-conquer and random features.
We first present a general result with the optimal learning
rates under standard assumptions. We then refine the theoret-
ical results with more partitions and applicability in the non-
attainable case. Further, we reduce the number of random
features by generating features in a data-dependent manner.
Finally, we present the theoretical results that substantially
relax the constraint on the number of partitions with extra
unlabeled data, which apply to both the attainable case and
non-attainable case. The proposed optimal theoretical guar-
antees are state-of-the-art in the theoretical analysis for KRR
approaches. We validate our theoretical findings with exten-
sive experimental results.

This paper can be extended in several ways: (a) the com-
bination with gradient algorithms such as multi-pass SGD
[Lin and Cevher, 2018; Lin and Cevher, 2020] and precon-
ditioned conjugate gradient [Avron et al., 2017] to further re-
duce the time complexity. (b) using asynchronous distributed
methods or a few of communications [Lin et al., 2020;
Liu et al., 2021] instead of one-shot approach to alleviate the
saturation phenomenon when r ≥ 1.
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