
Generative Flow Networks for Precise Reward-Oriented Active Learning on Graphs

Yinchuan Li1 , Zhigang Li2 , Wenqian Li 3 , Yunfeng Shao1 , Yan Zheng2 , Jianye Hao1,2∗

1Huawei Noah’s Ark Lab
2Tianjin University

3National University of Singapore
{liyinchuan, shaoyunfeng}@huawei.com, {scs lzg, yanzheng, sjianye.hao}@tju.edu.cn,

wenqian@u.nus.edu

Abstract
Many score-based active learning methods have
been successfully applied to graph-structured data,
aiming to reduce the number of labels and achieve
better performance of graph neural networks based
on predefined score functions. However, these al-
gorithms struggle to learn policy distributions that
are proportional to rewards and have limited explo-
ration capabilities. In this paper, we innovatively
formulate the graph active learning problem as a
generative process, named GFlowGNN, which gen-
erates various samples through sequential actions
with probabilities precisely proportional to a prede-
fined reward function. Furthermore, we propose the
concept of flow nodes and flow features to efficiently
model graphs as flows based on generative flow net-
works, where the policy network is trained with
specially designed rewards. Extensive experiments
on real datasets show that the proposed approach
has good exploration capability and transferability,
outperforming various state-of-the-art methods.

1 Introduction
Graph neural networks (GNNs) have achieved great success
in processing graph-structured data in recent years [Wu et al.,
2020b; Liu et al., 2020; Liu et al., 2021; Sarlin et al., 2020;
You et al., 2020; Ying et al., 2019; Hu et al., 2020b]. It
can simultaneously model structural information and extract
node attributes [Jin et al., 2020]. They provide significant per-
formance improvements for graph-related downstream tasks
such as node classification, link prediction, group detection,
and graph classification [Wu et al., 2020b; Liu et al., 2019;
You et al., 2019; Zhu et al., 2020]. Nevertheless, graph neural
networks usually require a large amount of labeled data for
training, which is expensive for some fields, such as chem-
istry and biomolecular design [Garg et al., 2020]. Improving
the utilization of graph neural networks for labeled data has
become a key challenge.

Active learning applied to graphs is used to address this
challenge. Graph active learning methods [Ma et al., 2022;
∗Corresponding author.
The codes are available at https://gitee.com/mindspore/models/tree
/master/research/gflownets/gflowgnn

Hao et al., 2020; Zhang et al., 2021] usually select the most in-
formative node set for labeling and input it to the classification
graph neural network for training. The quality of the selected
nodes directly determines the training effect of the classifi-
cation graph neural network for the same number of label
training sets. Previous methods usually select the label node
set through heuristic criteria, such as degree, entropy, and dis-
tance from the central node [Gao et al., 2018b; Gu et al., 2013;
Ji and Han, 2012]. There are also ways to find the optimal
policies by maximizing information or maximizing cumulative
reward [Hu et al., 2020a]. However, these methods ignore that
the probability of selecting a node should be consistent with
the reward distribution it ultimately brings.

In this paper, we propose a novel active learning algorithm
for GNNs that addresses this problem by exploiting the advan-
tages of generative flow networks (GFlowNets) [Bengio et al.,
2021b], which has been applied in causal structure learning [Li
et al., 2022; Nishikawa-Toomey et al., 2022], GNN explana-
tions [Li et al., 2023a], biological sequence design [Jain et al.,
2022], discrete probabilistic modeling [Zhang et al., 2022a]
and has been extended to continuous space [Li et al., 2023c;
Lahlou et al., 2023; Li et al., 2023b]. Unlike traditional ap-
proaches, we convert the sampling procedure in active learning
into a generation problem, gradually adding nodes to the la-
bel set until the desired label set is generated. We name this
method GFlowGNN, which generates various samples through
sequential actions with probabilities precisely proportional to
a predefined reward function. In particular, in GNN-based ac-
tive learning tasks, the goal is to interactively select a sequence
of nodes to maximize the performance of the GNN trained
on them. We can model this problem as an MDP, where the
current graph is the state, and the active learning system takes
action by selecting nodes to query. We then obtain rewards by
evaluating the performance of the trained GNN model with
the labeled set.

By making the probability of node selection consistent with
the node’s reward distribution, GFlowGNN can better learn
the optimal node selection policy and help avoid getting stuck
in local optima. In addition, our GFlowGNN has better ex-
ploration capability than reinforcement learning (RL)-based
methods [Hu et al., 2020a] and can achieve faster convergence
and better performance, since RL prefers to explore near the
maximum reward while GFlowGNN explores according to the
precise reward distribution.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3939

1.1 Main Contributions
In general, our contributions are mainly reflected in the fol-
lowing aspects: 1) we innovatively formulate the graph active
learning problem as a generative process rather than a search-
ing or optimization problem; 2) We propose the definition of
GFlowGNN, a general architecture with unlimited types of
reward functions and neural networks for solving graph active
learning problems; 3) We propose two concepts of flow nodes
and flow features to effectively model the graph state transi-
tion process as a flow model, where the flow model indirectly
establishes a mapping relationship with the state through flow
nodes and flow features. This partial update approach makes it
possible to efficiently train policy networks in GFlowGNN; 4)
Our GFlowGNN has good generalization and transferability,
and extensive experimental results show that the proposed
method outperforms various existing state-of-the-art methods
on public datasets.

2 Related Work
2.1 Graph Neural Network
GNNs are deep learning based approaches that operate on
graph domain, which are proposed to collectively aggregate in-
formation from graph structure [Zhou et al., 2020]. Some sub-
sequent research advance it further, for example, GCN [Kipf
and Welling, 2016] presents a scalable approach for semi-
supervised learning based on an efficient variant of convo-
lutional neural networks, and GAT [Veličković et al., 2017]
proposes to apply the attention mechanism in the aggregation
process. However, GNNs typically require a massive number
of labeled data for training and the causes high annotation
cost [Hu et al., 2020a]

2.2 Active Learning
AL improves labeling efficiency by identifying the most valu-
able samples to label. There are various approaches such as
Uncertainty Sampling [Yang et al., 2015], ensembles [Zhang
et al., 2020] and Query-by-Committee [Burbidge et al., 2007;
Melville and Mooney, 2004]. A flurry of developments
could be divided into Density-based [Zhu et al., 2008;
Tang et al., 2002], Clustering-based [Du et al., 2015; Nguyen
and Smeulders, 2004] and Diversity-based [Wu et al., 2020a;
Jiang and Gupta, 2021] methods.

2.3 GNN Based Active Learning
Despite the effectiveness of common AL methods, it is unsuit-
able to directly apply them to GNNs since the characteristic
of influence propagation has not been considered. To tackle
this issue, both AGE [Cai et al., 2017] and ANRMAB [Gao
et al., 2018b] introduce the density of node embedding and
PageRank centrality into the node selection criterion. Simi-
larly, ActiveHNE [Chen et al., 2019] tackles active learning
on heterogeneous graphs by posing it as a multi-armed bandit
problem. SEAL [Li et al., 2020] devises a novel AL query
strategy in an adversarial way, and RIM [Zhang et al., 2021]
considers the noisy oracle in the node labeling process of
graph data. Recently, IGP [Zhang et al., 2022b] proposes the
relaxed queries and soft labels to tackle the high cost problem
in the exact labeling task.

3 GFlowGNN: Problem Formulation
Considering a directed graph G = (V, E) with V =
{v1, ..., vn} being a finite set of nodes, and E ∈ V × V
representing directed edges. The graph is modeled by the
binary adjacency matrix A ∈ {0, 1}n×n. Nodes can be
paired with features X = {xv|∀v ∈ V} ⊂ Rd, and labels
Y = {yv|∀v ∈ V} = {1, 2, ..., C}. The node set is divided
into three subsets as Vtrain,Vvalid and Vtest.

Suppose the query budget is b, where b≪ |Vtrain|. We ini-
tialize an empty labeled node set V0

label = ∅. Starting from
V0

label, at each step t, we query an unlabeled node vt+1 from
Vtrain\Vt

label based on the active learning policy π, and then
update the labeled node set Vt+1

label = Vt
label ∪ {vt+1}. The clas-

sification GNN ft(·) related with G is trained with the updated
Vt+1

label for one more epoch. When the budget b is used up, we
stop the query process and continue training the classification
GNN fb(·) with Vb

label until convergence. At each step t, the
labeled set Vt

label is evaluated based onM(ft(Vvalid)), where
M(·) is the metric to evaluate the performance of the classifi-
cation GNN f(·) trained based on Vt

label on the validation set
Vvalid.

Previous approaches aim to find the optimal active learning
policy π⋆ that can sample a label set Vπ

valid satisfying

π⋆ = argmax
π
M(fπ(Vvalid)). (1)

For each graph, we have no labels initially, then we select a
sequence of nodes to label based on π⋆ and use them to train
the classification GNN on G.

Obviously, the performance of GNN directly depends on
the performance of the active learning policy π. Heuristic
methods [Gao et al., 2018b; Gu et al., 2013; Ji and Han, 2012]
are based on degree, entropy, and distance to obtain better
policies, which are not necessarily optimal. Reinforcement
learning-based methods [Hu et al., 2020a] can use the accu-
racy of GNNs as a metric to learn a better policy. However,
the learned policy may not be precisely consistent with the
accuracy distribution, resulting in performance loss.

In this paper, we consider this labeling process as the genera-
tion process, in which Vb

label is a compositional object. Starting
from an empty set, we can use a neural network as a sampler
to generate such Vb

label by sequentially querying a new label
each time. After the query budget b is used up, we use it to
train GNN classification f and use its performance score on
the validation set as the reward r(Vb

label) to evaluate this label
set. Unlike traditional methods having maximization objec-
tives, our goal is to learn a forward generative policy for active
learning that could sample Vb

label with probabilities highly con-
sistent with the reward distribution (metric distribution), so
that GNNs perform better. Therefore, our GFlowGNN is de-
fined as following Definition 1.
Definition 1 (GFlowGNN). Given a directed graph G and a
reward function r(·), GFlowGNN aims to find the best forward
generative policy π to sample a sequence of nodes based on
generative flow networks, such that

π(Vb
label; θ) ∝ r(Vb

label), (2)

where θ is the parameter of flow network, and π can be trans-
ferred to other datasets.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3940

Policy Network

Action probability

Update labeled node
train classification GNN

Reward
functionPolicy Network

Done

Embedding

False True

Policy Network

Flow Matching
Loss

Generative Flow
Networks

Reward
Function

0.05

0.2

0.1

0.45

Action Probability

0.15 0.05

Reward 0.1 0.2 0.45

Layer 1

Layer 2

Layer budget

...

...

...

...

...

State

Embedding

Figure 1: The framework of GFlowNets-based active learning on GNNs aims to train the policy that action probabilities follow true reward
distribution. We model the MDP as a directed acyclic graph on the left side. A circle node corresponds to a state, and the edge between two
nodes corresponds to the state transition. The initial state is the node in white, the interior states are the nodes in light blue while final states are
the nodes in dark blue. Given a state, the policy network calculates the unnormalized action probability in each layer, corresponding to the blue
dots on the grey edge, which we could consider as the water pipe. The number of blue dots represents the water flow, equivalent to an action’s
probability. After the layer budget, each label set is evaluated based on the reward function. The figure on the right shows the training process
of the policy network.

4 GFlowGNN: Framework
4.1 Overall Framework
We show an overview of the policy training framework in
Figure 1. We initialize a new empty set, which corresponds to
the initial graph with all hollow nodes above the layer 1 in the
left side. Each step the generative flow network computes the
edge flow, which corresponds to the blue dots in the grey pipe,
as unnormalised action probabilities based on the current input
state. Then sample an unlabeled node and add it for the label
node set, which is consistent with the nodes highlighted in
orange in a graph. The layer i refers to the i-th state transition
in a trajectory, and this process iterates until the query budget
b is used up. When a Vb

label is generated, we use it to train a
GNN classification model f and use the model performance
as the reward of this label set. In the GFlowNets (the right
side), the unlabeled node vt is sampled based on the action
probability calculated by the NNs and the f is trained based
on the updated label set. After completing the trajectories, the
policy net is trained based on the flow matching loss calculated
by the inflow, outflow or rewards of the states. We will show
more details about the flow network architecture in the the
later section.

4.2 Modeling Graphs as Flows
To ensure the learned policy could sample compositional ob-
jects proportional to the reward, the concept of “flow” is nat-
urally introduced to model our policy. However, modeling
graphs as flows is not easy. We need to construct suitable
states and actions to ensure that a directed acyclic graph (DAG)
(with state sets S and action sets A) can be formed, where

acyclic means that there is no trajectory (s0, s1, ..., sf) satis-
fying si = sj , ∀i ̸= j.

To form DAG, we propose two concepts of flow node and
flow feature defined as follows:
Definition 2 (Flow Node). Considering the flow through the
entire DAG, a flow node is defined as a node in the DAG. Once
a flow node is determined, its corresponding child and parent
nodes can be determined.

According to Definition 2, the flow node is mainly used to
determine the parent node and child node, which can further
ensure the establishment of the acyclic property in the DAG.
To model a graph as a flow, we can construct a node vector to
satisfy the properties of flow nodes. In particular, we define an
indicator vector to represent whether a node has been labeled
or not, i.e.,

vi(st) = 1{vi ∈ Vt
label}, i = 1, ..., n. (3)

For the initial state s0, its node vector is an all-zero vector
corresponding to the empty label set. In this way, the flow
nodes in the DAG structure can be transformed by the action
proposed in Definition 3.
Definition 3 (Action). At time step t, an action at : st →
st+1 ∈ A is to select a node from Vtrain\Vt

label, i.e. if node vi is
selected, it is the same as assigning position vi = 1 in v(st).

Flow nodes can help construct effective DAG graphs, but
for complex GNN tasks, it is difficult to calculate the flow on
nodes only by flow node vectors, and cannot be strictly reward-
oriented. To solve this problem, we propose the concept of
flow features in Definition 4.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3941

Definition 4 (Flow Feature). Flow features are defined as de-
tailed features associated with flow nodes to aid in computing
more accurate flow and policy.

Note that the flow feature is not used to find the parent node
and child node, i.e., not used to determine the DAG structure.
The flow feature here is defined as a matrix Φ(st) ∈ Rn×4. In
particular, the first column of Φ denotes the degree of n nodes
in the graph. Denote N (v) as the set of all neighbor nodes of
v, the degree is calculated by

Φi,1(st) = min(|N (vi)|/α, 1), i = 1, ..., n, (4)

which is scaled by the hyperparameter α and clipped to 1.
The second column of Φ denotes the uncertainty of n nodes

in the graph, which is calculated by the entropy of the label
probabilities ŷ ∈ RC predicted by the GNN, i.e.,

Φi,2(st) = H(ŷt(vi))/ log(C), i = 1, ..., n. (5)

The third and fourth columns of Φ denote the divergence of
n nodes in the graph, which are calculated based on a node’s
predicted label probabilities and its neighbor’s, i.e.,

Φi,3(st) =
1

|N (vi)|
∑

u∈N (vi)

KL(ŷt(vi)∥ŷt(u)), (6)

Φi,4(st) =
1

|N (vi)|
∑

u∈N (vi)

KL(ŷt(u)∥ŷt(vi)) (7)

for i = 1, ..., n. Note that the flow features used here are flexi-
ble. These common features are recognized as informative and
effective in graph structured data on both theoretical and ex-
perimental results. Therefore, we choose them as flow features
in our paper, which keeping in line with other baselines.

4.3 How to Find Parent Nodes
The process of exploring the parent nodes is tied to changing
the value in the node vector v, for example, converting the
value in v from 1 to 0. Given any v, if ∥v∥0 = m, which
means this state has m different parent states, then one of its
parents is obtained by converting one of the elements with
value 1 to value 0 in v to generate a new vector v′.

As for the flow features Φ of the parent nodes, computing
all parent states’ dynamic flow features is time-consuming and
impractical. We hence directly store all the flow features Φ
for each round, and directly use the flow feature of st−1 as the
parent flow features of st, i.e.,

Φ(parent[st])← Φ(st−1).

This approach seems to be empirical; however, through ex-
tensive experimental studies, we found that this approach does
not sacrifice much performance but significantly improves the
efficiency of the algorithm.

4.4 Flow Modeling
Given above DAG, our flow here is defined as a non-negative
function FΦ,v(st) related the flow node v and flow features
Φ, which has an interesting difference from the definition in
[Bengio et al., 2021b].

Remark 1. In [Bengio et al., 2021b], the flow model is only
related to the state of node, and the state must be fully updated
to calculate the flow model. In reality, many useful features
cannot be strictly updated, or the computational load is large.
Our flow model indirectly establishes a mapping relationship
with the state through flow nodes and flow features, in which
the flow nodes have a strict one-to-one correspondence and
need to be updated accurately. In contrast, the flow feature
provides more details to assist the calculation of the flow
model, and does not need to be updated accurately every
round, e.g., when calculating the flow features of parent nodes.

Define T as the set of complete trajectories related to the
given DAG, a complete trajectory is defined as a sequence of
states τ = (s0, ..., sf) ∈ T with s0 being the initial state and
sf being the final state. Define an edge flow or action flow
FΦ,v(st → st+1) = FΦ,v(st, at) : S × A 7→ R as the flow
through an edge st → st+1 , where at : st → st+1. The state
flow FΦ,v(s) : S 7→ R is defined as the sum of the flows of
the complete trajectories passing through it, i.e.,

FΦ,v(s) =
∑
τ∈T

1s∈τFΦ,v(τ).

In the flow model, the probability of each action can be
easily measured by the fraction of action flow FΦ,v(s, a) to
state flow FΦ,v(s). The property of the flow model is cru-
cial to achieve precise proportionality between policies and
rewards, which will be introduced in detail later. By exploit-
ing the advantage of flow model, our GFlowGNN has good
generalization and transferability, and extensive experimental
results show that the proposed method outperforms various
existing state-of-the-art methods on public datasets.

4.5 Reward Design
We first analyze how the flow model contributes to establish a
policy that could sample the final action exactly proportional
to rewards. Then we design the reward explicitly based on the
advantage of this flow model.

For any flow function FΦ,v(st), the forward transition prob-
ability PF (st → st+1|st) is given by [Bengio et al., 2021b]

PF (st+1|st) := PF (st → st+1|st) =
FΦ,v(st → st+1)

FΦ,v(st)
.

(8)
Then, we have PF (τ) =

∏f−1
t=0 PF (st+1|st), which yields

PF (sf) =

∑
τ∈T 1sf∈τFΦ,v(τ)∑

τ∈T FΦ,v(τ)
=

∑
τ∈T

1sf∈τPF (τ) (9)

by noting that FΦ,v(sf) =
∑

τ∈T 1sf∈τFΦ,v(τ). Then we
have

PF (sf) ∝ FΦ,v(sf), (10)
where FΦ,v(sf) = r(sf).

Let π : A× S 7→ R be the probability distribution π(a|s)
over actions a ∈ A for each state s ∈ S, which first appears
in Definition 1. We can map the policy π to the flow-based
transition probabilities based on the flow properties,

π(Vb
label) =

f−1∏
t=0

π(at|st) = PF (sf). (11)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3942

By combining (10) and (11), we can obtain (2) in Definition 1,
i.e.,

π(Vb
label; θ) ∝ r(Vb

label),

which reveals that the learned policy is proportional to the
reward.

Since the policy approximately samples proportionally to
the reward, we can explicitly design the rewards as model
accuracy, thus ensuring the sampling diversity and model
performance. Formally, given a sequence of labeled nodes
Vb

label = (v1, ..., vb), we define the trajectory reward as

r(Vb
label) =M(fb(Vvalid)), (12)

where the evaluation metric is the prediction accuracy of fb.

4.6 Policy Network Architecture
The role of the policy network is to calculate the probability
score of each node based on the input state matrix Φ, that is,
to learn the policy π. In this paper, we propose two policy
network architectures for non-transfer scenarios and transfer
scenarios, respectively.

For non-transfer scenarios, i.e., the training and test datasets
are i.i.d. and the data has the same dimension, we use MLP
as our policy network. We feed the state matrix consisting of
the features of each node into the policy network after flatten
embedding, and then obtain the probability score of each node.
The MLP is set as four layers, where the input dimension is
the number of nodes multiplied by the node feature dimension,
while the output is the probability of each node to be labeled,
whose dimension equals the number of nodes.

For transfer scenarios, the training and test datasets are
different, our policy network mainly based on the Graph Con-
volutional Network (GCN) [Zhang et al., 2019] to obtain the
generalizable property. GCN starts from node attributes, up-
date node embeddings through several layers of neighborhood
aggregation, and then calculate edge and graph embeddings
from updated node embedding. The node representation of
GCN is updated by:

Hℓ+1 = σ(D− 1
2 (A+I)D− 1

2HℓWℓ), ℓ = 1, ..., L−1, (13)

where Hℓ and Wℓ are respectively the input feature matrices
and the weight of layer ℓ; H0 = Φ(st); I is an identity matrix
such that A+ I denotes the adjacency matrix with self loops;
D is a diagonal matrix with Di,i =

∑
j Ai,j ; σ(·) denotes the

ReLU activation function.
Once HL is available, we apply a linear layer to obtain the

predicted probability by

pt = Softmax(HLw + b), (14)

where Softmax(·) denotes the softmax function, w denotes
the weights of the linear layer and b denotes the bias. It is
noteworthy to note that our neural network is designed to
approximate the flow, i.e., to obtain F̂ (s, a). Therefore, to get
the predicted probability, we need to add a Softmax operator
for normalization, i.e. if we fix the total flow to 1, we can get
the transition probability by directly normalizing the action
flow.

5 GFlowGNN: Training Procedure
5.1 State Transition Dynamics
At each step, the selected node vt will be labeled and then
be added to Vlabel to update the classification GNN f . Then
based on the predictions of GNN, we update the state matrix
especially dynamic features. All parents s ∈ Sp(st+1) of st+1

are explored after making a transition from st to st+1, where
Sp(st+1) indicates the parent set of st+1. Then the inflows
FΦ,v(s → st+1)|s∈Sp(st+1) and the outflows FΦ,v(st+1 →
s)|s∈Sc(st+1) are calculated, where Sc(st+1) is the child set
of st+1. When the budget is used up, the agent calculates the
reward r(sf) instead of the outflow.

5.2 Flow Matching Loss
GFlowGNN generates complete trajectories (s0, s1, ..., sf) ∈
T by iteratively sampling vt ∼ π(at|st) starting from an
empty label set until the budget is depleted. After sampling
a buffer, we use the flow matching loss proposed by [Ben-
gio et al., 2021a] to train the policy π(at|st) which satisfies
Pθ
F (sf) ∝ r(Vb

label) = r(sf),

Lp(τ) =
∑

st+1∈τ ̸=s0

{
log

[
ϵ+

∑
st,at:T (st,at)=st+1

F ′
t

]
(15)

− log

[
ϵ+ 1st+1=sf r (st+1) + 1st+1 ̸=sf

∑
at+1∈A(s′)

F ′
t+1

]}2

,

where F ′
t = exp(logFθ(st, at)) with θ being the network

parameters.
∑

st,at:T (st,at)=st+1
F ′
t indicates the inflow of

st+1, i.e., the sum of edge/action flows from the parent states
set Sp(st+1), where at : T (st, at) = st+1 indicates an action
at that could change from state st to st+1.

∑
at+1∈A F ′

t+1

indicates the outflow of st+1, i.e., the sum of flows passing
through it with all possible actions at+1 ∈ A.

For simplicity, we summarize our GFlowGNN algorithm
in Algorithm 1. Starting from an empty label set Vlabel = ∅,
for every iteration, GFlowGNN samples a valid action based
on the generative flow network, and labels a new node to
make a state transition st → st+1. Then we update Vt+1

label =
Vt

label ∪ {vt+1} and update the classification GNN f one step
accordingly. After that, we calculate the dynamic node vector
and flow feature to update v(st+1) and Φ(st+1). This process
continues until the budget b is used up. After that we train
GNN f with Vb

label until convergence and calculate r(V b
label)

using (12). The policy network is then updated based on flow
matching loss using (15).

6 Experiment
In this section, we present experimental results in terms of per-
formance, exploration capability, and transferability to demon-
strate the advantages of the proposed GFlowGNN. We use
Cora, Citeseer, Pubmed and 5 Reddit (large social networks)
as datasets to verify the effectiveness of the proposed algo-
rithm, more details about the datasets can be found in the
supplementary material.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3943

Algorithm 1 GFlowGNN Algorithm
Require: : Vtrain training dataset; f : GNN; b: Budget; B: batch size;

E: Epoch number; η: learning rate
1: Initialize V0

label = ∅
2: repeat
3: repeat {parallel do with a batch size B}
4: Sample a valid action at: vt+1 ∼ π(at|st) s.t. vt+1 ∈

Vtrain\Vt
label

5: Make a state transition st+1 = T (st, at)
6: Update the labeled node set Vt+1

label = Vt
label ∪ {vt+1}

7: Update GNN f with Vt+1
label one step and calculate the node

vector v(st+1) and flow feature Φ(st+1)
8: Find the parent set Sp(st+1) of st+1 and calculate their

state matrices
9: until |Vt

label| = b
10: Train GNN f with Vb

label until convergence
11: Calculate r(Vb

label) according to (12)
12: Update the network parameter θ based on ∇Lθ(τ) and η

according to (15)
13: until epoch number E is reached
Ensure: Policy π(at|st) and the best labeled node set

6.1 Baselines
We use Random, Uncertainty-based policy, Centrality-based
policy, Coreset [Veličković et al., 2017], AGE [?], ANRMAB
[Gao et al., 2018a], IGP [Zhang et al., 2022b] as baselines
for comparisons.

6.2 Evaluation Metrics and Parameters
We evaluate the performance of each method using common
evaluation criteria (Micro-F1, Macro-F1 and accuracy).
Following [Hu et al., 2020a], we set the validation size
and test size to 500 and 1000, respectively. In the testing
phase, we run the results 1000 times and record the average
evaluation result. For a single active graph learning task, we
use MLP (4 layers, including one input layer, two hidden
layers of dimension 128, and one output layer) as the structure
of our neural network. For the transfer graph learning task,
we adopt a combination of two-layer GCN and linear layers.
The dimension of each layer in GCN embedding is 8, and
the linear layer is the mapping from the GCN embedding
dimension to 1. We set the budget to 5C (C is the number of
classes corresponding to the dataset). We use Adam as the
optimizer with a learning rate of 1e-3.

6.3 Performance Comparison
Active learning on different datasets with the same labeling
budget: We first demonstrate the performance advantages of
GFlowGNN on commonly used datasets. In this experiment,
the training and test datasets are the same. There are two
different methods to select label sets: 1) For the learning based
methods, after training the model, we initialize 1000 different
classification GNNs with different node sets and then use the
trained policy to select label sets; 2) For the non-learning
based methods, we directly apply their policy to select label
sets. After that, we train 1000 classification GNNs based on
these selected label sets and obtain the prediction performance
on the test datasets. We show the average accuracy of each

Method Metric Pubmed Cora Citeseer

Random acc (%) 68.35 67.66 60.44
Uncertainty acc (%) 69.52 60.36 60.34
Centrality acc (%) 67.91 70.66 60.71
Coreset acc (%) 65.26 64.15 45.81

IGP acc (%) 79.5 77.9 69.5
AGE acc (%) 74.78 71.53 66.61

ANRMAB acc (%) 69.35 69.19 62.67
GPA acc (%) 77.80 75.43 67.03
Ours acc (%) 81.04 78.67 70.58

Table 1: The text accuracy on different datasets with the same labeling
budget.

0 250 500 750 1000 1250 1500 1750 2000

100

0

100

Lo
ss

Min-GPA
Mean-GPA
Max-GPA

0 250 500 750 1000 1250 1500 1750 2000
Episodes

0

100

200

300

400

Fl
ow

…
M
at
ch
in
g…

Lo
ss

Min-GFlowGNN
Mean-GFlowGNN
Max-GFlowGNN

Figure 2: Losses of GFlowGNN and GPA on Citeseer

algorithm in Table 1. We can see that our approach could
attain the highest accuracy among all datasets.

Figure 2 shows the training losses of GFlowGNN and GPA
on Citeseer dataset. We can see that the loss of GFlowGNN
drops significantly faster than that of RL-based method, high-
lighting the performance advantage of GFlowGNN in learning
speed.

6.4 Exploration Capability Comparison
Figure 3 shows the number of high-quality label sets generated
by GFlowGNN and GPA after training. We define a high-
quality label set as the classification graph network whose
node classification prediction accuracy exceeds a threshold
after the label set is fed to the classification graph network and
trained to converge. We define different thresholds for differ-
ent datasets. For cora, citeseer, and pubmed, the thresholds
are set to 0.8, 0.7, and 0.8, respectively. It can be clearly seen
from the figure that on different datasets (cora corresponds
to solid line, citeseer corresponds to dotted line, pubmed cor-
responds to dashed line), GFlowGNN’s ability to generate
high-quality label sets far exceeds GPA under the same num-
ber of generation, which demonstrate that GFlowGNN has
better exploration ability.

Figure 4 shows the accuracy of the classification graph
network corresponding to the optimal label set generated
by GFlowGNN and GPA as the number of generated label
sets grows. Clearly, Under the same number of explorations,
GFlowGNN is able to generate label sets that make classifica-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3944

Method Metric Pubmed Reddit1 Reddit2 Reddit3 Reddit4 Reddit5

Random Micro-F1 68.35 81.88 91.19 87.76 85.37 86.45
Macro-F1 67.57 80.26 89.92 86.12 80.89 84.52

AGE Micro-F1 74.78 83.76 92.56 90.61 86.94 87.73
Macro-F1 73.26 82.81 91.61 89.99 83.15 85.88

ANRMAB Micro-F1 69.35 81.25 88.74 85.26 83.14 83.65
Macro-F1 68.68 79.43 86.58 83.06 76.8 79.99

GPA Micro-F1 77.80 88.10 95.19 92.07 91.39 90.66
Macro-F1 75.66 87.75 95.00 91.77 89.60 90.22

Ours Micro-F1 77.89 89.42 95.75 92.97 92.13 91.14
Macro-F1 76.95 89.25 95.56 92.71 90.59 90.76

Table 2: Transferable active learning results for different domain graphs

0 1000 2000 3000 4000 5000
All…Visited…Label…Sets

0

500

1000

1500

2000

2500

3000

3500

#…
0f
…
La
be
l…

Se
ts
…
Ab

ov
e…

C
er
ta
in
…
Th
re
sh
ol
d

GFlowGNN-cora
GPA-cora
GFlowGNN-cite
GPA-cite
GFlowGNN-pub
GPA-pub

Figure 3: Number of high-quality label sets generated by GFlowGNN
and GPA.

tion graph networks more accurate, proving that our method
not only outperforms GPA on average, but also generates ultra-
high-quality label sets that cannot be generated by existing
methods.

6.5 Transferability Comparison
Transferable active learning on graphs from the different
domains: Table 2 presents the performance on the different
domains transfer graph learning task. We drop three heuristics
and non-learning-based IGP methods as they are less relevant
to the transfer task. All learning methods are trained on Cora
and Citeseer, and tested on Pubmed and Reddit1∼Reddit5.
Experimental results show that our method can obtain a trans-
ferable policy with better performance than others. Compared
with the both Micro-F1 and Macro-F1 of other algorithms,
GFlowGNN always performs the best and GPA is slightly
worse. Because the cross-domain transfer task is more diffi-
cult than the same-domain transfer task, the advantages of our
method are more obvious in this task, which again convinces
the strong transferability of our approach. Rather than maxi-
mizing cumulative reward, we focus more on the consistency
of action probabilities with the true reward distribution.

7 Conclusion
In this work, by taking advantage of the strong generation
ability of GFlowNets, we proposed a novel approach, named

0 1000 2000 3000 4000 5000
All…Visited…Label…Sets

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ax
im
um

…
Ac
cu
ra
cy

GFlowGNN-cora
GPA-cora
GFlowGNN-cite
GPA-cite
GFlowGNN-pub
GPA-pub

Figure 4: Maximum accuracy of label sets generated by GFlowGNN
and GPA.

GFlowGNN, to model the graph active learning problem as
a generation problem. We proposed the concepts of flow
nodes and flow features to balance efficiency and accuracy.
GFlowGNN learns the best policy to select the valuable node
set, considered a compositional object, by sequential actions.
We conduct extensive experiments on real datasets to convince
the superiority of GFlowGNN on performance, exploration
capability, and transferability.

Limitations: For some GNN scenarios where reward maxi-
mization is required, the performance of GFlowNets may be
not as good as that of RL, because RL is oriented towards re-
ward maximization rather than proportional to reward. There-
fore, in GFlowGNN, the reward needs to be specially designed.
Nevertheless, experiments show that the reward we designed
has good performance and good generalization performance.
GFlowGNN is the first work to apply GFlowNets into the
GNN-related task, we believe our solution could prompt fur-
ther developments in this area.

References
[Bengio et al., 2021a] Emmanuel Bengio, Moksh Jain,

Maksym Korablyov, Doina Precup, and Yoshua Bengio.
Flow network based generative models for non-iterative
diverse candidate generation. Advances in Neural
Information Processing Systems, 34:27381–27394, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3945

[Bengio et al., 2021b] Yoshua Bengio, Salem Lahlou, Tristan
Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. arXiv preprint arXiv:2111.09266,
2021.

[Burbidge et al., 2007] Robert Burbidge, Jem J Rowland, and
Ross D King. Active learning for regression based on query
by committee. In International conference on intelligent
data engineering and automated learning, pages 209–218.
Springer, 2007.

[Cai et al., 2017] Hongyun Cai, Vincent W Zheng, and Kevin
Chen-Chuan Chang. Active learning for graph embedding.
arXiv preprint arXiv:1705.05085, 2017.

[Chen et al., 2019] Xia Chen, Guoxian Yu, Jun Wang, Car-
lotta Domeniconi, Zhao Li, and Xiangliang Zhang. Ac-
tivehne: Active heterogeneous network embedding. arXiv
preprint arXiv:1905.05659, 2019.

[Du et al., 2015] Bo Du, Zengmao Wang, Lefei Zhang, Liang-
pei Zhang, Wei Liu, Jialie Shen, and Dacheng Tao. Ex-
ploring representativeness and informativeness for active
learning. IEEE transactions on cybernetics, 47(1):14–26,
2015.

[Gao et al., 2018a] L. Gao, H. Yang, C. Zhou, J. Wu, and
Y. Hu. Active discriminative network representation learn-
ing. In Twenty-Seventh International Joint Conference on
Artificial Intelligence IJCAI-18, 2018.

[Gao et al., 2018b] Li Gao, Hong Yang, Chuan Zhou, Jia Wu,
Shirui Pan, and Yue Hu. Active discriminative network
representation learning. In IJCAI International Joint Con-
ference on Artificial Intelligence, 2018.

[Garg et al., 2020] Vikas Garg, Stefanie Jegelka, and Tommi
Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on
Machine Learning, pages 3419–3430. PMLR, 2020.

[Gu et al., 2013] Quanquan Gu, Charu Aggarwal, Jialu Liu,
and Jiawei Han. Selective sampling on graphs for classifi-
cation. In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
pages 131–139, 2013.

[Hao et al., 2020] Zhongkai Hao, Chengqiang Lu, Zhenya
Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,
and Cheekong Lee. Asgn: An active semi-supervised graph
neural network for molecular property prediction. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
731–752, 2020.

[Hu et al., 2020a] Shengding Hu, Zheng Xiong, Meng Qu,
Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu, and Jian
Tang. Graph policy network for transferable active learning
on graphs. Advances in Neural Information Processing
Systems, 33:10174–10185, 2020.

[Hu et al., 2020b] Ziniu Hu, Yuxiao Dong, Kuansan Wang,
Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1857–1867,
2020.

[Jain et al., 2022] Moksh Jain, Emmanuel Bengio, Alex
Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang,
Michael Kilgour, Dinghuai Zhang, et al. Biological se-
quence design with gflownets. In International Conference
on Machine Learning, pages 9786–9801. PMLR, 2022.

[Ji and Han, 2012] Ming Ji and Jiawei Han. A variance mini-
mization criterion to active learning on graphs. In Artificial
Intelligence and Statistics, pages 556–564. PMLR, 2012.

[Jiang and Gupta, 2021] Heinrich Jiang and Maya R Gupta.
Bootstrapping for batch active sampling. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, pages 3086–3096, 2021.

[Jin et al., 2020] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng
Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 66–74, 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Lahlou et al., 2023] Salem Lahlou, Tristan Deleu, Pablo
Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcı́a, Léna Néhale Ezzine, Yoshua Bengio,
and Nikolay Malkin. A theory of continuous generative
flow networks. arXiv preprint arXiv:2301.12594, 2023.

[Li et al., 2020] Yayong Li, Jie Yin, and Ling Chen. Seal:
Semisupervised adversarial active learning on attributed
graphs. IEEE Transactions on Neural Networks and Learn-
ing Systems, 32(7):3136–3147, 2020.

[Li et al., 2022] Wenqian Li, Yinchuan Li, Shengyu Zhu,
Yunfeng Shao, Jianye Hao, and Yan Pang. Gflowcausal:
Generative flow networks for causal discovery. arXiv
preprint arXiv:2210.08185, 2022.

[Li et al., 2023a] Wenqian Li, Yinchuan Li, Zhigang Li,
Jianye Hao, and Yan Pang. Dag matters! gflownets en-
hanced explainer for graph neural networks. arXiv preprint
arXiv:2303.02448, 2023.

[Li et al., 2023b] Yinchuan Li, Shuang Luo, Yunfeng Shao,
and Jianye Hao. Gflownets with human feedback. arXiv
preprint arXiv:2305.07036, 2023.

[Li et al., 2023c] Yinchuan Li, Shuang Luo, Haozhi Wang,
and Jianye Hao. Cflownets: Continuous control with gen-
erative flow networks. arXiv preprint arXiv:2303.02430,
2023.

[Liu et al., 2019] Qi Liu, Maximilian Nickel, and Douwe
Kiela. Hyperbolic graph neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

[Liu et al., 2020] Meng Liu, Hongyang Gao, and Shuiwang
Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 338–348, 2020.

[Liu et al., 2021] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li,
Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3946

graph neural networks. In International Conference on
Machine Learning, pages 6837–6849. PMLR, 2021.

[Ma et al., 2022] Handong Ma, Changsheng Li, Xinchu Shi,
Ye Yuan, and Guoren Wang. Deep unsupervised active
learning on learnable graphs. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[Melville and Mooney, 2004] Prem Melville and Raymond J
Mooney. Diverse ensembles for active learning. In Proceed-
ings of the twenty-first international conference on Machine
learning, page 74, 2004.

[Nguyen and Smeulders, 2004] Hieu T Nguyen and Arnold
Smeulders. Active learning using pre-clustering. In Pro-
ceedings of the twenty-first international conference on
Machine learning, page 79, 2004.

[Nishikawa-Toomey et al., 2022] Mizu Nishikawa-Toomey,
Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio,
and Laurent Charlin. Bayesian learning of causal struc-
ture and mechanisms with gflownets and variational bayes.
arXiv preprint arXiv:2211.02763, 2022.

[Sarlin et al., 2020] Paul-Edouard Sarlin, Daniel DeTone,
Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4938–4947, 2020.

[Tang et al., 2002] Min Tang, Xiaoqiang Luo, and Salim
Roukos. Active learning for statistical natural language
parsing. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 120–127,
2002.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Wu et al., 2020a] Jian Wu, Victor S Sheng, Jing Zhang, Hua
Li, Tetiana Dadakova, Christine Leon Swisher, Zhiming
Cui, and Pengpeng Zhao. Multi-label active learning al-
gorithms for image classification: Overview and future
promise. ACM Computing Surveys (CSUR), 53(2):1–35,
2020.

[Wu et al., 2020b] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. IEEE transac-
tions on neural networks and learning systems, 32(1):4–24,
2020.

[Yang et al., 2015] Yi Yang, Zhigang Ma, Feiping Nie, Xiao-
jun Chang, and Alexander G Hauptmann. Multi-class active
learning by uncertainty sampling with diversity maximiza-
tion. International Journal of Computer Vision, 113(2):113–
127, 2015.

[Ying et al., 2019] Zhitao Ying, Dylan Bourgeois, Jiaxuan
You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Ad-
vances in neural information processing systems, 32, 2019.

[You et al., 2019] Jiaxuan You, Rex Ying, and Jure Leskovec.
Position-aware graph neural networks. In International

conference on machine learning, pages 7134–7143. PMLR,
2019.

[You et al., 2020] Jiaxuan You, Zhitao Ying, and Jure
Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems,
33:17009–17021, 2020.

[Zhang et al., 2019] Si Zhang, Hanghang Tong, Jiejun Xu,
and Ross Maciejewski. Graph convolutional networks: a
comprehensive review. Computational Social Networks,
6(1):1–23, 2019.

[Zhang et al., 2020] Wentao Zhang, Jiawei Jiang, Yingxia
Shao, and Bin Cui. Snapshot boosting: a fast ensemble
framework for deep neural networks. Science China Infor-
mation Sciences, 63(1):1–12, 2020.

[Zhang et al., 2021] Wentao Zhang, Yexin Wang, Zhenbang
You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, and
Bin Cui. Rim: Reliable influence-based active learning
on graphs. Advances in Neural Information Processing
Systems, 34:27978–27990, 2021.

[Zhang et al., 2022a] Dinghuai Zhang, Nikolay Malkin, Zhen
Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilis-
tic modeling. In International Conference on Machine
Learning, pages 26412–26428. PMLR, 2022.

[Zhang et al., 2022b] Wentao Zhang, Yexin Wang, Zhenbang
You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang,
and Bin Cui. Information gain propagation: a new way
to graph active learning with soft labels. arXiv preprint
arXiv:2203.01093, 2022.

[Zhou et al., 2020] Jie Zhou, Ganqu Cui, Shengding Hu,
Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks:
A review of methods and applications. AI Open, 1:57–81,
2020.

[Zhu et al., 2008] Jingbo Zhu, Huizhen Wang, Tianshun Yao,
and Benjamin K Tsou. Active learning with sampling by
uncertainty and density for word sense disambiguation and
text classification. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling 2008),
pages 1137–1144, 2008.

[Zhu et al., 2020] Jiong Zhu, Yujun Yan, Lingxiao Zhao,
Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations
and effective designs. Advances in Neural Information
Processing Systems, 33:7793–7804, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3947

	Introduction
	Main Contributions

	Related Work
	Graph Neural Network
	Active Learning
	GNN Based Active Learning

	GFlowGNN: Problem Formulation
	GFlowGNN: Framework
	Overall Framework
	Modeling Graphs as Flows
	How to Find Parent Nodes
	Flow Modeling
	Reward Design
	Policy Network Architecture

	GFlowGNN: Training Procedure
	State Transition Dynamics
	Flow Matching Loss

	Experiment
	Baselines
	Evaluation Metrics and Parameters
	Performance Comparison
	Exploration Capability Comparison
	Transferability Comparison

	Conclusion

