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Abstract
Federated learning (FL) collaboratively models
user data in a decentralized way. However, in the
real world, non-identical and independent data dis-
tributions (non-IID) among clients hinder the per-
formance of FL due to three issues, i.e., (1) the class
statistics shifting, (2) the insufficient hierarchical
information utilization, and (3) the inconsistency
in aggregating clients. To address the above is-
sues, we propose HyperFed which contains three
main modules, i.e., hyperbolic prototype Tammes
initialization (HPTI), hyperbolic prototype learning
(HPL), and consistent aggregation (CA). Firstly,
HPTI in the server constructs uniformly distributed
and fixed class prototypes, and shares them with
clients to match class statistics, further guiding con-
sistent feature representation for local clients. Sec-
ondly, HPL in each client captures the hierarchi-
cal information in local data with the supervision
of shared class prototypes in the hyperbolic model
space. Additionally, CA in the server mitigates the
impact of the inconsistent deviations from clients
to server. Extensive studies of four datasets prove
that HyperFed is effective in enhancing the per-
formance of FL under the non-IID setting.

1 Introduction
Federated Learning (FL) trains a global model by collabora-
tively modeling decentralized data in local clients [McMa-
han et al., 2017]. Disappointingly, FL comes into a per-
formance bottleneck in many real-world applications, where
clients contain data with non-identical and independent distri-
butions (non-IID) [Li et al., 2019; Zhao et al., 2018]. Taking
a hand-written recognition system as an example, different
people have their personalized writing styles, making hand-
written characters and letters differ in shape, size, and so on.

Existing FL work with non-IID data either improves the
performance of the general global model or enhances the per-
sonalized local model. First, to obtain better global perfor-
mance, a number of work tries to modify the local objectives
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Figure 1: A motivation of fixed class prototypes in hyperbolic space.

by adding regularization, so as to make them consistent with
generic global performance, e.g., FedProx [Li et al., 2020].
Second, to enhance the performance of the local models, a
series of studies encourage training a personalized model for
individual clients with meta-learning [Fallah et al., 2020],
transfer learning[Luo et al., 2022], and so on. Recently, Fed-
BABU [Oh et al., ] and Fed-RoD [Chen and Chao, 2021]
find it possible to enhance global and local models simulta-
neously, which decouple model in FL into two parts, i.e., one
for global generalization and the other for personalization.

Nevertheless, most existing methods overlook three issues
in FL with non-IID data. Firstly, class statistics shifting (Is-
sue 1) happens in FL with non-IID data. Clients have differ-
ent class statistics information of local data distributions, i.e.,
the class prototypes, which will shift and bring trivial solu-
tions in FL without fixing. As Fig. 1(a) shows, ignoring fixing
class prototypes brings two inevitable limits. Client A fails to
recognize the missing class, i.e., data corresponding to some
class is missing, while client B causes the class overlapping,
i.e., gathering the prototypes of blue and gray classes too tight
to discriminate their image features. Though FedBABU [Oh
et al., ] and SphereFed [Dong et al., 2022] contribute to ad-
dressing this issue, they suffer from the dimension dilemma
problem, i.e., they either lack scalability in low-dimensional
space, or generate sparse representation in high-dimensional
space. Secondly, current work only captures the semantic in-
formation of non-IID data, having the insufficient hierarchi-
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cal information utilization issue (Issue 2). As depicted in
Fig. 1(b), it is hard to gather the data samples of the same
class together without hierarchical information. Hierarchical
information can be helpful to group data samples and gen-
erate fine-grained representations, which can further bring
prediction gains. To take this advantage, hyperbolic mod-
els are used for continuously capturing the hierarchical struc-
ture of data in the low-dimensional space [Liu et al., 2020;
Linial et al., 1995], whose effectiveness is proved in computer
vision [Khrulkov et al., 2020], recommender systems [Tan
et al., 2022b], and natural language processing [Chen et al.,
2022b]. However, how to integrate existing FL methods with
the hierarchical information in hyperbolic space remains un-
known. Lastly, the inconsistency in aggregating clients (Is-
sue 3) deteriorates the performance of current FL methods
as well. In practice, clients usually have statistically hetero-
geneous data. Existing aggregation methods, e.g., weighted
average with data amounts, result in the aggregated global
model deviating from the optimal global model.

In this work, we propose HyperFed which contains three
modules to address the above issues, respectively. To solve
Issue 1 and avoid dimension dilemma, HyperFed contains
hyperbolic prototype Tammes initialization (HPTI) mod-
ule in server. The server first uses Tammes prototype initial-
ization (TPI) to construct uniformly distributed class proto-
types for the whole class set in hyperbolic space. Then the
server fixes the position of class prototypes, and shares class
prototypes to initialize the hyperbolic predictors of clients.
In this way, HyperFed not only guides the consistent and
separated criteria, but also introduces the statistics of miss-
ing class, both of which encourage discriminative and fine-
grained feature representation for non-IID data. To avoid
Issue 2, with the supervision of hyperbolic prototypes, hy-
perbolic prototype learning (HPL) module in each client
pulls the data sample close to its ground truth class prototype,
and pushes other data samples away. Thus HyperFed en-
joys the benefits of predicting with hierarchical information.
To tackle Issue 3, HyperFed has a consistent aggregation
(CA) module that resolves the inconsistent deviations from
clients to server by solving a multi-objective optimization
with Pareto constraints. Hence HyperFed obtains consis-
tent updating direction among clients, without the need of
cumbersome grid search for aggregating clients.

In summary, we are the first, as far as we know, to ex-
plore hyperbolic prototypes in FL with non-IID Data. We
contribute in: (1) We adopt uniformly distributed and fixed
class prototypes in hyperbolic space to alleviate the impact
of statistics shifting. (2) We sufficiently leverage hyperbolic
representation space to capture hierarchical information for
FL. (3) We optimize the aggregation of different client model
to a Pareto stationary point, minimizing the impact of incon-
sistent clients deviations. (4) Extensive experiments on four
benchmark datasets prove the effectiveness of HyperFed.

2 Related Work
2.1 Federated Learning for Non-IID Data
In terms of the goal of optimization, there are mainly three
categories of common FL work that tackles non-IID data:

(1) Global performance, which modifies the local objectives
with a regularization term to obtain a well-performed global
model [Li et al., 2020]. FedProx [Li et al., 2020] proposes
an additional proximal term to local objective, which pe-
nalizes the updated local model that is far away from the
global model. FedDYN [Acar et al., 2020] and MOON [Li
et al., 2021a] regularize the model change with both histor-
ical global and local models simultaneously. (2) Local per-
formance, which trains a personalized model for individual
clients to enhance the performance of local models [T Dinh
et al., 2020]; and (3) Global and local performance, which
empirically decomposes the network in FL into the body for
universal representation, and the head for personalized clas-
sification. Fed-RoD [Chen and Chao, 2021] consists of two
classifiers to maintain the local and global performance, re-
spectively. However, no above work takes action to avoid
class shifting. Few work fixes the classifier to fill this gap,
e.g., FedBABU [Oh et al., ] and SphereFed [Dong et al.,
2022]. FedBABU randomly initializes and fixes the classi-
fier during training FL, which cannot guarantee the separa-
tion of different classes is distinguishable enough. SphereFed
considers fixing the classifier in hyperspherical space. But
SphereFed either lacks scalability in low-dimensional space,
or generates sparse representation in high-dimensional space.
VFGNN [Chen et al., 2022a] utilizes graph sturcture in ver-
tical FL rather than horizontal FL. Moreover, few existing
work considers utilizing hierarchical structure and consistent
aggregation, which degrades FL with non-IID data.

2.2 Hyperbolic Representation Learning
Hyperbolic geometry is a non-Euclidean geometry, which can
be constructed by various isomorphic models, e.g., Poincaré
model [Nickel and Kiela, 2017]. Hyperbolic modeling has
been leveraged in various deep networks, such as fully-
connected layers [Shimizu et al., 2020], convolutional lay-
ers [Shimizu et al., 2020], recurrent layers [Ganea et al.,
2018], classification layers [Cho et al., 2019; Weber et al.,
2020], graph neural networks [Liu et al., 2019; Tan et al.,
2022a] and Transformer [Ermolov et al., 2022]. However,
the existing work overlooks taking the advantage of hyper-
bolic learning in FL. [Shen et al., 2021; Mettes et al., 2019;
Ghadimi Atigh et al., 2021] treat additional prior using or-
thogonal basis or the prior knowledge embeddings as hyper-
bolic prototypes, which are positioned as distant as possible
from the origin, to avoid frequently updating in prototype
learning. These motivate us to utilize hyperbolic prototypes
in HyperFed. On the contrary, we contract the class proto-
types away from the bound of the Poincaré ball model, aiming
to obtain more general class semantic information.

3 Preliminary: Poincaré Ball Model
Poincaré ball model is one of the common models in hyper-
bolic space, which is a type of Riemannian manifoldM with
constant negative curvature. In this work, ||x||2 =

√
Σn

i=1x
2
i

is a Euclidean norm. The Poincaré is an open ball model in
n-dimensional hyperbolic space defined as (Pn, gP), where
Pn = {x ∈ Rn : ||x||2 < 1} and gP is the Riemannian
metric of a Poincaré ball. gP is conformal to the metric of
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Euclidean space gE, i.e., gPx = λ2
xg

E, where λx = 2
1−||x||22

is the conformal factor. Given two points in the Poincaré ball
model, i.e., x1,x2 ∈ Pn, the Möbious addition is defined as:

x1 ⊕ x2 =
(1 + 2⟨x1,x2⟩+ ||x2||22)x1 + (1− ||x1||2)x2

2

1 + 2⟨x1,x2⟩+ ||x1||22||x2||22
We can define the geodesic, i.e., the shortest distance between
these two points in the Poincaré ball as below:

d(x1,x2) = arcosh(1 +
2||x1 − x2||22

(1− ||x1||22)(1− ||x2||22)
). (1)

For a point x in a manifoldM, the tangent space TxM is a
vector space comprising all directions that are tangent toM
at x. Exponential map expx : TxM → M is a transfor-
mation that projects any point u from the Euclidean tangent
space to the Poincaré ball referred by point x, defined as:

expx(u) = x⊕
(
tanh

(
λx∥u∥2

2

)
u

∥u∥2

)
. (2)

The reverse of expx is logarithmic map, i.e., logx : M →
TxM, which projects hyperbolic vector back to Euclidean
space.

4 Method
4.1 Problem Statement
In FL with non-IID setting, we assume there are K clients,
containing their own models and local datasets, and a central
server with global model aggregated from clients. Suppose a
dataset D has C classes indexed by [C], where [C] means the
full set of labels in D. Each client k has access to its private
local dataset Dk = {xk,i, yk,i}Nk

i=1, containing Nk instances
sampled from distinct distributions. Therefore, we get D =
∪k∈[K]Dk, where the data distributions of different Dk are
different. The overall objective in FL with non-IID setting is
defined as below:

minL(θ1, . . . , θK ;p) = ΣK
k=1pkE(x,y)∼Dk

[Lk(θk; (x, y)], (3)

where Lk(·) is the model loss at client k, and pk indicates its
weight ratio for aggregating.

4.2 Framework Overview
To explain how HyperFed solve the problem in FL with
non-IID data, i.e., Eq. (3), we introduce the framework
overview of HyperFed. In Fig. 2, there are a server and
K clients. Each client or server, similarly consists of a feature
extractor, an exponential map, and a Poincaré ball predictor.
The feature extractor F(·) : X → Rd maps an input data x
into a n-dimensional vector z = F(x) as feature represen-
tation. Then we get expo(z) by leveraging exponential map
on the feature representation z to the Poincaré ball space re-
ferred by the origin o. Finally, the Poincaré ball predictor
h(·) : Rd → Y decides class label for input data based on the
representation expo(z) in Poincaré ball. All Poincaré ball
predictors of server and clients are fixed and shared.

As Fig. 2 shows, there are mainly three steps in
HyperFed. (1) The server in HyperFed leverages hy-
perbolic prototype Tammes initialization (HPTI) module to

Figure 2: Framework of HyperFed. We take the modeling of
HyperFed with 2-dimensional Poincaré ball predictor on Cifar10
as an example.

construct a full set of uniformly-distributed class prototypes
for the Poincaré ball predictor by Tammes prototype initial-
ization (TPI), contracts class prototypes close to origin, and
shares Poincaré ball predictor with fixed class prototypes to
all of the clients. (2) Each client models local data distri-
bution independently with the hyperbolic prototype learning
(HPL) module, then sends the parameters of the local model
to the server for aggregation. (3) Consistent aggregation (CA)
module in the server updates the global model parameters us-
ing consistent updating (CU) to mitigate the inconsistent de-
viations from clients to server. After that, the server sends the
new global model parameters back to clients. This communi-
cation between server and clients, i.e., steps 2-3, iterates until
the performance converges.

4.3 Hyperbolic Prototype Tammes Initialization
Motivation. In this section, we devise HPTI module in
server to resolve two limits brought from the class statis-
tics shifting, i.e., missing class and class overlapping, as de-
scribed in Fig. 1(a). To bypass the dilemma of choosing a di-
mension, HPTI explores the class statistics in the hyperbolic
space, which is scalable and effective in modeling data with
low-dimensional space. Firstly, HPTI uses Tammes prototype
initialization (TPI) to construct uniformly distributed and dis-
tinguishable class prototypes for the entire class set. Then
HPTI fixes the position of the class prototypes on the Poincaré
ball predictor. Lastly, HPTI sends the Poincaré ball predictor
with fixed hyperbolic class prototypes, including the missing
classes, to clients. We describe them in detail below.

HPTI first constructs uniformly distributed hyperbolic pro-
totypes with TPI, which is available in data without prior se-
mantic information and efficient in computation. Most work
relies on prior semantic knowledge about classes to discover
the positions and representations of class prototypes. How-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3959



ever, not all datasets contain prior semantic knowledge. Mo-
tivated by [Ghadimi Atigh et al., 2021], we randomly sam-
ple points on the boundary of Poincaré ball for assigning
class prototypes, and optimize these points to be uniformly
distributed in a ball-shaped space. In this way, we incor-
porate the prior with large margin separation for Poincaré
ball predictor. To be specific, searching for uniformly dis-
tributed class prototypes can be formulated as a Tammes
problem [Tammes, 1930], i.e., arranging a set of points on
a unit sphere that maximizes the minimum distance between
any two points. TPI optimizes this Tammes problem to ob-
tain the class prototypes for all C classes in a dataset, i.e.,
W ∗ ∈ RC×n with n denoting the dimension of prototype:

W ∗ = argmin
W∈Pn

(
max

(i,j,i ̸=j)∈[C]
wiwj

⊤
)
,

s.t. ∀i ∈ [C] ∥wi∥2 = 1,

(4)

where wi (wj) is the i−th (j−th) row of W representing as
the i−th (j−th) class prototype. We choose cosine similarity
to measure this distance, because Poincaré ball model space
is conformal to the Euclidean space [Ganea et al., 2018].

Optimizing Eq. (4) requires computing pairwise similar-
ity of class prototypes iteratively, which is inefficient. To
mitigate it, we utilize the similarity of Poinecaré ball and
hyper-sphere to follow [Mettes et al., 2019], and minimize
the largest cosine similarity for each prototype in the form of
matrix, thus accelerating the optimization:

LP =
1

C
ΣC

i=1 max
j∈[C]

Mij ,M = WW T − 2I,

s.t. ∀i ∈ [C] ∥wi∥2 = 1.

(5)

Next, we find the position to fix the hyperbolic class proto-
types. As Fig. 1(b) shows, in Poincaré ball model, the closer
the distance from the referred origin to the node, the more
general the semantic information of node represents [Liu et
al., 2020]. But the uniformly distributed class prototypes
are initially positioned on the boundary of the Poincaré ball,
which is against the distribution of hierarchical structure in
Poincaré ball. In order to enjoy the benefits of uniformity
and generality simultaneously, we contract the class proto-
types along with the radius to the origin o by a slope degree
s, i.e., WP = sW ∗ ∈ RC×n. Lastly, HPTI shares and fixes
the Poincaré ball model to clients, which encourages local
clients to model local data sufficiently with the supervision
of consistent and separated hyperbolic prototypes.

4.4 Hyperbolic Prototype Learning
Motivation. In this part, we provide the details of HPL,
which utilizes the hierarchical information inherent in data to
obtain fine-grained and gathered data representations. To uti-
lize the hierarchical information of data, HPL uses Poincaré
ball model for the benefits of continuous optimization and
effective representation in low-dimensional space. To start
with, HPL extracts the feature for data samples and applies
an exponential map referred by the origin shared with class
prototypes. According to the supervision of shared class pro-
totypes in hyperbolic space, HPL next represents the data fea-
tures of the same class according to hyperbolic triplet loss.

In the following, we present how to model the hyper-
bolic representations of data samples for each client k locally.
Specifically, we expect to learn a projection of local data Dk

to the local Poincaré ball model, i.e., Pn
k , in which we com-

pute the similarity between data samples and class prototypes
for each client. As introduced in Fig. 2, we take a feature
extractor Fθk

(·) in Euclidean space to obtain the feature rep-
resentations of local data samples, i.e., z = Fθk

(x) for an
instance pair (x, y) in Dk. Referred by origin o, we apply
an exponential map from tangent space ToM to the Poincaré
ball model Pn

k shared with class prototypes. Hence, the rep-
resentation of data samples in Poincaré ball model Pn

k can be:

exp0(z) = tanh(||z||2)
z

||z||2
. (6)

As mentioned ahead, we seek to construct the hierar-
chical structure between the feature representations of data
samples and their corresponding class prototypes. Triplet
loss [Movshovitz-Attias et al., 2017; Liu et al., 2021; Liu et
al., 2023] optimizes the distances among a set of triplets, de-
noted as {anchor point, positive point, negative point}, by
creating a fixed margin, i.e., m, between the anchor-positive
points difference and the anchor-negative points difference.
Motivated by this, we choose each data sample representa-
tion in the Poincaré ball model as anchor point, the ground
truth class prototype as positive point, and the remaining pro-
totypes of the full class set as negative points. In this way,
each client incorporates the prototypes of its missing class to
feature representation, by randomly sampling negative points.
We define hyperbolic triplet loss for client k as below:

LR
k = max(d(exp0(z),wy)− d(exp0(z),wy′) +m, 0), (7)

where z = Fθk
(x), wy′ is randomly sampled negative class

prototype, d(·, ·) is the geodesic distance defined in Eq. (1),
and margin m is a hyper-parameter. We obtain fine-grained
representation with sufficient hierarchical information, by
simultaneously minimizing the positive geodesic, e.g., the
green curve in Fig. 2, and maximizing the negative geodesic,
e.g., the red curve in Fig. 2. In this way, HyperFed utilizes
the data hierarchical information to enhance the prediction.

4.5 Consistent Aggregation
Motivation. Finally, we introduce CA which mitigates the
inconsistent deviations from clients to server caused by the
statistically heterogeneous data distributions. In FL aggre-
gation, CA first formulates the aggregation of local feature
extractors in HyperFed as a multi-objective optimization.
Then CA applies consistent updating (CU) to pick the tough-
est client, i.e., the client with the most divergent deviation,
and alleviate the inconsistency between the toughest client
and the remaining clients. Lastly, CU iteratively optimizes
this multi-objective optimization to yield a Pareto optimal so-
lution and obtain the weight ratio of different client models.

We formulate the aggregation as a multi-objective opti-
mization in the following. Specifically, we first compute the
different deviations from clients to server as multiple objec-
tives, then the goal of alleviating the inconsistency of these
deviations can be achieved by multiple-objective optimiza-
tion. We obtain the combination of local parameters in server:

θt+1 = θt +ΣK
k=1pk

(
θt+1
k − θt

)
, (8)
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Algorithm 1 Training procedure of HyperFed
Input: Batch size B, communication rounds T , number of
clients K, local steps E, dataset D = ∪k∈[K]Dk

Output: hyperbolic class prototypes WP, model parameters,
i.e., θT and{θT

k }
1: Server executes():
2: Initialize θ0 with random distribution and WP by HPTI
3: for t = 0, 1, ..., T − 1 do
4: for k = 1, 2, ...,K in parallel do
5: Send {θt,WP} to client k if t = 0 else θt

6: θt+1
k ← HPL: Client executes(k, θt)

7: end for
8: CA: optimize Eq. (10) with CU and update parameters

of θt+1 by Eq. (8)
9: end for

10: return θT ,WP, {θT
k }

11: HPL: Client executes(k, θt):
12: Assign global model to the local model θt

k ← θt

13: for each local epoch e = 1, 2, ..., E do
14: for batch of samples (xk,1:B ,yk,1:B) ∈ Dk do
15: Feature extraction zk,1:B ← Fθe

k
(xk,1:B)

16: Project zk,1:B to Poincaré ball by Eq. (6)
17: Compute loss LR

k by Eq. (7)
18: Update parameters of θe

k by RSGD
19: end for
20: end for
21: return θE

k to server

where θt is the global model and θt
k is the local model of

the client k at t−th communication. Next, we denote global
and client deviations, i.e., ∆t+1

θ = θt+1 − θt and ∆t+1
θk

=

θt+1
k − θt, respectively, and rewrite Eq. (8) as:

∆t+1
θ = ΣK

k=1pk∆
t+1
θk

. (9)

Then CA solves this multiple-objective optimization to Pareto
stationary point, i.e., minimizing the minimum possible con-
vex combination of inconsistent deviations:

min
1

2

∥∥∥ΣK
k=1pk∆

t+1
θk

∥∥∥2

2
, s.t. ΣK

k=1pk = 1, and ∀k, pk ≥ 0. (10)

Next, we introduce CU which derives from Multiple Gra-
dient Descent Algorithm (MGDA) [Désidéri, 2012; Sener
and Koltun, 2018] to solve this optimization. The optimiza-
tion problem defined in Eq. (10) is equivalent to finding a
minimum-norm point in the convex hull of the set of in-
put points, i.e., a convex quadratic problem with linear con-
straints. CU iteratively optimizes Eq. (10) by linear search,
which can be solved analytically [Jaggi, 2013]. In detail, we
find the toughest client, treat the combination of the remain-
ing clients as a virtual client, and analyze the solution ac-
cording to the directions of the toughest client and the virtual
client. Firstly, we initialize p0 with the weight of data sam-
ples, i.e., pk = Nk/ΣK

k=1Nk, and precompute the consistency
of deviations V , s.t.Vk,k′ = ∆θk

⊤∆θk′ . Then we find the
toughest client by τ = argmink′ ΣK

k=1pkVk′,k with devia-
tion ∆τ , and remain the combination of others with historical
weights to be a virtual client, i.e., ∆vir = ΣK

k=1,k ̸=τpk∆θk
.

Thus we simplify Eq. (10), i.e., minpτ∈[0,1]
1
2∥pτ∆τ + (1 −

pτ )∆vir∥22. According to the directions of ∆τ and ∆vir, we
can obtain the analytical solution for pτ :

pτ = CU+
[
(∆vir−∆τ )

⊤∆vir/∥∆τ−∆vir∥2
2

]
, (11)

where CU+[·] = max(min(·, 1), 0). In Appendix C, we
present the analysis of optimization for obtaining CU+[·]
based on the computational geometry [Sekitani and Ya-
mamoto, 1993] of minimum-norm in the convex hull. Given
pτ , we update the weight ratio p = (1 − pτ )p + pτe, where
e is the one-hot vector with 1 in the τ−th position. In order
to obtain the Pareto stationary point, CU iterates the process
of finding the toughest client several times to obtain the best
combination p∗ that alleviates the inconsistent deviations of
clients. Finally, we find the consistent optimization direction
with the Pareto optimal solution p∗ for aggregating in Eq. (8).

Given three main modules, i.e., HPTI, HPL, and CA, we
illustrate the overall algorithm of modeling HyperFed in
Algo. 1. Steps 1-10 are the server execution. In step2, the
server initializes model parameters and HPTI in it initializes
the hyperbolic class prototypes. Then for each communica-
tion round, all clients use HPL to train their local model with
the shared Poincaré ball predictor in step 6. After that, in step
8, CA in server receives the model parameters of all clients,
and mitigates the inconsistency of client deviations in aggre-
gation. The details of client execution is listed in steps 11-21.

5 Experiments and Discussion
5.1 Experimental Setup
Datasets. We use four public datasets in torchvision1,
i.e., EMNIST by Letters [Cohen et al., 2017], Fashion-
MNIST (FMNIST) [Xiao et al., 2017], Cifar10, and Ci-
far100 [Krizhevsky et al., 2009], which are widely-used in
the recent FL work [Chen and Chao, 2021; Oh et al., ;
Li et al., 2021a]. There are two evaluation goals for FL
with non-IID data, i.e., global performance (G-FL) and lo-
cal personalized performance (P-FL). G-FL tests the global
model aggregated in the server by evaluating the test set pub-
lished in the torchvision. In P-FL, we simulate local data
distribution using the train set published in torchvision to
evaluate the local models. For all datasets, we simulate
the non-IID data distributions following [Hsu et al., 2019;
Li et al., 2021a]. Specifically, we sample a proportion of in-
stances of class j to client k with Dirichlet distribution, i.e.,
pj,k ∼ DirN (α), where α denotes the non-IID degree of ev-
ery class among the clients. The smaller α indicates the more
heterogeneous data distribution. We sample 75% of local data
as local training set and the remaining as local test set.

Comparison Methods. We compare HyperFed with
three categories of state-of-the-art approaches according to
their optimization goals, i.e., (1) optimizing global model:
FedAvg [McMahan et al., 2017], FedProx [Li et al., 2020],
SCAFFOLD [Karimireddy et al., 2019], FedDYN [Acar et
al., 2020], MOON [Li et al., 2021a], (2) optimizing lo-
cal personalized models: FedMTL [Smith et al., 2017],

1https://pytorch.org/vision/stable/index.html

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3961



Figure 3: UMAP visualizations on FMNIST (α = 0.5).

(a) G-FL (b) P-FL

Figure 4: Effect of local epochs E on Cifar10 (α = 0.5).

FedPer [Arivazhagan et al., 2019], pFedMe [T Dinh et
al., 2020], Ditto [Li et al., 2021b], APPLE [Luo and Wu,
2021], and (3) optimizing both global and local models: Fed-
RoD [Chen and Chao, 2021], FedBABU [Oh et al., ], and
SphereFed [Dong et al., 2022].
Implementation Details. We adopt ConvNet [LeCun et al.,
1998] as a feature extractor for EMNIST and FMNIST, while
ResNet [He et al., 2016] for Cifar10 and Cifar100. We set all
of the datasets with batch size as 128 and embedding dimen-
sion as 20. For HyperFed, we choose RSGD [Bonnabel,
2013] as the optimizer, set the learning rate lr = 0.3, the
margin m = 3, and the slope degree s = 0.9. We conduct
training for all of the methods with 5 local epochs per round
until converge. We evaluate both G-FL and P-FL by top-1 ac-
curacy. We set the non-IID degree α = {0.1, 0.5, 5}, respec-
tively, for evaluating the performance of different methods.

5.2 Empirical Results
Performance Comparison. We run each method 5 times
and report the performance of G-FL and P-FL in Tab. 1-2
with the average value, respectively. There are mainly three
observations. (1) In terms of G-FL evaluated in Tab. 1, gen-
erally speaking, the performance of G-FL is increasing along
with the increase of non-IID degree α. It states that the het-
erogeneity of data distribution deteriorates the performance
of FL methods. FedAvg takes no measure to handle non-IID,
which is worse than most methods. Similarly, FedBABU is
a variant of FedAvg that fixes the randomly initialized clas-
sifier, perform inferior as well. It means that simply fixing

(a) G-FL (b) P-FL

Figure 5: Effect of slope degree s on FMNIST & Cifar10 (α = 0.5)

(a) G-FL (b) P-FL

Figure 6: Effect of margin m on FMNIST & Cifar10 (α = 0.5).

the classifier initialized by random is not enough for FL with
non-IID data. (2) In terms of P-FL evaluated in Tab. 2, the
methods of the third category can achieve accuracy similar
as the second category on FMNIST and EMNIST, but cannot
maintain the personalization on Cifar100. This indicates that
simply fixing class statistics in FL is less promising than per-
sonalization strategies on complex dataset. SphereFed is the
runner-up of Cifar100 (α = 5), but it fails to perform well
on more heterogeous setting, i.e., Cifar100 (α = {0.1, 0.5}).
This phenomenon shows that HyperFed performs better
for FL with non-IID data, as a FL method of the third cat-
egory. (3) In terms of the performance of HyperFed,
HyperFed achieves the best results in all kinds of non-
IID degrees and different datasets, which verifies the efficacy
of HyperFed for non-IID problems. In the results of Ci-
far100, HyperFed significantly outperforms all of the com-
parison algorithms listed both in G-FL and P-FL, in terms
of at least 10.75% and 5.44%, respectively. This shows that
HyperFed can capture more fine-grained representation to
improve performance, especially on large and complicated
datasets with low dimensional representation.
Visualization. To verify the benefits of fixing class statistics
in hyperbolic space, we utilize UMAP [McInnes et al., 2018]
to visualize the G-FL hidden representations of the global
model in HyperFed, the runner-up of G-FL,i.e., SphereFed,
and P-FL, i.e., Ditto, and FedBABU on FMNIST (α = 0.5)
in Fig. 3. we can find that: (1) Compared with Ditto, methods
fixing the class statistics attain more gathered representations.
(2) Though FedBABU fixes the classifier, the randomly ini-
tialized classifier is limited in resolving class overlapping. (3)
Compared with SphereFed whose classifier is initialized with
a set of orthogonal basis in hypersphere, HyperFed con-
centrates the hidden representation tighter due to sufficiently
utilizing the hierarchical information.

Ablation Studies. We consider four variants of
HyperFed: (1) HyperFed uses geodesic as met-
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Dataset EMNIST FMNIST Cifar10 Cifar100
Method \NonIID Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5)

FedAvg 88.86 92.86 93.31 78.51 86.75 88.75 36.82 62.44 67.53 27.61 29.26 30.12
FedProx 90.75 93.27 93.65 78.49 86.57 88.68 37.95 63.48 67.23 26.91 29.77 29.98

SCAFFOLD 90.35 93.38 93.70 79.20 87.03 88.80 33.10 66.99 70.53 29.57 33.25 33.86
FedDYN 91.30 92.63 93.13 85.25 89.46 90.51 35.16 65.07 69.04 29.16 31.49 32.21
MOON 91.97 93.50 93.91 83.78 90.27 91.08 33.54 60.23 62.45 22.86 24.49 25.99

Fed-RoD 89.42 92.80 93.52 77.26 89.17 90.78 37.79 66.90 70.81 17.06 24.32 31.99
FedBABU 86.34 91.95 92.74 74.31 82.44 85.21 37.90 60.11 65.16 22.98 24.56 23.89
SphereFed 93.25 93.93 94.07 88.55 90.55 91.17 32.41 70.02 70.13 22.37 24.96 24.72

HyperFed-Geodesic 93.35 94.13 94.43 79.00 90.76 91.48 34.26 65.53 68.65 26.05 29.07 26.62
HyperFed-Shared 93.82 93.98 94.16 85.29 90.48 91.23 36.44 69.21 73.16 33.62 35.31 36.30

HyperFed-Averaged 93.65 94.29 94.45 87.91 90.98 91.69 36.69 70.12 70.81 33.39 36.33 36.93
HyperFed 94.00 94.33 94.46 89.38 91.16 91.83 38.03 71.25 75.22 33.93 38.89 37.50

Table 1: G-FL accuracy (%) of the global model. We bold the best result.

Dataset EMNIST FMNIST Cifar10 Cifar100
Method \NonIID Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5) Dir(0.1) Dir(0.5) Dir(5)

FedMTL 96.28 91.08 88.21 97.39 90.89 85.71 90.57 65.68 48.31 46.28 24.72 11.64
FedPer 97.23 94.19 92.97 96.87 90.54 87.21 91.93 75.63 67.20 49.69 32.75 23.89

pFedMe 97.23 94.03 92.62 96.03 88.57 84.95 92.45 77.64 66.09 55.20 36.34 28.19
Ditto 97.72 95.32 94.30 97.79 93.75 92.05 91.34 74.35 69.94 47.08 31.89 27.04

APPLE 97.19 94.08 92.63 96.79 90.49 86.59 89.85 67.96 56.13 42.94 24.61 20.39
Fed-RoD 97.76 95.31 93.99 97.21 93.48 91.62 91.24 72.11 71.33 35.03 27.70 32.22

FedBABU 97.36 94.17 92.81 96.64 89.59 85.57 92.04 64.05 63.46 29.30 25.05 24.01
SphereFed 93.61 94.11 94.34 88.91 90.87 91.88 91.68 78.39 72.86 40.68 32.63 34.90

HyperFed-Geodesic 97.97 95.60 94.48 97.00 93.98 91.89 91.68 72.20 69.02 29.70 27.11 27.03
HyperFed-Fixed 97.96 95.65 94.45 96.53 92.66 90.85 90.57 79.66 59.38 49.08 20.20 11.31
HyperFed-Shared 97.50 95.66 94.39 97.50 93.00 91.52 92.69 77.43 71.62 47.97 33.16 35.19

HyperFed-Averaged 97.71 95.13 94.46 97.83 93.73 91.96 92.63 70.53 69.02 53.50 36.49 35.79
HyperFed 98.76 96.11 94.53 98.13 94.19 92.08 93.49 83.17 74.94 59.85 40.94 36.80

Table 2: P-FL accuracy (%) of the local model. We bold the best result.

(a) G-FL (b) P-FL

Figure 7: Effect of clients number K on FMNIST (α = 0.5).

dataset test set 2 5 10 20 25 50 100

FMNIST (α=0.5) P-FL 88.91 93.20 93.84 93.98 93.70 93.73 93.66
G-FL 88.59 91.07 90.91 91.16 90.74 90.74 90.74

Cifar10 (α=0.5) P-FL 72.82 80.55 82.83 83.17 82.50 83.15 82.76
G-FL 60.87 68.82 69.84 71.25 70.67 71.51 71.69

Table 3: Effect of the representation dimension in HyperFed.

ric, i.e., HyperFed-Geodesic, (2) HyperFed uses
fixed class prototypes only, i.e., HyperFed-fixed,
(3) HyperFed uses shared class prototypes only, i.e.,
HyperFed-shared, and (4) HyperFed uses weighted
average aggregation by data amounts, i.e., HyperFed-
Averaged. From Tab. 1-2, we can discover that: All
of the variants decrease their performance compared with
HyperFed. These results identify that all of the components
of HyperFed, contribute to performance enhancement.

Hyper-parameters Sensitivity. To study the sensitivity of
hyper-parameters, we compare the performance of FMNIST
and Cifar10 by varying the local epochs E = {5, 10, 20, 50}

in Fig. 4, slope degree s = {0.2, 0.5, 0.8, 0.9, 0.95, 1}
in Fig. 5, margin m = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} in
Fig. 6, number of clients K = {5, 10, 20, 50, 100} in
Fig. 7, and the dimension of features representation d =
{2, 5, 10, 20, 25, 50, 100} in Tab. 3, respectively. We can con-
clude that: (1) The increase of local epochs per communica-
tion round decreases the performance of FL methods. (2)
HyperFed nearly converges when s = 0.9, which indi-
cates that positioning the class prototypes in 90% of radius
achieves a balance between the best model performance and
the most general class information. (3) The performance
of HyperFed varying by m forms a slight bell curve. (4)
HyperFed outperforms the runner-up methods in all cases
of different number of clients. (5) The dimension changes
slightly affect the performance of HyperFed, proving that
HyperFed is proficient in low-dimensional representation.

6 Conclusion
To enhance federated learning (FL) with non-IID data, we
propose HyperFed which contains hyperbolic prototype
Tammes initialization (HPTI) module, hyperbolic prototype
learning (HPL) module, and consistent aggregation (CA)
module. Firstly, HPTI constructs uniformly distributed and
fixed class prototypes on server, and shares them with clients
to guide consistent feature representation for local clients.
secondly, HPL models client data in the hyperbolic model
space with the supervision of shared class prototypes. Addi-
tionally, CA mitigates the impact of inconsistent deviations
from clients to server. Extensive studies on four datasets
prove the effectiveness of HyperFed.
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