
Contrastive Learning and Reward Smoothing for Deep Portfolio Management

Yun-Hsuan Lien , Yuan-Kui Li , Yu-Shuen Wang
National Yang Ming Chiao Tung University, Taiwan

sophia.yh.lien@gmail.com, toregenerate@gmail.com, yushuen@cs.nycu.edu.tw

Abstract
In this study, we used reinforcement learning (RL)
models to invest assets in order to earn returns. The
models were trained to interact with a simulated
environment based on historical market data and
learn trading strategies. However, using deep neu-
ral networks based on the returns of each period can
be challenging due to the unpredictability of finan-
cial markets. As a result, the policies learned from
training data may not be effective when tested in
real-world situations. To address this issue, we in-
corporated contrastive learning and reward smooth-
ing into our training process. Contrastive learning
allows the RL models to recognize patterns in as-
set states that may indicate future price movements.
Reward smoothing, on the other hand, serves as
a regularization technique to prevent the models
from seeking immediate but uncertain profits. We
tested our method against various traditional finan-
cial techniques and other deep RL methods, and
found it to be effective in both the U.S. stock market
and the cryptocurrency market. Our source code is
available at https://github.com/sophialien/FinTech-
DPM.

1 Introduction
Portfolio management (PM) has long been a popular topic
of study in both academia and the financial industry. Tra-
ditional financial techniques often rely on Modern Portfo-
lio Theory (MPT) to plan portfolio allocation, which treats
the problem as a convex objective function and uses histori-
cal data on the average returns of underlying assets and the
covariance between returns to find the most efficient portfo-
lio on the Markowitz portfolio efficient frontier. However,
these methods do not take into account important market in-
dicators, such as price trends, news, and financial indicators,
when making portfolio allocations.

Recently, deep reinforcement learning (DRL) techniques
[Sutton and Barto, 2018] have been used to optimize portfo-
lio allocation. These methods involve creating a simulated
market environment using historical data and training agents
to learn trading strategies that maximize returns. Unlike tra-
ditional approaches, DRL methods allow for more flexibility

in observations when making decisions by considering price
trajectories of assets and extracting concise but effective fea-
tures for dynamic portfolio allocation. While DRL methods
have shown promise, they are sensitive to rewards and envi-
ronments, meaning that an agent trained in one environment
may not perform well in another, even if the two environ-
ments are similar. This is a significant issue in portfolio man-
agement, as price movements can be random and market con-
ditions during the training and testing periods may differ.

The purpose of this research is to explore how the tech-
nique of contrastive learning [Chen et al., 2020] can be uti-
lized to improve the ability of DRL agents to generalize their
knowledge. In the field of PM, the agents’ investment de-
cisions are based on the representations extracted from the
data. To improve the performance of these decisions, it is
beneficial to group together representations of the assets that
have highly correlated future trends. Since contrastive learn-
ing was originally developed for use in computer vision, and
typically involves training neural networks to distinguish be-
tween similar and dissimilar images, applying this method di-
rectly to PM is not feasible. The reason is that contrast learn-
ing demands data augmentation to generate positive pairs of
images, and the modified versions of price trajectories are in-
herently different from the original ones. To address this chal-
lenge, we propose to use neural relational inference (NRI)
[Kipf et al., 2018] to estimate the relationships between asset
states, and create positive pairs from those with strong rela-
tionships (e.g., high correlation in future price movements),
rather than augmenting price trajectories. This approach al-
lows the agents to forecast future price movements while trad-
ing, and the relationships are learned automatically, rather
than predetermined by heuristic rules.

Rewards based on the price of an asset at consecutive peri-
ods, such as those often used in PM, can be difficult to model
due to fluctuations in the price. To address this issue, we use
reward smoothing in conjunction with contrastive learning to
help the network learn an effective trading strategy. Smooth-
ing the rewards can be seen as a regularization method that
encourages the agents to pursue long-term returns and helps
reduce the variance of their actions by making them less ag-
gressive and less prone to overfitting the training data. This
is because the states of an asset at consecutive periods, which
represent the historical price trajectories, are similar and share
most of the same information, so making different decisions

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3966

based on similar observations could lead to overfitting.
Our approach uses contrastive learning and reward smooth-

ing to improve the robustness of the representations learned
by RL agents when dealing with uncertainty in financial data.
We evaluated our method using several baselines, including
both traditional financial methods and DRL methods, on both
the U.S. stock market and the cryptocurrency market, and
found it to be effective. To ensure reliable results, we also
trained RL agents with multiple random seeds when evalu-
ating DRL methods, as they can be sensitive to initial seeds.
Overall, the experimental results demonstrated the effective-
ness of our approach.

2 Related Work
RL agents are designed to make sequential decisions while in-
teracting with the environment in order to maximize returns,
such as by reallocating portfolios over time in financial ap-
plications. Early RL methods used shallow neural networks
[Dempster and Leemans, 2006] or traditional machine learn-
ing techniques [Györfi et al., 2006] to train agents. They opti-
mize value functions that represent interval profits and Sharpe
ratios using Q-Learning. However, it can be difficult to ap-
proximate these value functions due to the non-stationary na-
ture of financial data. As a result, some methods have instead
focused on directly updating the policy model based on the
gradients of expected rewards, as proposed in [Sutton et al.,
2000; Moody and Saffell, 2001]. This avoids the challenges
associated with approximating the value function, which was
shown to be theoretically intractable in some cases.

Reinforcement learning has been successful in various
fields when combined with deep neural networks, which can
extract compact, informative representations from observa-
tions for use by RL agents in decision-making. There have
been a number of efforts to improve the performance of RL
in financial applications by modifying the network architec-
ture [Jiang et al., 2017], using fuzzy learning [Deng et al.,
2016], constraining trading strategies [Buehler et al., 2019],
employing a short replay buffer and a long sequence of data
[Huang, 2018], and measuring the expected maximum draw-
down [Almahdi and Yang, 2017]. Because it can be difficult
to evaluate value functions in non-stationary market states,
Lu [2017] has trained RL agents using the policy gradient
approach. Liang et al. [2018] found that it outperformed
other methods such as deep deterministic policy gradient and
proximal policy optimization in their experiments. Guo et
al. [2018] improved upon the general log-optimal strategy by
approximating the reward function with a quadratic Taylor
expansion when updating the policy network.

In addition to various training strategies, research has also
shown that augmenting asset states, which can be based on
past asset prices or derived from news articles, can signifi-
cantly improve profitability. For example, Ye et al. [2020]
demonstrated this in their work. Wei et al. [2019] took a
different approach by allowing RL agents to interact with an
environment model rather than real data when learning trad-
ing policies, and found that the resulting agents could still be
profitable when applied to real data. Wang et al. [2019] used
a buying winners and selling losers strategy to dynamically

select stock assets and aim to earn profits in both bull and
bear markets. They employed a long short-term memory net-
work with history state attention and a cross-asset attention
network to learn representations from multiple periods and
identify relationships between assets.

3 Background
DRL methods formulate the portfolio management as a
Markov Decision Process (MDP). Agents are trained to learn
a trading strategy that can maximize portfolio value via a se-
quence of asset reallocation. Specifically, an MDP can be
expressed as ⟨S,A,P,R, γ⟩, where S,A,P,R, γ represent
states, actions, state transition probability function, reward
functions and the future reward discount factor. The goal of
an agent is to learn a policy π : S → A that can fulfill

Maximize
π

E

[∞∑
t=1

γ(t−1)Rt

]

subject to at = π(st),
n∑
i

ait = 1, 0 ≤ ait ≤ 1. (1)

Unlike traditional financial methods that solve a one-step op-
timization problem, DRL approaches maximize the expected
discounted reward over a long period. The process of portfo-
lio management in the context of MDPs is explained in more
detail below.

State. In the context of financial portfolio management,
the state at a given time period is represented by the asset
prices and the portfolio weights at that time. In this study, the
state is expressed as st = ⟨xt,wt⟩, where st belongs to the
set of states S . The external state xt is a tensor containing
the historical prices of n assets over the past k time periods,
while the internal state wt represents the weights of the assets
in the portfolio.

Action. At each time period t, the agent uses a vector wt =
(w0

t ,w
1
t , ...,w

n
t) to represent the proportion of each asset in

the portfolio. The number of assets is represented by n, and
w0
t is the proportion of cash. Based on the current state st,

the agent chooses an action at = (a0t ,a
1
t , ..., a

n
t), where 0 ≤

at ≤ 1, to reallocate the asset weights. It is important to note
that wt and at represent the portfolio distribution before and
after trading at time t, respectively. Additionally, the sum of
the weights must equal 1, so

∑n
i=0 w

i
t =

∑n
i=0 a

i
t = 1. The

agent makes the action at−1 at time t − 1, and the portfolio
weights become wt as time and the market progress. Namely,
the weight vector can be formulated as follows:

wt =
yt−1 ⊙ at−1

yt−1 · at−1
, (2)

where ⊙ represents element-wise multiplication and yt =
vt+1

vt
=

(
1,

v1t+1

v1t
, ...,

vnt+1

vnt

)
is the relative price vector, with

vit being the price of asset i. The relative price of cash, repre-
sented by y0

t , is always 1 because the price of cash is constant.
Reward. Agents receive rewards when the prices of their

assets increase. To better model the real-world scenario,
transaction costs are considered when assets are bought or
sold. These costs reduce the portfolio value by a factor of µt.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3967

The portfolio value over a period of time T with transaction
costs included can be defined as follows:

PT = P0Π
T
t=1µtat · yt, (3)

where P0 is the initial portfolio value at time t = 0. The
transaction factor µt depends on the amounts of assets being
traded and the transaction fee, and can be calculated using the
following formula:

µt =
1

1− cpa0t

[
1− cpw

0
t − (cs + cp − cscp)

n∑
i=1

(wit − µta
i
t)

+

]
, (4)

where cs and cp are the transaction costs for selling and pur-
chasing assets, respectively, and (v)+ = ReLu(v) is the
element-wise rectified linear function. To approximate µt, we
iteratively compute µt using the method described in [Jiang et
al., 2017]. Since maximizing the accumulated product value
is equivalent to maximizing the sum of its logarithmic value,
the reward function can be rewritten as:

RT =
1

T

T∑
t=1

ln(µtat · yt). (5)

4 Contrastive Learning
Contrastive learning [Chen et al., 2020] is a method used to
enhance neural networks’ ability to create strong representa-
tions by exposing them to perspectives that differ from the
main task. In the context of PM, this is useful because the
policy used to make investment decisions relies on the repre-
sentations extracted from the data. To this end, it is beneficial
to group together representations that are highly correlated, as
it’s possible that one asset may serve as a leading indicator of
another asset in the financial market. When two assets, repre-
sented by (xit1 ,x

j
t2), can assist each other in predicting future

price trends, they are considered positive pairs. However, if
this is not the case, the pair is considered negative. Figure 1
illustrates this idea. Note that the pairs can come from dif-
ferent assets and different time periods, as these relationships
can occur at any time and place. For simplicity, we will omit
the subscript t (i.e., xit → xi) in the following paragraphs.

Our policy network includes an encoder f at the front that
encodes an external state xi into a representation zi (i.e.,
zi = f(xi)). We find a corresponding state xj for each state
xi in the training batch to generate positive pairs, and apply
the contrastive reward to train the encoder f . The cosine sim-
ilarity of vectors u and v is defined as d(u,v) = u ·v/|u||v|.
For each positive pair (xi, xj) in a training batch B, we max-
imize the following reward:

RC(z
i, zj) = log

exp(d(zi, zj)/τ)∑B
k=1 I[k ̸=i] exp(d(zi, zk)/τ)

, (6)

where I[k ̸=i] ∈ 0, 1 is an indicator function that returns 1 only
if k ̸= i, and τ is a temperature parameter. Let P be the
set of positive pairs. The total contrastive reward is given by
RC =

∑
i,j∈PRC(z

i, zj).

Current Future

Positive Pair

0.8

0.3

0.75

B
A

D
C

A

B

C

D

(a)

(b)

(c)

Figure 1: (a) In our approach, we categorize pairs of asset states
whose future price movements are correlated as positive pairs and
the rest as negative pairs. (b) Using the NRI method, we learn the
relationships between asset states represented by ψij by predicting
their future price movements. (c) Through contrastive learning, we
aim to group representations of positive pairs of asset states (i.e.,
those with high values of ψij) together.

4.1 Positive Pair Matching by Forecasting.
We determine that asset states are positive pairs if they can
help predict each other’s future price movements. To do this,
we utilize neural relational inference (NRI) [Kipf et al., 2018]
to identify positive and negative pairs of asset states. NRI is
a graph neural network (GNN) that is trained in an unsuper-
vised manner to discover relationships between entities. Its
structure is based on a variational autoencoder (VAE). The
encoder learns the relationships from historical asset prices,
and the decoder predicts future price movement trajectories.
Unlike traditional VAE variants, which analyze each asset
state individually, NRI takes into account all asset states in
a batch when forecasting future trends.

Encoder. The encoder of NRI is a fully connected GNN
as the relationships between assets are not known in advance.
The network exchanges features between nodes and edges to
learn the relationships. Let Φe and Φv be fully connected
layers that transform features from edges to nodes and from
nodes to edges, respectively. The process can be described as
follows:

v → e, hi,jℓ = Φeℓ([h
i
ℓ,h

j
ℓ]), (7)

e→ v, hiℓ+1 = Φvℓ

(∑
i̸=j

hi,jℓ

)
, (8)

where hiℓ and hi,jℓ are the representations of node i and edge
{i, j} at the ℓ layer, respectively, and hi0 = xi is the input
feature. The encoder uses message passing to learn the distri-
bution of posterior relation probability:

h = Φenc(x),

qϕ(ψ|x) = softmax(h), (9)

where x = (x0,x1, ...,xn) is the set of assets states. Φenc
is the GNN encoder, and qϕ(ψ|x) is a categorical distribu-
tion. The relationships between nodes i and j, represented

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3968

by ψi,j ∈ ψ, are learned during training, with values of ψi,j
close to 1 and 0 indicating strong and weak correlations, re-
spectively. Additionally, the sum of ψi,j for each node i over
j must equal 1. Since qϕ(ψ|x) is a discrete distribution, we
utilize the method proposed in [Maddison et al., 2017] to
sample from a continuous approximation for updating net-
work parameters through backpropagation. This is done by
drawing samples of the form

ψi,j = softmax((hi,j + g)/ν), (10)

where g is an i.i.d vector sampled from the Gumbel (0,1) dis-
tribution, and ν is a parameter used to control the smoothness
of the approximation.

Decoder. The decoder predicts future price movements
based on assets’ current state and their relationships. That is,
pθ(xt+1|xt, ψ). The decoder’s architecture is similar to the
encoder but in the opposite order. As a VAE, the objective is
to maximize the evidence lower bound:

L(ϕ, θ) = Eqϕ(ψ|x)[log pθ(x|ψ)]
−KL[qϕ(ψ|x)||pθ(ψ)], (11)

where the prior pθ(ψ) is a uniform categorical distribution.
We also let the decoder predict multiple steps of future prices
to avoid the degeneration problem because price movements
can be small within a short period.

Our goal in training the NRI is to have it learn the con-
nections between the states of assets. In practice, during the
training process, we consider a pair of states (xi,xj) to be
positive if the value of ψi,j is the highest for state xi. To im-
prove the agents’ ability to create strong representations, we
maximize the contrastive reward, as described in Equation 6.
The representations of correlated states should be close, while
the representations of uncorrelated states should be distinct.

5 Reward Smoothing
Maximizing the reward RT requires maximizing µtat · yt
at each time period t. However, focusing solely on immedi-
ate returns can lead to overfitting to the training data as price
movements are unpredictable. As the states of consecutive
periods are similar (differing only by one period), we smooth
the reward to encourage the RL agents to take similar actions
in consecutive periods. We use the variable F to represent the
number of future time steps used for smoothing. Along with
maximizing RT , the RL agents must also maximize

sRT =
1

T × F

T∑
t=1

F∑
f=1

ln(µtat · yt+f). (12)

It deserves noting that time-continuous batches are com-
monly used in network training for time series applications,
which implies smoothing in the temporal dimension. How-
ever, this method and our reward smoothing are entirely dif-
ferent. Using samples in a batch allows the agent to trade
independently at each period, and the weighting of assets in
consecutive periods can be distinct. In contrast, our reward
smoothing encourages the agent to take an action that will
earn profits over multiple future periods. The actions taken in
consecutive periods are not independent and are intended to
achieve similar profits.

6 Deterministic Policy Gradient
We employ a policy gradient method to address the PM prob-
lem. The entire state-action-reward trajectory for a T pe-
riod investment is represented by the sequence s1,a1, r1, ...,
sT ,aT , rT . At every time step t, the agent π decides the al-
location weight for each asset based on the current state st
using the equation

at = πφ(st), (13)

where φ indicates the network parameters. The goal is to
maximize the final portfolio value RT after multiple trading
steps. To help the agent learn effective strategies, two addi-
tional objectives were also employed: earning smoothed re-
wards sRT and extracting robust representations from asset
states RC for agents to make decisions. This is done because
using multiple objectives, also known as multi-task learning,
has been shown to be effective for the main task in various
applications [Ruder, 2017]. The overall reward for the agent
π is defined as

J(πφ) = RT + α · sRT + β ·RC , (14)

where α is the weight that balances the rewardsRT and sRT ,
and β is a weight that adjusts the strength of contrastive learn-
ing. Ideally, α could be a constant. However, since RT re-
flects the actual portfolio value, we only use sRT as a guide.
Specifically, we set α = exp(−RT), which is based on the
log-portfolio value RT . The weight is high when the agent
earns little or negative returns, and the weight is low other-
wise. We do not adjust α based on the training iteration as it
is difficult to know when the agents have learned to earn long-
term rewards. This strategy also prevents the agents from
overfitting to noisy rewards because lowRT strengthens sRT
during training. The value of α will remain high at the end of
training if the reward at the next period is unpredictable.

6.1 Implementation Details
Policy. The agent’s input is a state st = ⟨xt,wt⟩, which is
composed of historical asset prices and the assets’ weights.
The external state xt contains the closing, high, and low
prices of the past k time steps (k = 31). To preprocess the
data, the asset prices are normalized by dividing the price of
the previous period and subtracting a constant 1. Given that
the future price movements of assets could be linked to their
history, convolutional layers are used to extract the represen-
tation of each asset zit = f(xit). All asset representations are
concatenated and passed through another set of convolutional
layers represented by g(·), which takes the concatenated zit
and the assets’ weights wt and outputs an action:

at = softmax(g(zt,wt)) (15)

where z0t is a bias term and zt is the concatenated represen-
tation of all assets. The policy, denoted by π, is a compos-
ite function g ◦ f . The network architecture is illustrated
in the supplemental material (Figure ??). The AdamW op-
timizer [Loshchilov and Hutter, 2017] is used to train the
network, the discount factor γ is set to 1, the length of re-
ward smoothing F (Equation 12) is set to 5, and the temper-
ature τ is set to 0.05 (Equation 6). The learning rate is set

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3969

to 0.0001/0.00015 and the batch size is set to 300/500 for the
U.S. stock/cryptocurrency market, respectively.

The agents are trained using online learning. To begin, the
policy π is trained on the training set. During back-testing,
the policy continues to update by incorporating new samples
after they have been evaluated. Specifically, after the agent
places an order at time t and the state st+1 is observed, the
state st−F and the corresponding reward are added to the
training set. F is the window used for reward smoothing. We
use a geometrically distributed probability function to sample
data for training:

Pγ(t) = γ(1− γ)T−t−nb , (16)

where γ ∈ (0, 1) is used to control the importance of recent
states, T and nb are the lengths of the entire training data
set and a single batch, respectively, and t is the time of the
sample. The value of γ is set to 5e− 5 for the cryptocurrency
market and 5e− 4 for the U.S. stock market.

NRI. The encoder and decoder networks of the NRI are two
fully connected layers with 32 hidden units and ELU activa-
tion functions. The learning rate is set to 0.00015 for the
cryptocurrency market and 0.0001 for the U.S. stock market,
and the temperature ν is set to 0.5. The policy and the NRI
are trained simultaneously using the same batch of samples.
As the price trends of consecutive states are often similar, to
avoid bias, we shuffle the asset states in each batch and parti-
tion the states into groups for contrastive learning. The NRI is
trained to learn the relationships of sample states within each
group rather than the entire batch. In our implementation, the
policy batch size is 500, with each sample containing n assets
(i.e., the policy considers n/all assets at a time when trading).
We set the NRI graph to contain 25 nodes, and divide the asset
states into 20n groups. Since we find the closest asset state
j for each state i, this means that each NRI graph forms 25
positive pairs and 25 × 24 negative pairs, and the NRI batch
size is 20n.

7 Evaluations
In order to evaluate our model, we compared it to previous
methods in the U.S. stock market and cryptocurrency market.

7.1 Baselines
We compared our method to a variety of traditional and
DRL methods. These traditional methods include Buy and
Hold, uniform constant rebalanced portfolio (UCRP) [Cover,
2011], on-line moving average reversion (OLMAR) [Li and
Hoi, 2012], and weighted moving average mean reversion
(WMAMR) [Gao and Zhang, 2013]. The DRL methods in-
clude deep portfolio management (DPM) [Jiang et al., 2017]
and the state-augmented RL (SARL) [Ye et al., 2020]. Addi-
tional information about these baselines can be found in the
supplemental material or in the corresponding papers.

The implementations of UCRP, OLMAR, WMAMR, and
DPM were obtained from Jiang et al.’s [2017] GitHub page1,
we have implemented the Buy and Hold and SARL method

1https://github.com/ZhengyaoJiang/PGPortfolio

as the former is a simple method and the latter’s implemen-
tation is not available. We have taken care to ensure that the
comparison is fair by closely following the details of SARL’s
paper. In addition, for the two DRL baselines, DPM and
SARL, we experimented with deeper policy networks, which
have the same architecture as our model, and denoted them
by DPM v2 and SARL v2, respectively, in the comparison.

7.2 Evaluation Metrics
The performance of the investment strategies was compared
using standard evaluation metrics, including portfolio value,
Sharpe ratio, and maximum drawdown. As these metrics are
not flawless, it’s important to take into account all of them
when evaluating the methods. More information about these
metrics can be found in the supplemental material.

7.3 Data and Experiment Setup
We followed the experimental setup from previous studies
[Jiang et al., 2017; Ye et al., 2020] in our experiments.
Specifically, we set the transaction fees cs = cp = 0.25% for
both buying and selling assets, which is the highest rate on
Poloniex. The agents trade at the opening and receive a re-
ward at the closing of each period. We compared our method
to the baselines on the U.S. stock market and cryptocurrency
market. The data was obtained from the Yahoo Finance Ap-
plication Programming Interface (API) and the Poloniex’s of-
ficial API, respectively. We selected assets with high trad-
ing volumes for the experiment. For the U.S. stock market,
we collected daily frequency data for the nine highest trad-
ing stocks (GOOG, NVDA, AMZN, AMD, QCOM, INTC,
MSFT, AAPL, and BIDU). In the cryptocurrency market, we
collected half-hour frequency data for the ten highest trad-
ing cryptocurrencies (ETH, LTC, XRP, USDT, ETC, DASH,
XMR, XEM, GNT, ZEC, and BTC is the cash).

We carried out experiments on the U.S. stock market and
the cryptocurrency market to evaluate our model. For the
U.S. stock market, the data covered the dates from 2006-10-
20 to 2013-11-20, from 2003-06-20 to 2011-08-20, and from
2001-02-20 to 2009-05-20 respectively. The data collected
in these three periods were separated chronologically and the
last year’s data were used for testing. In the cryptocurrency
market, we selected the dates from 2015-12-30 to 2018-01-
31, from 2016-03-05 to 2018-02-28, and from 2016-04-05
to 2018-03-31. In this experiment, the last two months of
data were used for testing. The testing periods have differ-
ent lengths because of the different data frequencies. In the
U.S. stock market, the agents trade once per day, while in the
cryptocurrency market, they trade once per 30 minutes. It is
worth noting that the overall trends of the testing periods were
an increase, no change, and a decrease, respectively. This is
because we were interested in the model’s performance under
different market conditions.

The performance of RL agents can be greatly impacted by
their initialization. To account for this, we trained agents
from 8 different random seeds and reported their mean port-
folio values. We also conducted an ablation study to evaluate
the effectiveness of the proposed contrastive reward, reward
smoothing, and their combination. Furthermore, to demon-
strate the ability of our method in generating effective positive

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3970

U.S. Stock Market

Method Increase No change Decrease
PV ↑ SR ↑ MDD ↓ PV ↑ SR ↑ MDD ↓ PV ↑ SR ↑ MDD ↓

Buy & Hold 1.39 2.13 0.06 1.14 0.62 0.17 0.87 -0.05 0.54
Mean-Variance 0.92 -0.15 0.18 1.07 0.34 0.23 0.31 -1.14 0.83
UCRP 1.40 2.41 0.05 1.14 0.63 0.16 0.95 0.13 0.54
OLMAR 0.72 -0.04 0.49 0.53 -0.07 0.53 0.66 -0.003 0.74
WMAMR 1.18 0.70 0.17 0.40 -1.96 0.63 0.57 -0.30 0.78
DPM 1.23 ± 0.20 0.75 0.20 1.16 ± 0.03 0.51 0.21 0.75 ± 0.09 -0.27 0.62
DPM v2 1.38 ± 0.10 1.21 0.29 1.26 ± 0.12 0.67 0.26 1.05 ± 0.04 0.26 0.60
SARL 1.13 ±0.23 0.47 0.27 1.13 ± 0.05 0.42 0.22 0.72 ± 0.12 -0.24 0.64
SARL v2 1.37 ± 0.39 1.01 0.32 1.12 ± 0.04 0.41 0.20 0.98 ± 0.29 0.19 0.70
Ours (TS2VEC) 1.25 ± 0.20 0.83 0.31 1.45 ± 0.18 0.97 0.23 1.14 ± 0.44 0.29 0.61
Ours (TS2VEC+sRT) 1.38 ± 0.23 1.14 0.30 1.25 ± 0.21 0.57 0.26 0.97 ± 0.14 0.21 0.64
Ours (PPM) 1.50 ± 0.09 1.59 0.21 1.54 ± 0.15 1.09 0.23 1.12 ± 0.27 0.32 0.64
Ours (sRT) 1.62 ± 0.11 1.63 0.23 1.26 ± 0.14 0.91 0.23 1.25 ± 0.42 0.47 0.60
Ours (PPM+sRT) 1.69 ± 0.09 1.61 0.25 1.35 ± 0.18 0.76 0.25 1.17 ± 0.37 0.39 0.59

Cryptocurrency Market

Method Increase No change Decrease
PV ↑ SR ↑ MDD ↓ PV ↑ SR ↑ MDD ↓ PV ↑ SR ↑ MDD ↓

Buy & Hold 2.27 4.31 0.35 1.06 0.83 0.20 0.77 -3.51 0.33
Mean-Variance 0.16 -4.00 0.84 0.06 -12.38 0.94 0.04 -20.55 0.96
UCRP 2.28 5.03 0.36 1.16 1.67 0.19 0.79 -2.98 0.32
OLMAR 0.08 -0.031 0.915 0.30 -0.019 0.807 0.53 -0.013 0.757
WMAMR 0.59 -0.11 0.67 0.49 -1.18 0.59 0.35 -3.89 0.71
DPM 6.03 ± 1.39 6.25 0.28 9.60 ± 2.23 7.84 0.30 22.54 ± 5.04 12.52 0.26
DPM v2 9.00 ± 1.79 6.73 0.31 19.73 ± 3.61 9.87 0.28 56.92 ± 9.58 15.49 0.21
SARL 8.00 ± 1.97 6.79 0.27 12.03 ± 2.74 8.42 0.27 21.47 ± 3.84 12.97 0.26
SARL v2 10.36 ± 1.61 7.38 0.26 22.28 ± 5.56 10.22 0.27 47.80 ± 9.65 14.82 0.21
Ours (TS2VEC) 14.87 ± 5.51 7.78 0.27 144.57 ± 37.77 17.12 0.28 1287.1 ± 348.1 31.78 0.18
Ours (TS2VEC+sRT) 18.43 ± 5.53 7.83 0.29 129.73 ± 32.18 16.14 0.29 1292.2 ± 150.1 30.03 0.20
Ours (PPM) 11.56 ± 2.70 7.46 0.30 130.77 ± 27.86 16.73 0.30 1374.8 ± 253.3 32.15 0.19
Ours (sRT) 15.07 ± 10.56 7.28 0.30 145.00 ± 41.73 16.50 0.30 1455.9 ± 284.8 31.58 0.19
Ours (PPM+sRT) 21.50 ± 10.10 8.05 0.29 166.69 ± 37.42 17.00 0.29 1356.1 ± 470.8 31.38 0.17

Table 1: The tables show the statistics of portfolio values, Sharpe ratios, and maximum drawdowns among the methods on the U.S. stock
market and the cryptocurrency market. The results were obtained from networks trained from eight different seeds. Upward and downward
arrows indicate the higher and the lower values, the better, respectively. The Sharpe Ratios shown here are annualized. The portfolio values
for Buy & Hold indicate that the price movements in the selected back-test periods were an increase (PV > 1), no change (PV ≃ 1), and a
decrease (PV < 1). DPM v2 and SARL v2 are variants of DPM and SARL, which use a deeper policy network. PPM and TS2VEC [Yue et
al., 2021] represent our positive pair matching and a time series data augmentation method used in contrastive learning, respectively, and sRT
is the reward smoothing. The best results are highlighted in bold font.

and negative pairs of time series data for contrastive learning,
we compared it to the latest time series data augmentation
approach, TS2VEC [Yue et al., 2021], and evaluated their
performances. The role of TS2VEC is similar to our positive
pair matching and its goal is to assist RL agents in learning
robust representations.

7.4 Results of the Comparison
Table 1 shows the results of the experiments comparing vari-
ous baselines. Notably, Buy & Hold strategy’s portfolio val-
ues align with market trends, as it evenly distributes cap-
ital across assets initially and sells them all at the end of
the period. The traditional PM methods underperformed the
DRL methods by a significant margin, consistent with find-
ings from recent studies [Sutton and Barto, 2018].

DRL methods showed promising performance as the
agents were trained to maximize returns over multiple steps.
As seen in Figure 2, DRL methods generally performed better
than traditional techniques except for a specific period when
the overall price trend is increasing in the U.S. stock mar-
ket. However, DRL methods did not always guarantee low
risk as the values of SR and MDD were worse than tradi-
tional methods in certain markets, which aligns with the un-

derstanding that high returns come with high risks. Addition-
ally, since all DRL agents in this study were trained solely
to maximize portfolio values, it is not surprising that they
adopted high-risk strategies. Compared to DPM and SARL,
our method achieved not only high portfolio values but also
high Sharpe ratios. The advantage was gained through con-
trastive learning, reward smoothing, and a deeper policy net-
work. As shown in Table 1, DPM v2 and SARL v2 consis-
tently performed better than DPM and SARL in all market
conditions. This could be attributed to the deeper network
providing better generalization as demonstrated in other ex-
periments [Yang et al., 2020; Neyshabur et al., 2018]. How-
ever, even with the deeper policy network, our method still
outperformed DPM v2 and SARL v2 due to the added bene-
fits of contrastive learning and reward smoothing.

Our model exhibited strong performance in the cryptocur-
rency market as compared to the U.S. stock market. This can
be attributed to the fact that our agents executed significantly
more trades in the cryptocurrency market, leading to com-
pound interest and higher returns. Furthermore, the model
achieved positive returns even when the overall price trend in
a cryptocurrency market is downward. This was made possi-
ble by a significant increase in the USDT/BTC ratio, as our

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3971

Figure 2: The line charts show the mean portfolio values achieved by the baselines and our method in the U.S. stock market (top) and the
cryptocurrency market (bottom). We show only the trajectories of representative baselines to avoid visual clutters.

Figure 3: The charts show the interquartile means and the 95% of
confidence intervals of portfolio values and Sharpe Ratios.

RL agents strategically allocated a substantial portion of their
capital to this investment.

7.5 Results of the Ablation Study
The results of the ablation study, as seen in Table 1, sug-
gest that both the contrastive reward and reward smoothing
had a positive impact. Specifically, the combination of our
smoothed reward and contrastive learning (PPM+sRT) per-
formed the best when the overall price trend is downward,
as the smoothed reward can act as a regularization and lead
to more conservative strategies. Overall, it can be seen that
a combination of the two training strategies is beneficial.
The high portfolio values and Sharpe ratios observed in mar-
kets, when comparing DPM v2, Ours(TS2VEC+sRT), and
Ours(PPM+sRT), which share the same network architecture,
demonstrate the effectiveness of these two training strate-
gies. While the TS2VEC [Yue et al., 2021] approach showed
some benefits, the performance of TS2VEC+sRT was not as
good as PPM+sRT. This could be due to the different ways
in which positive pairs are defined, with our PPM expecting
asset states to be highly-related in future price movements,
while TS2VEC uses mask augmentation. As PPM learned
representations contain future forecasting, the task is more

compatible with earning smoothed rewards, thus allowing the
agent to learn better trading strategies by tackling the corre-
lated sub-tasks [Crawshaw, 2020].

7.6 Significance of the Results

While financial markets are highly uncertain, it is impractical
to expect a strategy consistently outperforms others through-
out all periods. We thus employed the interquartile mean
(IQM) to evaluate the statistical significance of the results.
Figure 3 presents the aggregated outcomes across the U.S.
stock and cryptocurrency markets. The 95% confidence in-
tervals (i.e., the bars) show that PPM+sRT substantially sur-
passes the baselines. Details will be provided in Appendix.

7.7 Limitations

While our RL model demonstrated strong performance when
evaluated on historical data, this does not necessarily guaran-
tee success in a live trading scenario. Besides, financial mar-
kets are inherently uncertain and subject to change. There-
fore, combining contrastive learning and reward smoothing
may not always result in the highest returns. We also found
that the results in terms of Sharpe ratio and maximum draw-
down in Table 1 indicate that our method does not necessarily
balance both high returns and low volatility.

8 Conclusions

We developed a DRL based method for training agents to
trade in financial markets with the goal of maximizing cumu-
lative returns. Our approach includes the use of contrastive
reward and reward smoothing to assist agents in learning
robust representations in the face of uncertain future price
movements. We evaluated our method against several base-
lines on both the U.S. stock market and the cryptocurrency
market and found that it performed well in these experiments.
The ablation study also supported the effectiveness of our
method. While our method showed promising results, there
are still limitations. We will address this in future work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3972

Acknowledgments
We thank the reviewers for their constructive comments. This
work was supported by E.SUN Bank and the National Sci-
ence and Technology Council, Taiwan (111-2221-E-A49 -
129 -MY3 and 111-2634-F-A49 -013 -).

References
[Almahdi and Yang, 2017] Saud Almahdi and Steve Y Yang.

An adaptive portfolio trading system: A risk-return port-
folio optimization using recurrent reinforcement learning
with expected maximum drawdown. Expert Systems with
Applications, 87:267–279, 2017.

[Buehler et al., 2019] Hans Buehler, Lukas Gonon, Josef Te-
ichmann, and Ben Wood. Deep hedging. Quantitative Fi-
nance, 19(8):1271–1291, 2019.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In In-
ternational conference on machine learning, pages 1597–
1607, 2020.

[Cover, 2011] Thomas M Cover. Universal portfolios. In
The Kelly Capital Growth Investment Criterion: Theory
and Practice, pages 181–209, 2011.

[Crawshaw, 2020] Michael Crawshaw. Multi-task learning
with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

[Dempster and Leemans, 2006] Michael AH Dempster and
Vasco Leemans. An automated fx trading system using
adaptive reinforcement learning. Expert Systems with Ap-
plications, 30(3):543–552, 2006.

[Deng et al., 2016] Yue Deng, Feng Bao, Youyong Kong,
Zhiquan Ren, and Qionghai Dai. Deep direct reinforce-
ment learning for financial signal representation and trad-
ing. IEEE transactions on neural networks and learning
systems, 28(3):653–664, 2016.

[Gao and Zhang, 2013] Li Gao and Weiguo Zhang.
Weighted moving average passive aggressive algo-
rithm for online portfolio selection. In International
Conference on Intelligent Human-Machine Systems and
Cybernetics, volume 1, pages 327–330, 2013.

[Guo et al., 2018] Yifeng Guo, Xingyu Fu, Yuyan Shi, and
Mingwen Liu. Robust log-optimal strategy with reinforce-
ment learning. arXiv preprint arXiv:1805.00205, 2018.

[Györfi et al., 2006] László Györfi, Gábor Lugosi, and Fred-
eric Udina. Nonparametric kernel-based sequential in-
vestment strategies. Mathematical Finance: An Interna-
tional Journal of Mathematics, Statistics and Financial
Economics, 16(2):337–357, 2006.

[Huang, 2018] Chien Yi Huang. Financial trading as a game:
A deep reinforcement learning approach. arXiv preprint
arXiv:1807.02787, 2018.

[Jiang et al., 2017] Zhengyao Jiang, Dixing Xu, and Jinjun
Liang. A deep reinforcement learning framework for the
financial portfolio management problem. arXiv preprint
arXiv:1706.10059, 2017.

[Kipf et al., 2018] Thomas Kipf, Ethan Fetaya, Kuan-Chieh
Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International Confer-
ence on Machine Learning, pages 2688–2697, 2018.

[Li and Hoi, 2012] Bin Li and Steven CH Hoi. On-line port-
folio selection with moving average reversion. In Interna-
tional Conference on Machine Learning, 2012.

[Liang et al., 2018] Zhipeng Liang, Hao Chen, Junhao Zhu,
Kangkang Jiang, and Yanran Li. Adversarial deep re-
inforcement learning in portfolio management. arXiv
preprint arXiv:1808.09940, 2018.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[Lu, 2017] David W Lu. Agent inspired trading using re-
current reinforcement learning and lstm neural networks.
arXiv preprint arXiv:1707.07338, 2017.

[Maddison et al., 2017] Chris J Maddison, Andriy Mnih, and
Yee Whye Teh. The concrete distribution: A continu-
ous relaxation of discrete random variables. International
Conference on Learning Representations (ICLR), 2017.

[Moody and Saffell, 2001] John Moody and Matthew Saf-
fell. Learning to trade via direct reinforcement. IEEE
transactions on neural Networks, 12(4):875–889, 2001.

[Neyshabur et al., 2018] Behnam Neyshabur, Zhiyuan Li,
Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
The role of over-parametrization in generalization of neu-
ral networks. In International Conference on Learning
Representations, 2018.

[Ruder, 2017] Sebastian Ruder. An overview of multi-
task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Sutton et al., 2000] Richard S Sutton, David A McAllester,
Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approxi-
mation. In Advances in neural information processing sys-
tems, pages 1057–1063, 2000.

[Wang et al., 2019] Jingyuan Wang, Yang Zhang, Ke Tang,
Junjie Wu, and Zhang Xiong. Alphastock: A buying-
winners-and-selling-losers investment strategy using inter-
pretable deep reinforcement attention networks. In ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 1900–1908, 2019.

[Wei et al., 2019] Haoran Wei, Yuanbo Wang, Lidia Mangu,
and Keith Decker. Model-based reinforcement learning
for predictions and control for limit order books. arXiv
preprint arXiv:1910.03743, 2019.

[Yang et al., 2020] Zitong Yang, Yaodong Yu, Chong You,
Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. In Inter-
national Conference on Machine Learning, pages 10767–
10777. PMLR, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3973

[Ye et al., 2020] Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-
Yu Chen, Yada Zhu, Ju Xiao, and Bo Li. Reinforcement-
learning based portfolio management with augmented as-
set movement prediction states. In AAAI Conference on
Artificial Intelligence, volume 34, pages 1112–1119, 2020.

[Yue et al., 2021] Zhihan Yue, Yujing Wang, Juanyong
Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of
time series. arXiv preprint arXiv:2106.10466, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3974

	Introduction
	Related Work
	Background
	Contrastive Learning
	Positive Pair Matching by Forecasting.

	Reward Smoothing
	Deterministic Policy Gradient
	Implementation Details

	Evaluations
	Baselines
	Evaluation Metrics
	Data and Experiment Setup
	Results of the Comparison
	Results of the Ablation Study
	Significance of the Results
	Limitations

	Conclusions

