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Abstract

Bayesian Optimization (BO) has recently received
increasing attention due to its efficiency in opti-
mizing expensive-to-evaluate functions. For some
practical problems, it is essential to consider the
path-dependent switching cost between consecu-
tive sampling locations given a total traveling bud-
get. For example, when using a drone to locate
cracks in a building wall or search for lost sur-
vivors in the wild, the search path needs to be ef-
ficiently planned given the limited battery power
of the drone. Tackling such problems requires a
careful cost-benefit analysis of candidate locations
and balancing exploration and exploitation. In this
work, we formulate such a problem as a constrained
Markov Decision Process (MDP) and solve it by
proposing a new distance-adjusted multi-step look-
ahead acquisition function, the distUCB, and using
rollout approximation. We also provide a theoreti-
cal regret analysis of the distUCB-based Bayesian
optimization algorithm. In addition, the empiri-
cal performance of the proposed algorithm is tested
based on both synthetic and real data experiments,
and it shows that our cost-aware non-myopic algo-
rithm performs better than other popular alterna-
tives.

1 Introduction
Suppose we want to locate a global maximum f∗ = f(x∗)
from a continuous, compact, and bounded region X ⊂ Rp.
The unknown objective function f : X → R is a black-box
function that lacks closed-form expression and gradient in-
formation, making it difficult to optimize. In addition, evalu-
ations of the function are often subject to a budget, thus ne-
cessitating a quick search of the global maximum in as few
steps as possible. To obtain x∗ = argmaxx∈X f(x), a sample-
efficient global optimization approach called Bayesian opti-
mization is often adopted. A typical BO approach uses a sur-
rogate model to approximate the unknown objective function
f(x) and an acquisition function to guide the search. The sur-
rogate model, using Gaussian processes in most practical ap-
plications, provides the most probable posterior estimates of

functional values and uncertainties across the full search do-
main. The acquisition function is then used to maximize the
expected marginal gain in the utility of the collected dataset
to proceed with the sequential decision-making under uncer-
tainty.

In this sequential optimization process, each new data point
in {(xi, yi)}Ni=1 is revealed online, possibly perturbed by ran-
dom noise. Given a limited sampling budget, the BO policy
must consciously reason about exploring new regions with
potentially high values and exploiting a known promising re-
gion with high confidence. In real-life applications such as
crack detection in a wall or survivor search in the wild, a
physical drone is often used to perform the search guided by
a specific algorithm, which also needs to account for the total
air time when moving the drone between locations and taking
pictures. A total budget, such as the available battery power,
must be considered in this case. The search policy needs to
consider possible future paths and associated switching costs
to make an optimal decision at the current step, a typical Dy-
namic Programming (DP) problem. However, exactly solv-
ing this intractable DP is NP-hard, especially in a continuous
search space with infinite decision variables. Deciding on the
continual search requires justifying a higher gain in the ex-
pected utility over the potential traveling cost.

In this paper, motivated by the aforementioned real-life ap-
plications, we consider the problem of sample-efficient op-
timization inclusive of a second criterion for success, which
involves the cumulative distance traveled between subsequent
tests. We formulate the problem as a constrained MDP and
propose an efficient rollout algorithm based on a distance-
adjusted Upper Confidence Bound (distUCB) heuristic to ob-
tain the approximate DP solution. The proposed non-myopic
BO policy effectively weighs the transition cost and gains
over several future steps to determine the optimal sampling
location at the current step. Our formulation highlights an
automatic stopping criterion: the search terminates when the
cumulative switching cost at a future candidate location ex-
ceeds the remaining budget, thus making it a finite-horizon
MDP. In addition, we provide a theoretical analysis on the
convergence guarantee of the cost-aware base policy using an
information gain approach, as motivated by the sub-linear re-
gret analysis in [Srinivas et al., 2009].
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1.1 Literature Review
Bayesian optimization was first proposed by [Mockus and
others, 1978] to optimize expensive, black-box functions
using expected improvement (EI) as the acquisition func-
tion. Representative candidates in this increasingly crowded
space of novel acquisition functions include upper confi-
dence bound (UCB) [Srinivas et al., 2009], predictive entropy
search (PES) [Hernández-Lobato et al., 2014], and knowl-
edge gradient (KG) [Scott et al., 2011], among others.

The rising interest in non-myopic BO acquisition functions
started from [Lam and Willcox, 2017], which considered the
constrained BO problem and proposed a lookahead approach
to maximize the long-term gain using a particular approxi-
mate DP algorithm called rollout. The rollout algorithm is a
suboptimal control method used in the BO context to deter-
mine the following sampling location by maximizing an ap-
proximate long-term reward over a rolling horizon. It dates
back to [Bertsekas et al., 1997] in the deterministic opti-
mization case and was later extended to stochastic dynamic
programs by [Goodson et al., 2016]. Recent work by [Yue
and Kontar, 2020] characterizes the rollout improving nature
in non-myopic policy under properly selected heuristics. It
guides the stagewise rolling horizon based on the negative
effect from a misspecified surrogate model. Since a typical
rollout algorithm suffers from exponential growth in compu-
tational time as the rolling horizon increases, [Jiang et al.,
2020] further accelerated the computation by jointly optimiz-
ing all decision variables in a multi-step tree. Besides, [Lee et
al., 2021] proposed a cost-constrained BO framework using
a non-myopic acquisition function and rollout approximation
with EI per unit cost as the base policy.

On another front, the path-dependent switching cost in
the sequential decision-making process was first explicitly
considered in [Marchant and Ramos, 2012], where the dis-
tance traveled by a moving robot is incorporated as an addi-
tive penalty in the UCB acquisition function, resulting in the
so-called distance-based upper confidence bound (DUCB).
However, the two weighting parameters introduced by the
variance and distance terms are challenging to be tuned si-
multaneously. The original convergence guarantee for UCB
in [Srinivas et al., 2009] no longer exists in the presence of
an additional distance term. To our knowledge, none of the
existing work has considered explicitly incorporating switch-
ing costs in the non-myopic BO framework. To obtain sub-
stantial acceleration, we also employ an efficient rollout al-
gorithm with quasi-Monte Carlo, sample average approxima-
tion (SAA) initially used in [Balandat et al., 2019], and the
one-shot optimization scheme in [Jiang et al., 2020].

1.2 Summary of Contributions
We summarize our main contributions as follows:

• We provide the first analysis on BO with path-dependent
switching cost formulated as a constrained MDP and de-
velop an efficient rollout approximation algorithm that
involves long-term cost-benefit analysis.

• Our framework offers an optimal policy (based on Bell-
man’s principle of optimality) that automatically con-
siders the termination condition if the cost of the ad-

ditional search is uniformly higher than the remaining
budget across the whole domain, which further results
in an episodic simulation over future steps and saves the
need to set the size of the rolling horizon.

• We perform a theoretical analysis of the convergence
rate of the proposed algorithm and conduct both syn-
thetic and real-data experiments to show the potential
benefits of our proposed methodology compared with
other baseline approaches.

2 Background
2.1 Bayesian Optimization
In a maximization setting, the objective is to find the global
maximizer x∗ = argmaxx∈X f(x). Suppose we have now
collected a set of n observations Dn = {(xi, yi)})ni=1,
where the sampled location xi ∈ Rp is a p-dimensional
vector in a compact set X ⊂ Rp, and yi ∈ R is a noise-
perturbed scalar observation with yi = f(xi) + ϵi. We
assume a Gaussian noise ϵi ∼ N(0, σ2) with a homoge-
nous variance σ2 across the whole domain. Under the GP
framework, any finite set of random variables within the do-
main follows a multivariate Gaussian distribution, resulting
in y1:n ∼ N (0,Kn), where we assume a constant zero
mean function µ = 0 and Kn = Kn(x1:n,x1:n) denotes
the covariance matrix, noting K(x1:n,x1:n)i,j = k(xi,xj).
Specifically, for a new sampling location x∗ ∈ X , its cor-
responding observation y∗ again follows a normal distri-
bution, i.e., p(y∗;x∗,Dn) = N (y∗|µ∗, σ

2
∗), where µ∗ =

k(x∗,x1:n)
T (Kn + σ2I)−1y1:n and σ2

∗ = k(x∗,x∗) −
k(x∗,x1:n)

T (Kn + σ2I)−1k(x∗,x1:n), and k(x∗,x1:n) =
[k(x∗,x1), ..., k(x∗,xn)]

T . We refer the readers to [Ras-
mussen and Williams, 2006] for a more comprehensive re-
view of Gaussian processes.

In each BO iteration, the GP posterior is updated by re-
freshing its governing hyperparameters based on the avail-
able training set Dn, then choosing the next sampling location
where the specified auxiliary acquisition function obtains its
maximum. Locating the maximum of the acquisition function
is also called the inner optimization, which happens per itera-
tion in contrast to the outer optimization that seeks the global
optimum of the unknown objective function. The newly ac-
quired location and its observation are then appended to form
Dn+1 = {Dn ∪ (xn+1, yn+1)}, completing one round of it-
eration and proceeding until the sampling budget exhausts.

2.2 Distance-Constrained Bayesian Optimization
The distance can be considered an additional cost constraint
imposed on the optimizer. For example, a specific location
may not be reachable due to the limited battery of a robot. In
such cases, the optimizer should display a tradeoff between
the utility of a sampling location and the cost it will incur
if it decides to sample in that particular location, preferably
considering future evolution should the learning proceeds.

There are different approaches to modeling the distance
penalty by embedding it into the acquisition function to dis-
count the utility of a candidate sampling location. Examples
include subtracting from UCB the distance traveled from the
current location to the candidate location. Specifically, in the
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DUCB formulation used in [Marchant and Ramos, 2012], the
acquisition function for the next candidate location xn+1 with
yn+1 ∼ N (µn, σ

2
n) takes the following form:

α(xn+1;Dn) =µn(xn+1) + βn+1σn(xn+1)

−ρn+1d(xn+1,xn)
(1)

where d(xn+1,xn) =
√∑p

i=1(x
i
n+1 − xi

n)
2 denotes the

general Euclidean distance between the current location xn

of the optimizer and the next candidate location xn+1, βn+1

is a stage-wise weighting factor to set the level of confi-
dence in the face of uncertainty, and ρn+1 is another weight-
ing factor for the distance-induced penalty. Although being
an intuitive formulation, this data-driven approach requires
tuning two hyper-parameters simultaneously, which is both
stage and domain-dependent and lacks the theoretical jus-
tification for setting the optimal hyper-parameters, as com-
pared to the case of choosing βn = 2log(n22π2/(3δ)) +

2plog(n2pbr
√

log(4pa/δ)) in [Srinivas et al., 2009], where
we use p to denote the dimensionality of the feature space.

Other heuristics include multiplying the original acquisi-
tion function with an indicator function that specifies the fea-
sible region of the optimizer at the current step, as originally
proposed in [Gardner et al., 2014]. However, explicitly con-
fining the optimizer within the feasible region is not con-
ducive to the cost-performance tradeoff in the early stages;
the optimizer displays no foresight on budget consumption
when the feasible region covers the whole domain. In ad-
dition to the myopic nature of the acquisition function, the
multiplying indicator function also makes it inconvenient for
theoretical analysis.

More recent work by [Lee et al., 2021] divides the acqui-
sition function (using EI) by the corresponding cost to get
the EI per unit cost (EIpu) in a multi-step lookahead setting,
which is most similar to our work. Although [Lee et al., 2021]
uses the rollout algorithm to obtain an approximate DP solu-
tion with a theoretical guarantee on its sequential improving
nature, no analysis on the convergence rate of the base policy
is given. In our experiment section later, we also show the
superior performance of our proposed distUCB policy over
EIpu and other alternatives.

2.3 Regret Analysis Using Information Gain
To better characterize the performance of the online optimizer
in BO setting, we denote ri = f(x∗)− f(xi) as the instanta-
neous regret (or simple regret) of the online optimizer at step
i due to not knowing the global optimum f∗ in advance. The
cumulative regret RN after N steps is derived by summing
all instantaneous regrets: RN =

∑N
i=1 ri.

In order to bound the cumulative regret RN , we follow a
similar approach in [Srinivas et al., 2009], using the maxi-
mum information gain γN = maxI(y1:N ; f1:N ) after N steps
to provide an explicit sub-linear convergence rate. Here,
I(y1:N ; f1:N ) = H(y1:N ) − H(y1:N |f1:N ) denotes the re-
duction in the uncertainty of f after obtaining N noisy mea-
surements y1:N , where H(y1:N ) = 1

2 log|2πe(KN + σ2I)| is
the marginal entropy and H(y1:N |f1:N ) = 1

2 log|2πe(σ2I)|
is the conditional entropy under a multivariate Gaussian

distribution with Gaussian noise. Plugging in, we have
I(y1:N ; f1:N ) = 1

2 log|σ−1KN + I|.
Being a submodular function, the information gain

I(y1:N ; f1:N ) reveals a property of diminishing return as N
increases, which plays an important role in bounding γN as
shown in [Srinivas et al., 2009].

2.4 Multi-Step Lookahead Acquisition Function
The sequential process in Bayesian optimization can be mod-
eled as a Markov Decision Process (MDP), where the learn-
ing environment is characterized by a state space S , an action
space A, a transition probability between different states P ,
and the reward R. In the context of BO, the state space S is
the observed set of data Dn until the current time step n, and
the action space A is the whole continuous domain X . A pol-
icy π = {π1, . . . , πN} specifies the sampling decisions for a
total of N steps. Specifically, πn at any step n is a function
that maps the current state Dn to the next sampling location
xn+1, i.e., πn(Dn) = xn+1. The only transition probability
is the probability of sampling yn+1 from its posterior:

P (yn+1|xn+1,Dn) = N (µn(xn+1;Dn), σ
2
n(xn+1;Dn))

(2)

An optimal policy can be derived by maximizing the sum
of the current reward R(Dn,xn+1,Dn+1) and the long-
term return that accounts for all possible randomness in
both the locations and the functional evaluations, i.e., π∗ =
argmaxπ∈Π

∑τ−1
i=0 R(Dn+i, πn+i(Dn+i),Dn+i+1). Follow-

ing Bellman’s principle of optimality, the optimal policy not
only selects the current action (i.e., sampling location) that
maximizes the reward but also assumes all future actions are
made optimally.

Specifically, denote u(Dn) as the utility of the current
training set Dn. Typically, u(Dn) = max{y1:n} in an
improvement-based heuristic. The expected utility after ac-
quiring an additional putative pair (§n+1, yn+1) can then be
expressed as

Eyn+1
(u(xn+1, yn+1,Dn)|xn+1,Dn) =∫

u(xn+1, yn+1,Dn)|xn+1,Dn)p(yn+1|xn+1,Dn)dyn+1

(3)

where the expectation is taken over the random variable yn+1

at the candidate location xn+1. The optimal sampling loca-
tion at time step n+ 1 is:

x∗
n+1 = argmaxxn+1∈Xα1(xn+1;Dn) (4)

where,

α1(xn+1;Dn) = Eyn+1(u(xn+1, yn+1,Dn)|xn+1,Dn)

− u(Dn)
(5)

denotes the one-step expected marginal gain in utility, with
the subscript indicating the number of lookahead steps into
the future.

Now, assume a total lookahead horizon of τ steps into
the future, forming a putative dataset Dn+τ = Dn ∪
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{(xn+1, yn+1)} ∪ · · · ∪ {(xn+τ , yn+τ )}. The multi-step
lookahead policy then chooses the next sampling location via:

x∗
n+1 = argmaxxn+1∈Xατ (xn+1;Dn) (6)

where ατ (§n+1;Dn) = E(u(Dn+τ )|xn+1,Dn) − u(Dn) is
the τ -step lookahead expected marginal gain in utility, with
the expectation taken over all possible values of yn+1 as well
as following pairs {(xn+i, yn+i)}τi=2.

The τ -step nonmyopic acquisition function can also be de-
composed into the sum of an immediate expected one-step
lookahead gain in utility as well as the expected marginal gain
for the remaining τ−1 steps. Adding and subtracting the one-
step utility function gives the following recursive form:

ατ (xn+1;Dn) = α1(xn+1;Dn)

+ E[ατ−1(xn+2;Dn+1)|xn+1,Dn]
(7)

Selecting the best sampling location with α∗
τ (xn+1;Dn) =

maxxn+1∈Xατ (xn+1;Dn) amounts to directly maximizing
the average-case long-term utility and follows the Bellman’s
principle of optimality: a sequence of optimal decisions starts
with making the first optimal decision, followed by a series of
optimal decisions conditioned on the previous outcome. The
optimal multi-step lookahead acquisition function could be
written as a DP formulation that consists of a series of nested
maximization and expectation operations:

α∗
τ (xn+1;Dn)

= maxxn+1∈X {α1(xn+1;Dn)

+ E[maxxn+2∈Xατ−1(xn+2;Dn+1)|xn+1,Dn)]}
(8)

Choosing the next sampling action by maximizing the multi-
step lookahead acquisition function gives the optimal policy
π∗. However, solving this intractable DP problem is compu-
tationally challenging when the lookahead horizon becomes
large. In most lookahead problems in the BO setting, the roll-
out algorithm has become a popular approximate DP solution
that provides a good-quality solution in a reasonable compu-
tational time.

The rollout algorithm breaks the forward-backward pass in
solving an intractable DP problem and instead completes a
single forward pass. It starts by simulating a set of future
values over the future τ horizon and uses a base policy with
averaged results to approximate the value of the multi-step
acquisition function. In this paper, we use a new distance-
based UCB as the one-step base policy in the rollout algo-
rithm to perform a multi-step lookahead selection of sampling
locations. As it turns out, such a lookahead policy delivers
a natural sense of impact: as the policy treks from point to
point in the search space, a constant tradeoff between seeking
the maximum function value and minimizing the switching
cost exists. Considering such a tradeoff, even for 1 or 2 steps
ahead, makes a difference in the overall search performance.

3 Methodology
Given a total traveling budget B, the goal of our moving robot
is to seek the global maximum before its power drains. When
the remaining budget is insufficient to support an additional
sampling at the suggested location, the optimizer terminates

and returns a recommendation based on the previously sam-
pled locations. Mathematically, for a total of N steps, we
have

maxx∈X f(x)

s.t.
N−1∑
i=1

d(xi+1,xi) ≤ B
(9)

where d(xi+1,xi) = ||xi+1 − xi||2 for i = 2, ..., N . We
propose a new distance-adjusted UCB (distUCB) base policy
to quantify the utility of a candidate location xn+1 across the
whole domain:

αdistUCB(xn+1;Dn) = µn(xn+1) + βn+1
σn(xn+1)

d(xn+1,xn)
(10)

where distUCB intuitively scales down the utility of the un-
certain long-distance regions. Such formulation avoids an-
other tuning parameter and permits theoretical analysis of
its convergence rate. To facilitate the analysis of the regret
bound, we absorb the distance-based scaling factor into βn+1

and denote it as βn+1,d to highlight its dependence on both
the current step n and the switching cost. Thus,

αdistUCB(xn+1;Dn) = µn(xn+1)+βn+1,dσn(xn+1) (11)

which is also the reward function R in the constrained MDP
(CMDP) setting. Next, we define the expected total return
and cost of a policy π. For any policy π with a lookahead
horizon of τ , the expected total return and cost are respec-
tively defined as:

V π
τ (xn+1;Dn)

= E
[ τ−1∑
i=0

(µn+i(xn+i+1) + βn+1+i,dσn+i(xn+i+1))
]
(12)

Cπ
τ (xn+1;Dn) = E

[ τ−1∑
i=0

d(xn+i,xn+i+1)
]

(13)

Here, V π
τ (xn+1;Dn) is the action value at location xn+1,

defined as the expected sum of current and future rewards
till horizon τ , given training set Dn and following the policy
π. Cπ

τ (xn+1;Dn) denotes the associated expected total cost.
The problem can thus be modeled as seeking the optimal pol-
icy π∗ (which maximizes αdistUCB(xn+i+1;Dn+i) in each
lookahead stage) in the context of CMDP as follows:

π∗ = argmaxπ∈ΠV
π
τ (xn+1;Dn)

s.t.Cπ
τ (xn+1;Dn) ≤ B

(14)

where Π is the space of all admissible policies. When sim-
ulating future trajectories using rollout, only feasible trajec-
tories are allowed if the remaining budget permits. Denote a
base policy π̃ = {π̃1, . . . , π̃N} used to approximate the op-
timal policy. When given a dataset Dn and simulating at a
future stage i ∈ {0, . . . , τ − 1}, the corresponding decision
rule π̃n+i follows the base heuristic of maximizing the stage-
wise acquisition function αdistUCB(xn+i+1;Dn+i):
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Algorithm 1: distUCB: distance-adjusted UCB
Data: GP prior µ0 and σ0, search domain X
Result: Estimated location of global maximum x∗

while
∑n

i=1 di ≤B do
Select next sampling location
xn+1 = argmaxx∈χµn + βn,dσn;

Query the corresponding observation
yn+1 = f(xn+1) + ϵn+1;

Update the training set
Dn+1 = Dn ∪ (xn+1, yn+1);

Update GP posterior to obtain µn+1 and σ2
n+1;

Output: x∗ = argmaxx∈Dn
y(x)

π̃n+i = argmaxxn+i+1∈XE[αdistUCB(xn+i+1;Dn+i)]

(15)

Rolling out this heuristic policy till budget exhaustion gives
the rollout policy, where the horizon τ differs for each fea-
ture path. When calculating the value function of the rollout
policy, we use Monte-Carlo integration to approximate the
expectation operator, giving:

V π̃
τ (xn+1;Dn) ≈

1

M

M∑
j=1

[ τ−1∑
i=0

αdistUCB(xn+i+1;Dn+i)
]

(16)

To accelerate and stabilize the simulations, we use quasi-
Monte-Carlo based on the Sobol sequence and common ran-
dom variables when using gradient-based updates based on
the re-parameterization trick.

Since budget B is a limited scalar, we note that the non-
myopic acquisition function using rollout essentially solves
a constrained finite-horizon dynamic program. The overall
procedure is given in Algorithm 1.

4 Theoretical Analysis
To facilitate theoretical analysis, we make the following as-
sumptions.
Assumption 1. Given constants a, b, and L, we assume that
the kernel function k(x,x′) satisfies the following Lipschitz
continuity for the confidence bound of the derivatives of GP
sample paths f :

P
(

supx∈X | ∂f
∂xj

| > L
)
≤ ae−L2/b2 j = 1, . . . , p (17)

For example, the popular squared exponential kernel
k(x, x′) = σ2exp(− (x−x′)2

2l2 ) with the length-scale parame-
ter l and noise variance σ2 satisfies this assumption.

Of note, the assumption on Lipschitz continuity is standard
as in the regret analysis of BO [Srinivas et al., 2009], which
also includes the popular Matérn kernel. We introduce the
main theorem on the cumulative regret bound of the single-
stage distUCB algorithm.

4.1 Regret Bound Analysis (The Main Theorem)
Theorem 1. Let X ⊂ [0, r]p be compact and convex, p ∈ N,
r > 0. Under Assumption 1, for any arbitrarily small δ ∈
(0, 1), choose βn,d = 2

d2 log 4πn

δ + 2p
d2 log

(
n2brp

√
log( 4paδ )

)
,

where
∑

n≥1 π
−1
n = 1, πn > 0. As n → ∞, we obtain

a regret bound of O∗(
√
pNγN ). Specifically, with C1 =

8
log(1+σ−2) , we have:

P (RN ≤
√

C1NβN,dγN ) ≥ 1− δ (18)

We put the sketch proof for the main theorem in the ap-
pendix.

5 Experiments
We compare distUCB with EI, EIpu, and UCB rollout via
both synthetic and real-world experiments. Among these
benchmark methods, EI was first proposed in [Mockus and
others, 1978], EIpu was proposed in [Lee et al., 2021] us-
ing non-myopic acquisition function and rollout approxima-
tion with EI per unit cost as the base policy, and UCB roll-
out was constructed by us in order to compare the effective-
ness of considering the switching cost, which was obtained
by combining UCB [Srinivas et al., 2009] method and rollout
algorithm. Note that we did not consider DUCB due to its
myopic nature and dependence on multiple hyperparameters
involved; instead, our main benchmark under a similar setting
is the EIpu acquisition function.

Our constrained Bayesian optimization problem essen-
tially highlights a tradeoff between the search quality and dis-
tance traveled. An aggressive policy may achieve a higher
function value (lower regret) but incur a significant switching
cost, while a more cost-constrained policy will likely end up
with a lower cost but at the expense of a higher regret. To
this end, we study how the switching cost affects the test per-
formance in multiple experiments, involving both synthetic
and real data, and use the Euclidean distance to measure the
distance between two points in the search space.

5.1 Synthetic Experiments
To make the comparison fair, we follow the setting of EIpu,
using a Matérn 5/2 kernel for the GP with its hyperparam-
eters learned via maximum likelihood estimation. These
hyper-parameters are re-estimated by maximizing the evi-
dence after each iteration, a common practice used in [Srini-
vas et al., 2009] and [Lee et al., 2021] .

We compare the distUCB algorithm with other baseline
policies over classical functions used for global optimization:
Ackley-2, Branin-2, and Hartmann-6, detailed in Table 1. We
also repeat each experiment 30 times, reporting the mean and
standard deviation across all repetitions. The total iteration
budget N for each experiment is set to N = n0 +100, where
n0 denotes the number of initial design points and is set as
20, 40, and 60 for the three synthetic functions, respectively.
All experiments are evaluated on a Latin hypercube after nor-
malization.

In addition, we add a homogeneous noise with a stan-
dard normal distribution with a standard deviation of 0.1, and
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Functions Domain

Ackley-2 [−32.768, 32.768]2

Branin-2 [−5, 10]× [0, 15]
Hartmann-6 [−1, 1]6

Table 1: Functions used in the synthetic experiments

Figure 1: Performance of the four algorithms on Hartmann-6. Left:
cumulative regret. Right: cumulative switching cost. distUCB re-
ports a competing cumulative regret but achieves the lowest cumu-
lative cost compared with other alternative policies.

set up 32 simulations in each Monte Carlo approximation to
keep the same setting as EIpu. For a fair comparison, each
method’s number of lookahead steps is set to 3, although the
horizon could be determined automatically based on the re-
maining budget.

In general, we observed that distUCB displays a better
cost awareness in the tradeoff between cumulative regret and
switching costs, as shown by the lowest cumulative switching
cost together with a competing cumulative regret. As shown
in Figure 1, distUCB performs nearly identically to UCB roll-
out on cumulative regret after 100 iterations, which is only
marginally larger than EI and EIpu. However, distUCB in-
curs a much smaller cumulative switching cost among all the
policies. This suggests that our method achieves competitive
results in cumulative regret compared to baseline methods
while consuming a much smaller budget. See the appendix
for the experimental results of the other two synthetic func-
tions for a similar observation.

The experiment results also suggest that our method works
better on relatively high-dimensional problems, which is pos-
sibly due to the fast convergence in low-dimensional test
functions. The switching cost is thus potentially a more cost-
inducing factor in high-dimensional space. We choose two
relatively high-dimensional real cases in the next section to
validate our hypothesis.

5.2 Real Data Experiments
Many real-world experiments prefer a small jump (i.e., a
lower switching cost) between test configurations. For ex-
ample, search over a domain with a prior preference region
identified by domain expertise or previous experience. The
cost consideration in distUCB naturally fits such scenarios.
Also, to make the tradeoff more explicit, we show the empir-

(a) (b)

(d)(c)

Figure 2: Simple regret and cumulative switching cost of different
BO algorithms in the neural network hyperparameter tuning exper-
iment. (a): Simple regret on breast cancer dataset. (b): Cumula-
tive switching cost on breast cancer dataset. (c): Simple regret on
spam dataset. (d): Cumulative switching cost on spam dataset. As
the number of iterations increases, distUCB reports an increasingly
closer simple regret than other policies but consistently obtains the
lowest cumulative switching cost.

ical dynamics between cumulative switching cost and simple
regret, which is a better metric to measure the quality of the
current proposal. Such comparison allows us to assess how
the limited traversal distance impacts the quality of the opti-
mization in a multi-objective sense.

Using a neural network model, we empirically evaluate
distUCB on two hyperparameter tuning tasks for training a
two-layer feed-forward neural network on two popular UCI
datasets: breast cancer and spam, both commonly used in hy-
perparameter tuning experiments (see [Hu et al., 2022]). The
breast cancer Wisconsin dataset has 569 data and 32 columns,
where most features are continuous and nucleus-related. The
label of each sample is the result of the diagnosis, includ-
ing 357 benign cases and 212 malignant cases. The spam
database contains 4601 samples (1813 of which are spam)
and 58 attributes. For both data sets, we allocate 70% to train-
ing and 30% to the test set.

We consider tuning four hyperparameters: batch size, ini-
tial learning rate, learning rate schedule, and the number of
hidden dimensions. For each of the four hyperparameters to
be adjusted, the adjustment range is given: [32, 128], [1e −
6, 1.0], [1e − 6, 1.0], [0.5, 4]. We specify these four hyperpa-
rameters in each iteration before training a Multi-layer Per-
ceptron (MLP) prediction model on the training set. The
trained model is then scored over the test set, where the test
set classification error is registered for the current iteration.
Each iteration repeats 5 times.
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The results of the four methods on two hyperparameter tun-
ing experiments are shown in Figure 2. After 100 iterations,
all four policies deliver a similar simple regret, showing a de-
creasing impact of the cost constraint for the distance-aware
policy. However, distUCB algorithm consistently incurs a
lower cumulative switching cost than the other three methods.
All results reflect the central theme of a continuous tradeoff
between simple regret, as a measure of optimization quality,
and the cumulative switching cost, as an indication of total
distance traveled. We further observe that such a tradeoff is
more pronounced only in the early stage of the search; as it-
eration proceeds, all policies report a smaller optimality gap,
yet only the cost-aware policy (in this case, distUCB) demon-
strates the long-term benefit of a consistently lower cumula-
tive switch cost.

6 Conclusion
In this paper, we proposed a cost-aware multi-step acquisition
function to perform sequential sampling under uncertainty.
Our proposed algorithm (distUCB) can deliver similar or bet-
ter overall performance in the cumulative regret and switch-
ing cost. We provide a theoretically no-regret analysis of the
base policy and show its superior empirical performance in
a rollout policy compared with standard benchmark meth-
ods. Using synthetic and real-data experiments, we highlight
the explicit tradeoff between global maximization (searching
anywhere within the domain) and cost minimization (penal-
izing long-distance moves). Our work thus paves the way for
further studies in cost-aware BO with non-myopic policies.

A Sketch Proof of The Main Theorem
Our proof relies on the confidence bound on the selected deci-
sion xn at stage n for an adequately selected hyperparameter
βn,d, as well as a stage-wise discretization Xn ⊂ X used to
obtain a bound of f(x∗). We use O∗, a variant of the O no-
tation to suppress the log factors.

Proof. Following a similar argument in [Srinivas et al.,
2009], we have r2n ≤ 4d2βn,dσ

2
n−1(xn) with probabil-

ity ≥ 1 − δ as n → ∞. Since βn,d = 2
d2 log 4πn

δ +

2p
d2 log

(
n2brp

√
log( 4paδ )

)
and is non-decreasing in n, we can

upper bound it by the final stage βN,d:
4d2βn,dσ

2
n−1(xn)

≤ 4βN,dσ
2(σ−2σ2

n−1(xn))

= 4βN,dσ
2 σ−2

log(1 + σ−2)
(σ2

n−1(xn)log(1 + σ−2))

(19)

where we rely on the fact that k(xn,xn) = 1 for the SE
kernel, thus σ2

n−1(xn) ≤ k(xn,xn) = 1. Note that (1 +

σ−2)σ
2
n−1(xn) is a concave function for a given σ2

n−1(xn) ∈
[0, 1] with different values of σ−2 > 0. Using the first-order
Taylor approximation to bound the concave function, giving
σ2
n−1(xn)log(1 + σ−2) ≤ log(1 + σ−2σ2

n−1(xn)). Setting
C2 = σ−2

log(1+σ−2) , we have:

4d2βn,dσ
2
n−1(xn) ≤ 4βN,dσ

2C2log(1 + σ−2σ2
n−1(xn))

(20)

Figure 3: Performance on Branin function. Left: simple regret of
four algorithms on the Branin test function. Middle: cumulative
regret of four algorithms on the Branin test function. Right: cumu-
lative switching cost of four algorithms on the Branin test function.
As the number of iteration rounds increases, distUCB strikes a de-
cent tradeoff between regret and switching cost.

Figure 4: Performance on Ackley function. Left: simple regret of
four algorithms on the Ackley test function. Middle: cumulative
regret of four algorithms on the Ackley test function. Right: cumu-
lative switching cost of four algorithms on the Ackley test function.
distUCB incurs the lowest cumulative switching cost while deliver-
ing a similar cumulative regret.

Using Cauchy-Schwarz inequality, we have:

R2
N ≤ N

N∑
n=1

r2n

≤ N
N∑

n=1

4βN,dσ
2C2log(1 + σ−2σ2

n−1(xn))

= 8NβN,dσ
2C2I(y1:N ; f1:N )

= C1NβN,dI(y1:N ; f1:N )

≤ C1NβN,dγN

(21)

where C1 = 8σ2C2 and γN = maxI(y1:N ; f1:N ) is the max-
imum information gain after N steps of sampling. Thus,

P (RN ≤
√

C1NβN,dγN ) ≥ 1− δ (22)

Note that the form of our main theorem is quite similar with
[Srinivas et al., 2009], although our stage-wise constant βn,d

is different and includes a distance term.

Experiment Details
The experiment results on the Branin and Ackley functions
are shown in Figure 3 and Figure 4. We observe a similar
tradeoff in distUCB compared with other policies.
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