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Abstract
Label distribution is an effective label form for rep-
resenting label polysemy (i.e., the cases where an
instance can be described by multiple labels simul-
taneously). However, the expensive annotating cost
of label distributions limits their application to a
wide range of practical tasks. Hence, LE (label en-
hancement) techniques have been extensively stud-
ied to solve this problem. Existing LE algorithms
mostly estimate label distributions by the instance
relation or label relation. However, they suffer from
biased instance relations, limited model capabili-
ties, or suboptimal local label correlations. There-
fore, in this paper, we propose a deep generative
model called JRC to simultaneously learn and clus-
ter the joint implicit representations of both features
and labels, which can be used to improve any ex-
isting LE algorithm involving the instance relation
or local label correlations. Besides, we develop a
novel label distribution recovery module, and then
integrate it with JRC model, thus constituting a
novel generative label enhancement model that uti-
lizes the learned joint implicit representations and
instance clusters in a principled manner. Finally,
extensive experiments validate our proposal.

1 Introduction
Label polysemy, i.e., the cases where an instance can be
described by multiple labels simultaneously, is common in
practical machine learning tasks. Label distribution is an ef-
fective label form to describe label polysemy, where each
label is assigned a real value to indicate how much this
label describes the instance. Since label distribution pro-
vides fine-grained information about label polysemy, it has
been widely applied in many practical tasks, such as emo-
tion analysis [Jia et al., 2019; He and Jin, 2019; Peng et al.,
2015], age estimation [Gao et al., 2018; Wen et al., 2020;
Shen et al., 2021], and so on.

A popular topic regarding label distribution is how to pre-
dict label distributions for unseen instances. LDL (label
distribution learning) [Geng, 2016] is an effective learning
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paradigm for solving this problem. However, LDL requires
the training instances annotated with label distributions, yet
quantifying label distributions is costly and even impractical.

Therefore, a technique called LE (label enhancement) [Xu
et al., 2018] was proposed to solve this problem. In general,
existing works about LE mostly assume that instances anno-
tated with simple labels (such as logical labels [Xu et al.,
2021] or multi-label rankings [Lu and Jia, 2022]) are avail-
able, then label distributions can be recovered by mining the
instance relation or the label relation, and finally any LDL
algorithm can be trained to predict label distributions for un-
seen instances. For example, in terms of the instance rela-
tion, some algorithms [Hou et al., 2016; Zheng et al., 2023;
Wen et al., 2021] represent the feature vector of each instance
as a linear combination of the feature vectors of its neighbors
and then make the instances retain this combination in the la-
bel distribution space. There are also some algorithms [Xu
et al., 2018; Zhang et al., 2021; Xu et al., 2023] that con-
struct an instance graph (whose edges encode the similarities
of instances in the feature space), and use the Laplacian ma-
trix of this graph to regularize the label distributions. In terms
of label relation, N-LDL [Luo et al., 2021] exploits a global
label correlation, i.e., all instances share a common label cor-
relation pattern. Besides, more algorithms [Lv et al., 2019;
Xu et al., 2021; Jia et al., 2023] leverage local label correla-
tions, i.e., instances from different clusters are regularized by
different label correlation patterns.

Overall, above algorithms mostly rely on two processes:
mining the instance relation, and clustering instances (for
capturing more accurate local label correlations). In terms of
these two processes, existing algorithms suffer from the fol-
lowing three problems: 1) These algorithms merely mine the
instance relation in the feature space; however, due to the se-
mantic differences between features and labels, regularizing
label distributions with the instance relation entirely depen-
dent on features can lead to considerable errors. Moreover,
simple labels are more semantically consistent with label dis-
tributions, while their potential instance relation is ignored by
most algorithms. As shown in Figure 1, the overall error of
using only features (blue part) significantly exceeds that of
using both features and simple labels (orange part). 2) Ex-
isting approaches for mining instance relation are mainly tai-
lored to tabular features; however, real-world features are of-
ten diverse (e.g., images, texts, or graphs), and it is unreliable
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Figure 1: Error distributions. The error is quantified by the average
KL (Kullback-Leibler) divergence of the label distribution between
an instance and its neighbors. The blue part of each figure indicates
that the neighbors are determined by the original feature vectors,
which can thus represent the quality of the instance relations that
only the features are used. The orange part indicates that both fea-
tures and labels are used.

to naively apply these approaches to diverse features. 3) Al-
though some algorithms try to extract richer representations
by the kernel method, they typically treat instance clustering
as independent of learning representations, which may lead
to suboptimal results.

Therefore, we propose a deep generative model called JRC
to simultaneously learn and cluster the joint implicit represen-
tations of both features and simple labels, which can be used
to improve any existing LE algorithm that involves mining
the instance relation or local label correlations. As shown in
Figure 2(a), we treat the joint implicit representations as low-
dimensional latent vectors Z = {zi}ni=1, which can prob-
abilistically generate the feature matrix X and the simple-
label-based instance graph A, then model the variational pos-
terior of zi by the A-based graph convolutional network, and
finally employ the variational Bayes to infer the implicit rep-
resentation. To encourage the model to adaptively explore in-
stance clusters, inspired by VaDE [Jiang et al., 2017], we as-
sume that zi is generated from a Gaussian mixture prior, i.e.,
the cluster to which zi belongs is dominated by a categori-
cal indicator c. Besides, we propose a novel label distribution
recovery module which is then integrated with JRC, thus con-
stituting a novel generative label enhancement model called
LEIC (i.e., Label Enhancement model via joint Implicit rep-
resentation Clustering). As shown in Figure 2(b), in order to
utilize the joint implicit representations, we additionally as-
sume that the Gaussian priors of the implicit representations
in JRC are conditionally controlled by the label distributions
D; in order to utilize local label correlations, we use the clus-
ter posteriors to reweight the instances and construct multi-
ple cluster-specific label correlation graphs which can be then
incorporated into the variational posteriors of label distribu-
tions via graph convolutional networks. Besides, following
LEVI [Xu et al., 2020] and GLEMR [Lu et al., 2023], we also
assume that label distributions can generate simple labels Y
due to their strong consistency. Finally, we conduct extensive
experiments to show the effectiveness of our proposal.

Our main contributions can be summarized as:

• We propose a deep generative model to learn the joint
implicit representations of both features and simple la-

(a) JRC (b) LEIC

Figure 2: Diagrams of JRC and LEIC. The solid and dashed directed
lines denote the generation and inference processes, respectively.

bels, which facilitates the acquisition of more accu-
rate instance relations and enables dealing with various
forms of features.

• We incorporate Gaussian mixture clustering and implicit
representation learning into a unified framework, which
encourages instance clustering and representation learn-
ing to accommodate each other and thus facilitates the
discovery of more accurate local label correlations.

• We propose a novel generative LE model to recover la-
bel distributions, which utilizes the instance relation and
local label correlations in a principled way and performs
the processes of learning and clustering joint representa-
tions and recovering label distributions end-to-end.

2 Related Work
Traditional label enhancement considers how to recover la-
bel distributions from logical labels. Recently, there was also
work that considers recovering label distributions from multi-
label rankings. Therefore, label enhancement can be defined
in a general sense as the process of enhancing simple labels
into label distributions. Simple labels, either logical labels
or multi-label rankings, are mostly enhanced into label dis-
tributions by the following ways. On the one hand, the most
widely studied is estimating label distributions by mining in-
stance relations. Specifically, some algorithms [El Gayar et
al., 2006; Jiang et al., 2006; Wang et al., 2023] find the rep-
resentative points of each label in the feature space and then
estimate the relative importance among the labels based on
the distance from each instance point to the representative
points. Some algorithms [Xu et al., 2018; Zhang et al., 2021;
Xu et al., 2019; Liu et al., 2021b] directly compute pair-
wise instance distances (or affinities) according to the feature
vectors and use them to regularize the label distribution vec-
tors. Some algorithms use the technique of manifold learn-
ing [Izenman, 2012; Bengio et al., 2013]; they re-express
the feature vector of each instance as a linear combination
of the feature vectors of its neighbors and then make the in-
stances retain this combination in the label distribution space.
Specifically, some of these algorithms [Hou et al., 2016;
Shao et al., 2018; Liu et al., 2021a] do not impose addi-
tional constraints on the re-expression coefficients; some al-
gorithms [Wen et al., 2021; Tang et al., 2020; Zheng et al.,
2023] assume that the re-expression coefficients matrix are
of low rank; some algorithms [Zhang et al., 2018; Lv et al.,
2019; Xu et al., 2023] consider these coefficients to be sparse.
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On the other hand, label relations were also studied in many
label enhancement works. For example, N-LDL [Luo et al.,
2021] mines global label correlation, i.e., all instances share
a label correlation pattern. Some algorithms [Jia et al., 2023;
Xu et al., 2021] mines local label correlation, i.e., instances
belonging to the same cluster share a label correlation pattern.

3 Methodology
3.1 Problem Formulation
We deal with the datasets that appear as pairs {(xi,yi)}ni=1,
where xi and yi denote the i-th vector of features and the i-
th vector of simple labels (either logical labels or multi-label
rankings are possible), respectively. X = [x1; · · · ;xn] and
Y = [y1; · · · ;yn] denote the feature matrix and simple label
matrix, respectively. The goal of LE is to infer latent label
distributions D = [d1; · · · ;dn] based on {(xi,yi)}ni=1.

3.2 JRC Model
Generation Process
Since we use a deep generative model to infer the joint im-
plicit representations of instances, we first describe the pro-
cess of generating data points.

1. Specify the index of the Gaussian prior from a categor-
ical distribution: p(c) =

∏n
i=1 Cat(ci|k−1 · 1k), where

1k is a k-dimensional all-ones vector.
2. Generate joint implicit representations from the chosen

Gaussian: p(Z|c) =
∏n
i=1N (zi|µci , diag(σ2

ci)), where
µci and σci are learnable parameters.

3. Generate the observations of feature vectors: p(X|Z) =∏n
i=1N (µzi

, diag(σ2
zi

)), [µzi
; ζ−1(σzi

)] = f(zi;θz),
where f(zi;θz) is given by a neural network with pa-
rameters θz; ζ−1(·) is the inverse of softplus function.

4. Generate the adjacency matrix of the instance graph
based on Y: p(A|Z) =

∏n
i=1

∏n
j=1 Ber(Aij |σ(z>i zj)),

where the adjacency matrix is obtained by

Aij = I(xi ∈ knn(xj) or xj ∈ knn(xi)),

where I(·) is the indicator function, knn(x) denotes the
set of instances near x, and in this paper we consider 20
nearest neighbors, i.e., |knn(x)| = 20.

The above generation process will derive the following fac-
torization of the joint density:

p(X,A,Z, c) = p(c)p(Z|c)p(X|Z)p(A|Z). (1)

Variational Inference
Since obtaining the exact posteriors of the latent variables in
the generative model is intractable, we approximate them by
the variational distributions. As shown in Figure 2(a), we
assume that the variational posterior of latent variables can
be factorized as:

q(c,Z|X,A) = q(Z|A,X)q(c|Z). (2)

Here, to fully exploit the instance relation from simple la-
bels, we use the graph convolutional network to parameterize
q(Z|A,X), i.e.,

q(Z|X,A) =
∏n
i=1N (zi|µ̂xi

, diag(σ̂xi
)),

[µ̂xi ; ζ
−1(σ̂xi)] = gi(X,A;φx),

(3)

where g(X,A;φx) denotes a graph convolutional network
with adjacency matrix of A and learnable parameter of φx;
gi(X,A;φx) is defined as the i-th vector of g(X,A;φx).
Besides, the cluster posterior can be obtained by:

q(ci = j|zi) =
p(zi|ci = j)p(ci = j)∑k
t=1 p(zi|ci = t)p(ci = t)

. (4)

We aim to minimize the KL divergence between the varia-
tional posterior and the true posterior, which is equivalent to
maximizing the ELBO (evidence lower bound). According to
the factorizations Equation (1) and Equation (2), the ELBO
can be rewritten as:
LELBO = Eq(Z|A,X)[log p(A|Z) + log p(X|Z)]−
Eq(c|Z)[KL(q(Z|A,X)‖p(Z|c))]−KL(q(c|Z)‖p(c)).

(5)

In Equation (5), the first term measures the likelihood that
the variational posteriors reconstruct the observed data; The
second and third terms measure the similarity between the
learned variational posteriors and the prior beliefs. In order
to optimize Equation (5) using gradient ascent techniques, we
turn to SGVB estimator [Kingma and Welling, 2014]. Since
q(zi|A,X) is Gaussian, it can be reparameterized by:

q(zi|A,X) = T (εi) , µ̂xi + σ̂xi�εi, εi ∼ N (0, I). (6)

Then the first term in Equation (5) can be estimated by:

Eq(Z|A,X)[log p(A|Z) + log p(X|Z)] ≈ L−1
∑L
l=1

log p(A|[T (ε
(l)
i )]ni=1) + log p(X|[T (ε

(l)
i )]ni=1),

(7)

where L is the number of Monte Carlo samples, ε(l)i is a sam-
ple from the standard normal distribution. Since c is discrete,
the third term has a closed form, i.e.,

KL(q(c|Z)‖p(c)) =
n∑
i=1

k∑
j=1

q(ci = j|zi) log
q(ci = j|zi)
p(ci = j)

,

(8)
and the second term can be rewritten as:

Eq(c|Z)[KL(q(Z|A,X)‖p(Z|c))] =
∑n
i=1

∑k
j=1

q(ci = j|zi)KL(q(zi|A,X)‖p(zi|ci = j)),
(9)

where the KL divergence between two Gaussian distribu-
tions, i.e., KL(q(zi|A,X)‖p(zi|ci = j)), has a closed
form [Kingma and Welling, 2014]. Substituting Equation (7),
Equation (8) and Equation (9) into Equation (5) yields the op-
timization objective of JRC.

3.3 LEIC Model
Generation Process
Based on the JRC model, the generation process of LEIC
makes two additional assumptions as follows: 1) Parameters
of the Gaussian mixture prior of z are conditionally domi-
nated by label distributions, which follows a Dirichlet prior.
2) Label distributions can probabilistically generate simple
labels. According, the joint density can be factorized as:

p(Y,X,A,D,Z, c)

= p(c)p(D)p(Z|c,D)p(Y|D)p(X|Z)p(A|Z),
(10)
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where p(c), p(X|Z), and p(A|Z) are the same as in JRC;
the prior of label distributions is p(D) =

∏n
i=1 Dir(di|1m),

where m denotes the number of labels; the conditional distri-
bution p(Z|c,D) is defined as:

p(Z|c,D) =
∏n
i=1N (zi|µdici , diag(σ2

dici)), (11)

where [µdici ; ζ
−1(σdici)] = f(di;θci); f(di;θci) is given

by a neural network with parameters θci . If the simple labels
are logical labels, p(Y|D) can be a Bernoulli distribution; if
the simple labels are multi-label rankings, p(Y|D) can be a
Plackett-Luce distribution [Plackett, 1975].

Variational Inference
Compared to JRC, LEIC additionally needs to infer the poste-
rior of label distributions. We assume the variational posterior
of D as q(D|X,Y) =

∏n
i=1 Dir(di|α̂i), where

α̂i = G̃i · ζ ◦ f(xi;φd) + λyi. (12)

In Equation (12), the first term (i.e., G̃i · ζ ◦ f(xi;φd)) aims
to mine local label correlations. ζ ◦ f(·) denotes a neural net-
work whose output is then transformed by the softplus func-
tion; G̃i is the symmetric Laplacian matrix ofGi:

Gi =
∑k
t=1γitYdiag([γ1t; · · · ; γnt])Y

>,

[γi1; · · · ; γik] = π ◦ gi(X,A;φc),
(13)

where π denotes the softmax function, g is given by a graph
convolutional network with adjacency matrix of A and learn-
able parameters ofφc. G̃i ·ζ◦f(xi;φd) is essentially a graph
convolution operation in which the message passing process
works on the labels rather than on the instances. To facilitate
understanding Equation (13), we consider the correlation be-
tween the i-th and j-th labels for instance xt (i.e., the (i, j)
entry ofGt): ∑k

l=1γtl ·
∑n
s=1γslysiysj . (14)

Equation (14) can be decomposed into the processes of
obtaining cluster-specific label correlations and instance-
specific label correlations: 1) We first use the linear ker-
nel (i.e., ysiysj) to quantify the correlation between the i-
th and j-th labels, and then reweight instances by the clus-
ter memberships to obtain the cluster-specific label correla-
tions. 2) We then integrate cluster-specific label correlations
by the cluster memberships of a specific instance to obtain
the instance-specific label correlation. Note that a potential
downside of graph convolutional networks is over-smooth [Li
et al., 2019], which can easily derive a label distribution with
close description degrees for all labels. Therefore, we addi-
tionally incorporate simple labels into the variational poste-
rior, where λ controls the strength of simple labels.

In order to encourage the inference of c and D to influ-
ence each other through local label correlations, we assume
that their variational posteriors share the parameter γ, i.e.,
q(c|X,A) =

∏n
i=1Cat(ci|[γi1; · · · ; γik]). Finally, we give

the factorization of variational posterior:

q(c,Z,D|Y,X,A) = q(Z|X,A)q(D|X,Y)q(c|X,A).
(15)

According to Equation (10) and Equation (15), we can rewrite
the ELBO as:
LELBO = Eq(Z|X,A)[log p(X|Z) + log p(A|Z)]

+ Eq(D|X,Y)[log p(Y|D)]

−KL(q(c|X,A)‖p(c))−KL(q(D|X,Y)‖p(D))

− Eq(D|X,Y)q(c|X,A)[KL(q(Z|X,A)‖p(Z|c,D))].

(16)

Intuitively, the first term of Equation (16) is the same as in
JRC, i.e., Equation (7); The second term of Equation (16)
measures the likelihood of reconstructing the simple labels
from the label distribution posteriors. This term involves the
expectation w.r.t. the Dirichlet posterior q(D|X,Y) whose
direct reparameterization is difficult unlike the Gaussian pos-
terior [Kingma and Welling, 2014]. Therefore, we decom-
pose the Dirichlet distribution into multiple Gamma distri-
butions which can be reparameterized by their approximated
inverse cumulative density function [Joo et al., 2020]:
q(D|X,Y) ≈ TDir(U) whose (i, j) entry is

(uijα̂ijΓ(α̂ij))
1/α̂ij

(∑m
t=1(uitα̂itΓ(α̂it))

1/α̂it

)−1
,

(17)

where uij ∼ Uni(0, 1) is the (i, j) entry of U, α̂ij is the j-th
element in α̂i, Γ(·) is the Gamma function. Then, we have

Eq(D|X,Y)[log p(Y|D)] = L−1
∑L
l=1 log p(Y|TDir(U

(l))).

Besides, the third and fourth terms of Equation (16) encour-
age the learned posteriors to incorporate the prior beliefs; the
third term has a closed form similar to Equation (8). The
forth term is the KL divergence between two Dirichlet distri-
butions, which has a closed form. The fifth term promotes
the label distribution to better generate the joint implicit rep-
resentation, which can be estimated by the reparameterization
shown in Equation (17):

Eq(D|X,Y)q(c|X,A)[KL(q(Z|X,A)‖p(Z|c,D))]

≈L−1
∑k
j=1

∑L
l=1

∑n
i=1q(ci = j|X,A)

KL(q(zi|X,A)‖p(zi|ci = j, TDir(U
(l)))).

(18)

Substituting these equations into Equation (16) yields the op-
timization objective of LEIC.

4 Experiments
4.1 Experimental Configurations
Datasets and evaluation metrics. Due to page limits, we
select six representative real-world LDL datasets from differ-
ent tasks respectively, and their brief descriptions are shown
in Table 1. For Emotion6 and Twitter-LDL, we extract a
168-dimensional feature vector for each instance [Ren et al.,
2019]. Besides, we use min-max normalization to preprocess
the feature vectors for all datasets to accelerate the conver-
gence. We use four commonly used LDL metrics to mea-
sure the similarity or distance between the estimated label
distributions and the ground-truth. They are Chebyshev dis-
tance (Cheb), KL divergence (KL), cosine coefficient (Co-
sine), and intersection similarity (Intersec). The first two are
distance metrics (i.e., the lower value indicates the better per-
formance), and the last two are similarity metrics (i.e., the
higher value indicates the better performance).
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Dataset #Instance #Feature #Label

SBU-3DFE [Geng, 2016] 2500 243 6
Emotion6 [Peng et al., 2015] 1980 168 7
Twitter-LDL [Yang et al., 2017] 10045 168 8
Movie [Geng, 2016] 7755 1869 5
Scene [Geng et al., 2022] 2000 294 9
Human Gene [Geng, 2016] 30542 36 68

Table 1: Dataset information.

Comparison algorithms. We compare our algorithm with
five LE algorithms, which are GLLE [Xu et al., 2021],
LELR [Jia et al., 2023], VLEG [Xu et al., 2023], FLE [Wang
et al., 2023], and GLEMR [Lu et al., 2023]. The hyperpa-
rameter ranges of GLLE are λ1 ∈ {10−4, 10−3, · · · , 103}
and λ2 ∈ {10−4, 10−3, · · · , 103}; The hyperparameters for
LELR, VLEG, FLE and GLEMR follow their respective liter-
ature. For our JRC and LEIC, k is set tom+1, the dimension
of the joint implicit representation is set to 64, λ is selected
from {1, 2, · · · , 10}, neural networks f are modeled as linear
functions for simplicity, and Adam [Kingma and Ba, 2015] is
adopted as the optimizer.
Experimental method. Recovery and predictive experi-
ments [Xu et al., 2021] are the two basic methods we use to
evaluate the performance of LE algorithms. Due to page lim-
its, we only consider the case where the simple label is logical
label in the experimental section. In the recovery experiment,
we first reduce the ground-truth label distributions in the LDL
dataset to logical labels, and then recover label distributions
from these logical labels using LE algorithms, and finally
compute the distances or similarities between the recovered
label distributions and the ground-truth label distributions. In
the predictive experiment, we first randomly dividing dataset
(70% for training and 30% for testing), and then use LE algo-
rithms to recover the label distributions of training instances
which is then used to train an SABFGS [Geng, 2016] model,
and finally we repeat the above proess ten times and report the
mean predictive performance of SABFGS on test instances.

4.2 Empirical Validation of JRC
Joint Implicit Representations
Here we test the instance representations obtained by JRC.

1) On the one hand, the instance representations obtained
by JRC can improve most existing LE algorithms. We run
all comparison algorithms based on the original feature vec-
tors and the instance representations obtained by JRC, respec-
tively, and show the recovery performance and predictive per-
formance in Table 3 and Figure 4, respectively. It can be seen
that JRC significantly improves the performance of the LE
algorithm in most cases. The average improvements in re-
covery performance ranking are 21.12% (for GLLE), 21.21%
(for LELR), 21.01% (for VLEG), 14.01% (for FLE), and
21.95% (for GLEMR), respectively; the average improve-
ments in predictive performance ranking are 15.96% (for
GLLE), -1.33% (for LELR), 4.91% (for VLEG), 15.76% (for
FLE), and 19.66% (for GLEMR), respectively.

2) On the other hand, the instance representations obtained
by JRC can derive better instance relations. In Table 2, we

SBU-
3DFE Emotion6 Twitter-

LDL Movie Scene Human
Gene

JRC 0.031 2.685 5.683 0.070 1.144 0.439
OF 0.130 8.620 9.655 0.218 3.153 0.454

Table 2: Neighborhood divergence formatted as mean±std. The best
results are highlighted by boldface. “OF” is the original feature.

Figure 3: Recovery performance variations arising from JRC-based
clustering. Each bar indicates the performance of the corresponding
LE algorithm using JRC clustering minus its original performance.

compute the neighborhood divergences of different represen-
tations on multiple datasets to measure the quality (w.r.t. the
label distribution) of the instance neighborhoods (or instance
relations). The neighborhood divergence of a specific in-
stance x is quantified as the mean of the KL divergences from
the neighborhood instances to x itself w.r.t. the ground-truth
label distribution. The “Original features” column and “JRC”
column indicate that the instance neighborhoods are deter-
mined by the original feature vectors and the instance rep-
resentations obtained by JRC, respectively. It can be found
that JRC considerably reduces the neighborhood divergence;
in other words, the JRC-based instance representations can
derive better instance relations compared to original features.

Adaptive Clustering
Here we test the instance clustering obtained by JRC.

1) On the one hand, the instance clustering obtained by
JRC can improve most existing LE algorithms that involve lo-
cal label correlations. Since both GLLE and LELR involve
local label correlations, we test the effectiveness of the JRC-
based instance clusters for GLLE and LELR. Figure 3 shows
the recovery performance variations arising from JRC-based
instance clusters. It can be seen that for GLLE and LELR, the
performance bars on KL are mostly lower than the horizontal
dashed line (which corresponds to 0), and the performance
bars on Cosine are mostly higher than the horizontal dashed
line, which indicates that JRC-based clustering can improve
the recovery performance of GLLE and LELR. Besides, we
note that the performance bars of GLLE+ and LELR+ on
KL and Cosine are mostly equal to the dashed line, which
indicates that JRC-based clustering has almost no effect on
GLLE+ and LELR+. This is because GLLE+ and LELR+

are built on top of the JRC-based representations which have
clear clustering structures, so that traditional clustering meth-
ods also obtain similar results to the JRC-based clustering.
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GLLE GLLE+ LELR LELR+ VLEG VLEG+ FLE FLE+ GLEMR GLEMR+ LEIC

SBU-3DFE

Cheb (↓) 0.119 (10) 0.099 (5) 0.134 (11) 0.108 (8) 0.108 (8) 0.100 (6) 0.092 (1) 0.096 (4) 0.103 (7) 0.092 (1) 0.092 (1)
KL (↓) 0.065 (10) 0.048 (8) 0.085 (11) 0.057 (9) 0.047 (7) 0.043 (5) 0.039 (1) 0.039 (1) 0.044 (6) 0.042 (4) 0.039 (1)
Cosine (↑) 0.936 (10) 0.952 (7) 0.919 (11) 0.943 (9) 0.952 (7) 0.955 (5) 0.959 (1) 0.959 (1) 0.955 (6) 0.957 (4) 0.959 (1)
Intersec (↑) 0.859 (10) 0.877 (8) 0.844 (11) 0.864 (9) 0.881 (7) 0.884 (5) 0.892 (2) 0.893 (1) 0.887 (4) 0.884 (5) 0.888 (3)

Emotion6

Cheb (↓) 0.319 (10) 0.240 (8) 0.317 (9) 0.236 (7) 0.224 (5) 0.223 (4) 0.360 (11) 0.225 (6) 0.188 (3) 0.169 (2) 0.162 (1)
KL (↓) 0.599 (10) 0.413 (8) 0.595 (9) 0.403 (6) 0.384 (5) 0.381 (4) 0.995 (11) 0.404 (7) 0.322 (3) 0.292 (2) 0.285 (1)
Cosine (↑) 0.722 (10) 0.856 (8) 0.725 (9) 0.863 (6) 0.878 (5) 0.879 (4) 0.601 (11) 0.861 (7) 0.909 (3) 0.919 (2) 0.932 (1)
Intersec (↑) 0.566 (10) 0.655 (8) 0.569 (9) 0.661 (7) 0.672 (5) 0.674 (4) 0.558 (11) 0.672 (5) 0.713 (3) 0.749 (2) 0.751 (1)

Twitter-LDL

Cheb (↓) 0.473 (11) 0.415 (8) 0.470 (10) 0.424 (9) 0.406 (7) 0.405 (6) 0.325 (5) 0.281 (4) 0.274 (3) 0.222 (2) 0.210 (1)
KL (↓) 1.008 (11) 0.858 (8) 0.998 (10) 0.899 (9) 0.841 (7) 0.838 (6) 0.662 (4) 0.784 (5) 0.558 (3) 0.483 (2) 0.465 (1)
Cosine (↑) 0.670 (11) 0.766 (8) 0.676 (10) 0.741 (9) 0.779 (7) 0.781 (6) 0.875 (5) 0.890 (4) 0.904 (3) 0.921 (2) 0.931 (1)
Intersec (↑) 0.415 (11) 0.455 (8) 0.418 (10) 0.440 (9) 0.462 (7) 0.463 (6) 0.546 (5) 0.681 (3) 0.612 (4) 0.683 (2) 0.709 (1)

Scene

Cheb (↓) 0.332 (10) 0.316 (9) 0.335 (11) 0.313 (8) 0.310 (6) 0.310 (6) 0.268 (3) 0.308 (5) 0.270 (4) 0.263 (2) 0.260 (1)
KL (↓) 0.952 (10) 0.832 (9) 0.963 (11) 0.808 (8) 0.790 (6) 0.788 (5) 0.648 (3) 0.799 (7) 0.668 (4) 0.618 (2) 0.589 (1)
Cosine (↑) 0.690 (10) 0.766 (9) 0.686 (11) 0.778 (7) 0.792 (6) 0.793 (5) 0.849 (2) 0.771 (8) 0.828 (4) 0.845 (3) 0.873 (1)
Intersec (↑) 0.431 (10) 0.488 (8) 0.429 (11) 0.496 (7) 0.508 (6) 0.509 (5) 0.573 (3) 0.483 (9) 0.555 (4) 0.595 (2) 0.647 (1)

Movie

Cheb (↓) 0.120 (8) 0.113 (7) 0.121 (9) 0.112 (6) 0.099 (4) 0.099 (4) 0.153 (11) 0.128 (10) 0.095 (3) 0.095 (1) 0.095 (1)
KL (↓) 0.099 (9) 0.089 (7) 0.098 (8) 0.081 (6) 0.068 (4) 0.068 (4) 0.143 (11) 0.104 (10) 0.064 (2) 0.064 (3) 0.062 (1)
Cosine (↑) 0.938 (8) 0.947 (7) 0.938 (8) 0.950 (6) 0.963 (4) 0.963 (4) 0.905 (11) 0.936 (10) 0.965 (2) 0.965 (3) 0.967 (1)
Intersec (↑) 0.833 (9) 0.844 (7) 0.834 (8) 0.848 (6) 0.864 (4) 0.864 (4) 0.786 (11) 0.823 (10) 0.871 (2) 0.871 (3) 0.873 (1)

Human Gene

Cheb (↓) 0.053 (7) 0.053 (7) 0.053 (7) 0.053 (7) 0.052 (4) 0.051 (2) 0.053 (7) 0.052 (4) 0.051 (3) 0.052 (4) 0.045 (1)
KL (↓) 0.236 (9) 0.230 (7) 0.236 (9) 0.232 (8) 0.209 (6) 0.202 (3) 0.236 (9) 0.205 (4) 0.200 (2) 0.205 (4) 0.150 (1)
Cosine (↑) 0.835 (9) 0.840 (7) 0.835 (9) 0.838 (8) 0.855 (6) 0.860 (3) 0.835 (9) 0.858 (4) 0.861 (2) 0.858 (4) 0.898 (1)
Intersec (↑) 0.786 (9) 0.790 (7) 0.786 (9) 0.789 (8) 0.808 (5) 0.813 (3) 0.786 (9) 0.803 (6) 0.814 (2) 0.811 (4) 0.818 (1)

Table 3: The similarity or distance between the ground-truth label distribution and the LE-recovered label distribution. The best performance
is highlighted by boldface, and each performance data is followed by its corresponding ranking. In the first row, the LE methods with the
superscript “+” indicates that they are based on the instance representations obtained by JRC model.

Figure 4: Predictive performance on four LDL measures. The bars with different styles indicate the ratio of the average predictive performance
of different LE algorithms relative to LEIC. The gray dashed line indicates the case where the ratio is equal to 1.

2) On the other hand, the instance clustering obtained by
JRC has smaller intra-cluster divergence. Table 4 shows the
average intra-cluster divergence (i.e., the average of KL di-

vergences from the label distributions of all examples within
a specific cluster to their center) of different clustering meth-
ods. It can be seen that the average intra-cluster divergence
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SBU-
3DFE Emotion6 Twitter-

LDL Movie Scene Human
Gene

JRC 0.038 2.859 3.958 0.105 2.221 0.150
KM 0.070 4.681 5.323 0.138 2.551 0.228
GM 0.075 4.929 5.323 0.137 3.038 0.247
HC 0.074 4.649 5.326 0.139 2.416 0.226

Table 4: Average intra-cluster divergence. The best results are high-
lighted by boldface. KM, GM, and HC denote K-Means, Gaussian
mixture clustering, and hierarchical clustering, respectively.

Figure 5: Counts of win/tie/loss for the predictive experiment under
pairwise two-tailed t-test with 0.05 significance level.

of JRC-based clustering is significantly smaller than others.

4.3 Empirical Validation of LEIC

Recovery and predictive experiments. Table 3 and Fig-
ure 4 show the recovery performance and predictive perfor-
mance of LEIC, respectively. Figure 5 shows the statistical
test results of a pairwise two-tailed t-test with 0.05 signifi-
cance level. It can be seen that LEIC has competitive advan-
tages both in recovering the label distributions and in serving
for the subsequent LDL task.

Parameter analysis and ablation study. To observe the
impact of the hyperparameter λ on the recovery performance,
we take λ from 0 to 10, and the results are shown in Fig-
ure 6. It can be seen that an appropriate addition of λ (e.g.,
λ ∈ (0, 4)) improves the performance on all datasets, which
indicates that the simple label information can alleviate the
over-smoothing problem of GCN to some extent. To validate
the module for mining the local label correlations, we replace
Equation (12) with α̂i = f([xi;yi];φd), and report the re-
sults in Table 5. It can be seen that using Equation (12) in
LEIC has better KL performance and Cosine performance on
all datasets than using α̂i = f([xi;yi];φd).

Recovery experiment on the image dataset. To test the
performance of our models on non-tabular features, we per-
form recovery experiments on the original Emotion6 dataset.
Specifically, we set the backbone neural networks in JRC and
LEIC to ResNet-18 [He et al., 2016], and train comparison
algorithms by JRC-based instance representations. The per-
formance is shown in Table 6. Combined with Table 3, it can
be seen that the performance on original Emotion6 is better
than on the pre-processed tabular data.

Figure 6: Recovery performance variations caused by changing λ.

Dataset KL (↓) Cosine (↑)
SBU-3DFE 0.039→ 0.050 0.959→ 0.951
Emotion6 0.279→ 0.313 0.935→ 0.929
Twitter-LDL 0.469→ 0.502 0.932→ 0.927
Scene 0.589→ 0.614 0.873→ 0.870
Movie 0.062→ 0.073 0.967→ 0.960
Human Gene 0.150→ 0.157 0.898→ 0.894

Table 5: Effectiveness of the local label correlations in LEIC. Each
entry is formatted as “a → b” which denotes that if we replace
Equation (12) in LEIC with α̂i = f([xi;yi];φd), the recovery per-
formance will change from a to b.

GLLE+ LELR+ VLEG+ FLE+ GLEMR+ LEIC

Cheb 0.235 0.233 0.223 0.217 0.167 0.157
KL 0.4 0.396 0.381 0.388 0.284 0.279
Cosine 0.864 0.867 0.879 0.872 0.924 0.935
Intersec 0.662 0.664 0.674 0.671 0.753 0.765

Table 6: Recovery performance on the original Emotion6 dataset.

5 Conclusion
In this paper, we propose a deep generative model called JRC
which has following merits: 1) JRC facilitates the acquisition
of more accurate instance relations and instance clustering,
which can improve most existing LE algorithms; 2) JRC can
handdle various forms of features, thus compensating for the
shortcomings of the LE algorithms oriented to tabular fea-
tures. Besides, we also propose a generative LE model called
LEIC based on the JRC model. LEIC model mines instance
relations and local label correlations by JRC and utilize both
relations in a principled way to recover more accurate label
distributions. Extensive experiments show that JRC model
can improve the performance of most LE algorithms involv-
ing instance relations or local label correlations, and LEIC
outperforms the state-of-the-art LE algorithms remarkably.
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